
CIS 341: COMPILERS 
Lecture 21 



Announcements 

•  Project 5 Compiling objects in full Oat 
–  Available from the course web pages 
–  Updated oat.pdf fixes a few typos (mentioned on Piazza) 
–  Due April 8th  

•  Final Exam: 
–  Tuesday, April 30th noon-2:00 pm  
–  Moore 216 
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CODE ANALYSIS 
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Motivating Code Analyses 
•  There are lots of things that might influence the safety/applicability of 

an optimization 
–  What algorithms and data structures can help? 

•  How do you know what is a loop? 
•  How do you know an expression is invariant? 
•  How do you know if an expression has no side effects? 
•  How do you keep track of where a variable is defined? 
•  How do you know where a variable is used? 
•  How do you know if two reference values may be aliases of one 

another? 
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Moving Towards Register Allocation 
•  The OAT compiler currently generates as many temporary variables as 

it needs  
–  These are the %uids you should be very familiar with by now. 

•  Current compilation strategy: 
–  Each %uid maps to a stack location. 
–  This yields programs with many loads/stores to memory. 
–  Very inefficient. 

•  Ideally, we’d like to map as many %uid’s as possible into registers. 
–  Eliminate the use of the alloca instruction? 
–  Only 8 max registers available on 32-bit X86 
–  ESP and (often) EBP are reserved, so only 6-7 really available 
–  This means that a register must hold more than one slot 

•  When is this safe? 
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Liveness 
•  Observation: %uid1 and %uid2 can be assigned to the same register 

if their values will not be needed at the same time. 
–  What does it mean for an %uid to be “needed”?   
–  Ans: its contents will be used as a source operand in a later instruction. 

•  Such a variable is called “live” 
•  Two variables can share the same register if they are not live at the 

same time. 
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Scope vs. Liveness 
•  We can already get some coarse liveness information from variable 

scoping. 
•  Consider the following OAT program: 
int f(int x) {!
  int a = 0; {int b = x + x; a = b * b;}!
  int c = a * x; return c;!
)!

•  Note that due to OAT’s scoping rules, variables b and c can never be 
live at the same time. 
–  c’s scope is disjoint from b’s scope 

•  So, we could assign b and c to the same alloca’ed slot and, 
potentially to the same register. 
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But Scope is too Coarse  
•  Consider this program: 
int f(int x) { 
  int a = x + 2; 
  int b = a * a; 
  int c = b + x; 
  return c; 
} 

•  The scopes of a,b,c,x all overlap – they’re all in scope. 
•  But, a, b, c are never live at the same time. 

–  So they can share the same stack slot / register 
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Live Variable Analysis 
•  A variable v is live at a program point if v is defined before the 

program point and used after it. 
•  Liveness is defined in terms of where variables are defined and where 

variables are used 

•  Liveness analysis: Compute the live variables between each statement. 
–  May be conservative (i.e. it may claim a variable is live when it isn’t) so 

because that’s a safe approximation 
–  To be useful, it should be more precise than simple scoping rules. 

•  Liveness analysis is one example of dataflow analysis 
–  Other examples: Available Expressions, Reaching Definitions, Constant-

Propagation Analysis, … 
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Control-flow Graphs Revisited 
•  For the purposes of dataflow analysis, we use the control-flow graph 

(CFG) intermediate form. 
•  Recall that a basic block is a sequence of instructions such that: 

–  There is a distinguished, labeled entry point (no jumps into the middle of 
a basic block) 

–  There is a (possibly empty) sequence of non-control-flow instructions 
–  The block ends with a single control-flow instruction (jump, conditional 

branch, return, etc.) 

•  A control flow graph  
–  Nodes are blocks 
–  There is an edge from B1 to B2 if the control-flow instruction of B1 might 

jump to the entry label of B2 
–  There are no “dangling” edges – there is a block for every jump target.  
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Dataflow over CFGs 
•  For precision, it is helpful to think of the “fall through” between 

sequential instructions as an edge of the control-flow graph too. 
–  In practice, identify instructions by offsets within basic blocks 
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Liveness is Associated with Edges 

•  This is useful so that the same register can be used for different 
temporaries in the same statement. 

•  Example:   a = b + 1!

•  Compiles to:  ���
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Uses and Definitions 
•  Every instruction/statement uses some set of variables 

–  i.e. reads from them 

•  Every instruction/statement defines some set of variables 
–  i.e. writes to them 

•  For a node/statement s define: 
–  use[s] : set of variables used by s 
–  def[s] : set of variables defined by s 

•  Examples: 
–  a = b + c   use[s] = {b,c}  def[s] = {a} 
–  a = a + 1   use[s] = {a}   def[s] = {a} 
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Liveness, Formally 
•  A variable v is live on edge e if:���

There is 
–  a node n in the CFG such that use[n] contains v, and  
–  a directed path from e to n such that for every statement s’ on the path, 

def[s’] does not contain v  

•  The first clause says that v will be used on some path starting from 
edge e. 

•  The second clause says that v won’t be redefined on that path before 
the use. 

•  Questions: 
–  How to compute this efficiently? 
–  How to use this information (e.g. for register allocation)? 
–  How does the choice of  IR affect this?  (e.g. LLVM IR uses SSA, so it 

doesn’t allow redefinition ⇒ simplify liveness analysis) 
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Simple, inefficient algorithm 
•  “A variable v is live on an edge e  if there is a node n in the CFG using 

it  and a directed path from e to n pasing through no def of v.” 

•  Backtracking Algorithm: 
•  For each variable v… 
•  Try all paths from each use of v, tracing backwards through the 

control-flow graph until either v is defined or a previously visited node 
has been reached. 

•  Mark the variable v live across each edge traversed. 

•  Inefficient because it explores the same paths many times (for different 
uses and different variables) 
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Dataflow Analysis 
•  Idea:  compute liveness information for all variables simultaneously. 

–  Keep track of sets of information about each node 

•  Approach: define equations that must be satisfied by any liveness 
determination. 
–  Equations based on “obvious” constraints. 

•  Solve the equations by iteratively converging on a solution. 
–  Start with a “rough” approximation to the answer 
–  Refine the answer at each iteration 
–  Keep going until no more refinement is possible: a fixpoint has been 

reached 

•  This is an instance of a general framework for computing program 
properties: dataflow analysis 
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Dataflow Value Sets for Liveness 
•  Nodes are program statements, so:  
•  use[n] : set of variables used by n 
•  def[n] : set of variables defined by n 
•  in[n] : set of variables live on entry to n 
•  out[n] : set of variables live on exit from n 

•  What constraints are there among these sets? 
•  Clearly:���

       in[n] ⊇ use[n] 

•  What other constraints? 
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Other Dataflow Constraints 
•  We have:  in[n] ⊇ use[n] 

–  “A variable must be live on entry to n if it is used by n” 

•  Also:  in[n] ⊇ out[n] - def[n] 
–  “If a variable is live on exit from n, and n doesn’t���

define it, it is live on entry to n” 
–  Note: here ‘-’ means “set difference” 

•  And:  out[n] ⊇ in[n’] if n’ ∈ succ[n] 
–  “If a variable is live on entry to a successor node of n, it must be live  on 

exit from n.” 
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Iterative Dataflow Analysis 
•  Find a solution to those constraints by starting from a rough guess. 
•  Start with:  in[n] = Ø  and out[n] = Ø 
•  They don’t satisfy the constraints: 

–  in[n] ⊇ use[n] 
–  in[n] ⊇ out[n] - def[n] 
–  out[n] ⊇ in[n’] if n’ ∈ succ[n] 

•  Idea: iteratively re-compute in[n] and out[n] where forced to by the 
constraints. 
–  Each iteration will add variables to the sets in[n] and out[n] (i.e. the live 

variable sets will increase monotonically) 

•  We stop when in[n] and out[n] satisfy these equations: 
–  in[n] = use[n] ∪ (out[n] - def[n]) 

–  out[n] = ∪n’∈succ[n]in[n’] 
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Complete Liveness Analysis Algorithm 
for all n, in[n] := Ø, out[n] := Ø 
repeat until no change in ‘in’ and ‘out’ 

 for all n 

   out[n] := ∪n’∈succ[n]in[n’] 

   in[n] := use[n] ∪ (out[n] - def[n]) 
 end 

end 

•  Finds a fixpoint of the in and out equations. 
–  The algorithm is guaranteed to terminate… Why? 

•  Why do we start with Ø? 
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Example Liveness Analysis 
•  Example flow graph: 
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Iterating the Equations 
2: in = {x} 
3: in = {e} 
4: in = {x} 
5: in = {e,x} 
6: in = {x} 
7: out = {x}, in = {x,z} 
8: out = {x}, in = {x,y} 
1: out = {x}, in = {x} 
2: out = {e,x}, in = {e,x} 
3: out = {e,x}, in = {e,x} 
5: out = {x}, in = {e,x} 
6: out = {x,y,z}, in = {x,y,z} 
7: out = {e,x}, in = {x,z} 
8: out = {e,x}, in = {x,y} 
1: out = {e,x}, in = {x} 
5: out = {x,y,z}, in = {e,x,z} 
3: out = {e,x,z}, in = {e,x} 
done! 
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Improving the Algorithm 
•  Can we do better? 

•  Observe: the only way information propagates from one node to 

another is using: out[n] := ∪n’∈succ[n]in[n’] 
–  This is the only rule that involves more than one node 

•  If a node’s successors haven’t changed, then the node itself won’t 
change. 

•  Idea for an improved version of the algorithm: 
–  Keep track of which node’s successors have changed 
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A Worklist Algorithm 
•  Use a FIFO queue of nodes that might need to be updated. 

for all n, in[n] := Ø, out[n] := Ø 
w = new queue with all nodes 
repeat until w is empty 

 let n = w.pop()      // pull a node off the queue 
   old_in = in[n]      // remember old in[n] 

   out[n] := ∪n’∈succ[n]in[n’] 

     in[n] := use[n] ∪ (out[n] - def[n]) 
   if (old_in != in[n]),     // if in[n] has changed  
      for all m in pred[n], w.push(m) // add to worklist 

end  
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OTHER DATAFLOW ANALYSES 
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Generalizing Dataflow Analyses 
•  The kind of iterative constraint solving used for liveness analysis 

applies to other kinds of analyses as well. 
–  Reaching definitions analysis 
–  Available expressions analysis 
–  These analyses follow the same 3-step approach as for liveness. 

•  To see these as an instance of the same kind of algorithm, it is useful 
to work over a canonical intermediate instruction representation 
called quadruples 
–  Allows easy definition of def[n] and use[n] 
–  A “looser” variant of LLVM’s IR that doesn’t require the “static single 

assignment” 
–  Easier for dataflow analyses (SSA form is  
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Quadruple Format 
•  A Quadruple sequence is just a control-flow graph (flowgraph) where 

each node is a quadruple: 
•  Quadruple forms n:  def[n]   use[n]   description���

a = b op c    {a}    {b,c}   arithmetic���
a = [b]     {a}    {b}    load���
[a] = b     Ø    {b}    store���
jump L     Ø    Ø    jump���
if a goto L1 else L2  Ø    {a}    branch���
L:      Ø    Ø    label���
a = f(b1,…,bn)   {a}    {b1,…,bn}  call w/return���
f(b1,…,bn)    Ø    {b1,…,bn}  call no return���
return a     Ø    {a}    return 

•  The LLVM IR we’ve been using is already in this format… 
–  In fact the SSA property is a refinement of the quadruples approach: it further 

restricts the use of variables. 
–  For the time being, we’ll ignore the alloca instruction and assume that all 

storage variables are allocated “before” the part of the CFG we’re analyzing. 
–  We’ll see more about the connection between SSA and dataflow analysis later. 
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REACHING DEFINITIONS 
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Reaching Definition Analysis 
•  Question: what uses in a program does a given variable definition 

reach? 

•  This analysis is used for constant propagation & copy prop. 
–  If only one definition reaches a particular use, can replace use by the 

definition (for constant propagation). 
–  Copy propagation additionally requires that the copied value still has its 

same value – computed using an available expressions analysis (next) 

•  Input: Quadruple CFG 
•  Output: in[n] (resp. out[n]) is the set of nodes defining some variable 

such that the definition may reach the beginning (resp. end) of node n 
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Example of Reaching Definitions 
•  Results of computing reaching definitions on this simple CFG: 
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Reaching Definitions Step 1 
•  Define the sets of interest for the analysis 
•  Let defs[a] be the set of nodes that define the variable a 
•  Define gen[n] and kill[n] as follows: 
•  Quadruple forms n:  gen[n]   kill[n]   ���

a = b op c    {n}    defs[a] - {n}   ���
a = [b]     {n}    defs[a] - {n}���
[a] = b     Ø    Ø    ���
jump L     Ø    Ø   ���
if a goto L1 else L2  Ø    Ø    ���
L:      Ø    Ø    ���
a = f(b1,…,bn)   {n}    defs[a] - {n}  ���
f(b1,…,bn)    Ø    Ø  ���
return a     Ø    Ø     
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Reaching Definitions Step 2 
•  Define the constraints that a reaching definitions solution must satisfy. 
•  out[n] ⊇ gen[n]���

“The definitions that reach the end of a node at least include the 
definitions generated by the node” 

•  in[n] ⊇ out[n’]    if n’ is in pred[n]���
“The definitions that reach the beginning of a node include those that 
reach the exit of any predecessor” 

•  out[n] ∪ kill[n] ⊇ in[n]���
“The definitions that come in to a node either reach the end of the 
node or are killed by it.” 
–  Equivalently:   out[n] ⊇ in[n] - kill[n] 
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Reaching Definitions Step 3 
•  Convert constraints to iterated update equations: 

•  in[n] := ∪n’∈pred[n]out[n’] 

•  out[n] := gen[n] ∪ (in[n] - kill[n]) 

•  Algorithm: initialize in[n] and out[n] to Ø  
–  Iterate the update equations until a fixed point is reached 

•  The algorithm terminates because in[n] and out[n] increase only 
monotonically  
–  At most to a maximum set that includes all variables in the program 

•  The algorithm is precise because it finds the smallest sets that satisfy 
the constraints. 
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AVAILABLE EXPRESSIONS 
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