
CIS 341: COMPILERS
Lecture 21

Announcements

•  Project 5 Compiling objects in full Oat
–  Available from the course web pages
–  Updated oat.pdf fixes a few typos (mentioned on Piazza)
–  Due April 8th

•  Final Exam:
–  Tuesday, April 30th noon-2:00 pm
–  Moore 216

Zdancewic CIS 341: Compilers 2

CODE ANALYSIS

Zdancewic CIS 341: Compilers 3

Motivating Code Analyses
•  There are lots of things that might influence the safety/applicability of

an optimization
–  What algorithms and data structures can help?

•  How do you know what is a loop?
•  How do you know an expression is invariant?
•  How do you know if an expression has no side effects?
•  How do you keep track of where a variable is defined?
•  How do you know where a variable is used?
•  How do you know if two reference values may be aliases of one

another?

CIS 341: Compilers 4

Moving Towards Register Allocation
•  The OAT compiler currently generates as many temporary variables as

it needs
–  These are the %uids you should be very familiar with by now.

•  Current compilation strategy:
–  Each %uid maps to a stack location.
–  This yields programs with many loads/stores to memory.
–  Very inefficient.

•  Ideally, we’d like to map as many %uid’s as possible into registers.
–  Eliminate the use of the alloca instruction?
–  Only 8 max registers available on 32-bit X86
–  ESP and (often) EBP are reserved, so only 6-7 really available
–  This means that a register must hold more than one slot

•  When is this safe?

CIS 341: Compilers 5

Liveness
•  Observation: %uid1 and %uid2 can be assigned to the same register

if their values will not be needed at the same time.
–  What does it mean for an %uid to be “needed”?
–  Ans: its contents will be used as a source operand in a later instruction.

•  Such a variable is called “live”
•  Two variables can share the same register if they are not live at the

same time.

CIS 341: Compilers 6

Scope vs. Liveness
•  We can already get some coarse liveness information from variable

scoping.
•  Consider the following OAT program:
int f(int x) {!
 int a = 0; {int b = x + x; a = b * b;}!
 int c = a * x; return c;!
)!

•  Note that due to OAT’s scoping rules, variables b and c can never be
live at the same time.
–  c’s scope is disjoint from b’s scope

•  So, we could assign b and c to the same alloca’ed slot and,
potentially to the same register.

CIS 341: Compilers 7

But Scope is too Coarse
•  Consider this program:
int f(int x) {
 int a = x + 2;
 int b = a * a;
 int c = b + x;
 return c;
}

•  The scopes of a,b,c,x all overlap – they’re all in scope.
•  But, a, b, c are never live at the same time.

–  So they can share the same stack slot / register

CIS 341: Compilers 8

x is live

a and x are live
b and x are live

c is live

Live Variable Analysis
•  A variable v is live at a program point if v is defined before the

program point and used after it.
•  Liveness is defined in terms of where variables are defined and where

variables are used

•  Liveness analysis: Compute the live variables between each statement.
–  May be conservative (i.e. it may claim a variable is live when it isn’t) so

because that’s a safe approximation
–  To be useful, it should be more precise than simple scoping rules.

•  Liveness analysis is one example of dataflow analysis
–  Other examples: Available Expressions, Reaching Definitions, Constant-

Propagation Analysis, …

CIS 341: Compilers 9

Control-flow Graphs Revisited
•  For the purposes of dataflow analysis, we use the control-flow graph

(CFG) intermediate form.
•  Recall that a basic block is a sequence of instructions such that:

–  There is a distinguished, labeled entry point (no jumps into the middle of
a basic block)

–  There is a (possibly empty) sequence of non-control-flow instructions
–  The block ends with a single control-flow instruction (jump, conditional

branch, return, etc.)

•  A control flow graph
–  Nodes are blocks
–  There is an edge from B1 to B2 if the control-flow instruction of B1 might

jump to the entry label of B2
–  There are no “dangling” edges – there is a block for every jump target.

CIS 341: Compilers 10

Dataflow over CFGs
•  For precision, it is helpful to think of the “fall through” between

sequential instructions as an edge of the control-flow graph too.
–  In practice, identify instructions by offsets within basic blocks

CIS 341: Compilers 11

Move

Binop

If

Unop

Jump

Move

Binop

If

Unop

Jump

Basic block CFG

“Exploded” CFG

Fall-through edges

in-edges

out-edges

Instr

Liveness is Associated with Edges

•  This is useful so that the same register can be used for different
temporaries in the same statement.

•  Example: a = b + 1!

•  Compiles to: ���

CIS 341: Compilers 12

Instr

Live: a, b

Live: b, d, e

Mov a, b

Add a, 1

Live: b

Live: a

Live: a (maybe)

Mov eax, eax

Add eax, 1

Register Allocate:
a  eax, b  eax

Uses and Definitions
•  Every instruction/statement uses some set of variables

–  i.e. reads from them

•  Every instruction/statement defines some set of variables
–  i.e. writes to them

•  For a node/statement s define:
–  use[s] : set of variables used by s
–  def[s] : set of variables defined by s

•  Examples:
–  a = b + c use[s] = {b,c} def[s] = {a}
–  a = a + 1 use[s] = {a} def[s] = {a}

CIS 341: Compilers 13

Liveness, Formally
•  A variable v is live on edge e if:���

There is
–  a node n in the CFG such that use[n] contains v, and
–  a directed path from e to n such that for every statement s’ on the path,

def[s’] does not contain v

•  The first clause says that v will be used on some path starting from
edge e.

•  The second clause says that v won’t be redefined on that path before
the use.

•  Questions:
–  How to compute this efficiently?
–  How to use this information (e.g. for register allocation)?
–  How does the choice of IR affect this? (e.g. LLVM IR uses SSA, so it

doesn’t allow redefinition ⇒ simplify liveness analysis)

CIS 341: Compilers 14

Simple, inefficient algorithm
•  “A variable v is live on an edge e if there is a node n in the CFG using

it and a directed path from e to n pasing through no def of v.”

•  Backtracking Algorithm:
•  For each variable v…
•  Try all paths from each use of v, tracing backwards through the

control-flow graph until either v is defined or a previously visited node
has been reached.

•  Mark the variable v live across each edge traversed.

•  Inefficient because it explores the same paths many times (for different
uses and different variables)

CIS 341: Compilers 15

Dataflow Analysis
•  Idea: compute liveness information for all variables simultaneously.

–  Keep track of sets of information about each node

•  Approach: define equations that must be satisfied by any liveness
determination.
–  Equations based on “obvious” constraints.

•  Solve the equations by iteratively converging on a solution.
–  Start with a “rough” approximation to the answer
–  Refine the answer at each iteration
–  Keep going until no more refinement is possible: a fixpoint has been

reached

•  This is an instance of a general framework for computing program
properties: dataflow analysis

CIS 341: Compilers 16

Dataflow Value Sets for Liveness
•  Nodes are program statements, so:
•  use[n] : set of variables used by n
•  def[n] : set of variables defined by n
•  in[n] : set of variables live on entry to n
•  out[n] : set of variables live on exit from n

•  What constraints are there among these sets?
•  Clearly:���

 in[n] ⊇ use[n]

•  What other constraints?

CIS 341: Compilers 17

n

Other Dataflow Constraints
•  We have: in[n] ⊇ use[n]

–  “A variable must be live on entry to n if it is used by n”

•  Also: in[n] ⊇ out[n] - def[n]
–  “If a variable is live on exit from n, and n doesn’t���

define it, it is live on entry to n”
–  Note: here ‘-’ means “set difference”

•  And: out[n] ⊇ in[n’] if n’ ∈ succ[n]
–  “If a variable is live on entry to a successor node of n, it must be live on

exit from n.”

CIS 341: Compilers 18

n

Iterative Dataflow Analysis
•  Find a solution to those constraints by starting from a rough guess.
•  Start with: in[n] = Ø and out[n] = Ø
•  They don’t satisfy the constraints:

–  in[n] ⊇ use[n]
–  in[n] ⊇ out[n] - def[n]
–  out[n] ⊇ in[n’] if n’ ∈ succ[n]

•  Idea: iteratively re-compute in[n] and out[n] where forced to by the
constraints.
–  Each iteration will add variables to the sets in[n] and out[n] (i.e. the live

variable sets will increase monotonically)

•  We stop when in[n] and out[n] satisfy these equations:
–  in[n] = use[n] ∪ (out[n] - def[n])

–  out[n] = ∪n’∈succ[n]in[n’]

CIS 341: Compilers 19

Complete Liveness Analysis Algorithm
for all n, in[n] := Ø, out[n] := Ø
repeat until no change in ‘in’ and ‘out’

 for all n

 out[n] := ∪n’∈succ[n]in[n’]

 in[n] := use[n] ∪ (out[n] - def[n])
 end

end

•  Finds a fixpoint of the in and out equations.
–  The algorithm is guaranteed to terminate… Why?

•  Why do we start with Ø?

CIS 341: Compilers 20

Example Liveness Analysis
•  Example flow graph:

CIS 341: Compilers 21

e = 1

if x > 0

return
x

z = e * e

y = e * x

if x & 1

e = z e = y

1

2

3 4

5

6

7 8

def: e

use: x

use: x

use: x

use: e
def: z

use: e,x
def: y

use: z
def: e

use: y
def: e

Iterating the Equations
2: in = {x}
3: in = {e}
4: in = {x}
5: in = {e,x}
6: in = {x}
7: out = {x}, in = {x,z}
8: out = {x}, in = {x,y}
1: out = {x}, in = {x}
2: out = {e,x}, in = {e,x}
3: out = {e,x}, in = {e,x}
5: out = {x}, in = {e,x}
6: out = {x,y,z}, in = {x,y,z}
7: out = {e,x}, in = {x,z}
8: out = {e,x}, in = {x,y}
1: out = {e,x}, in = {x}
5: out = {x,y,z}, in = {e,x,z}
3: out = {e,x,z}, in = {e,x}
done!

CIS 341: Compilers 22

e = 1

if x > 0

return
x

z = e * e

y = e * x

if x & 1

e = z e = y

1

2

3 4

5

6

7 8

def: e

use: x

use: x

use: x

use: e
def: z

use: e,x
def: y

use: z
def: e

use: y
def: e

Steps at left show
which sets have
changed.
Brackets group loops
over “for all n”.

Improving the Algorithm
•  Can we do better?

•  Observe: the only way information propagates from one node to

another is using: out[n] := ∪n’∈succ[n]in[n’]
–  This is the only rule that involves more than one node

•  If a node’s successors haven’t changed, then the node itself won’t
change.

•  Idea for an improved version of the algorithm:
–  Keep track of which node’s successors have changed

CIS 341: Compilers 23

A Worklist Algorithm
•  Use a FIFO queue of nodes that might need to be updated.

for all n, in[n] := Ø, out[n] := Ø
w = new queue with all nodes
repeat until w is empty

 let n = w.pop() // pull a node off the queue
 old_in = in[n] // remember old in[n]

 out[n] := ∪n’∈succ[n]in[n’]

 in[n] := use[n] ∪ (out[n] - def[n])
 if (old_in != in[n]), // if in[n] has changed
 for all m in pred[n], w.push(m) // add to worklist

end

CIS 341: Compilers 24

OTHER DATAFLOW ANALYSES

Zdancewic CIS 341: Compilers 25

Generalizing Dataflow Analyses
•  The kind of iterative constraint solving used for liveness analysis

applies to other kinds of analyses as well.
–  Reaching definitions analysis
–  Available expressions analysis
–  These analyses follow the same 3-step approach as for liveness.

•  To see these as an instance of the same kind of algorithm, it is useful
to work over a canonical intermediate instruction representation
called quadruples
–  Allows easy definition of def[n] and use[n]
–  A “looser” variant of LLVM’s IR that doesn’t require the “static single

assignment”
–  Easier for dataflow analyses (SSA form is

CIS 341: Compilers 26

Quadruple Format
•  A Quadruple sequence is just a control-flow graph (flowgraph) where

each node is a quadruple:
•  Quadruple forms n: def[n] use[n] description���

a = b op c {a} {b,c} arithmetic���
a = [b] {a} {b} load���
[a] = b Ø {b} store���
jump L Ø Ø jump���
if a goto L1 else L2 Ø {a} branch���
L: Ø Ø label���
a = f(b1,…,bn) {a} {b1,…,bn} call w/return���
f(b1,…,bn) Ø {b1,…,bn} call no return���
return a Ø {a} return

•  The LLVM IR we’ve been using is already in this format…
–  In fact the SSA property is a refinement of the quadruples approach: it further

restricts the use of variables.
–  For the time being, we’ll ignore the alloca instruction and assume that all

storage variables are allocated “before” the part of the CFG we’re analyzing.
–  We’ll see more about the connection between SSA and dataflow analysis later.

CIS 341: Compilers 27

REACHING DEFINITIONS

Zdancewic CIS 341: Compilers 28

Reaching Definition Analysis
•  Question: what uses in a program does a given variable definition

reach?

•  This analysis is used for constant propagation & copy prop.
–  If only one definition reaches a particular use, can replace use by the

definition (for constant propagation).
–  Copy propagation additionally requires that the copied value still has its

same value – computed using an available expressions analysis (next)

•  Input: Quadruple CFG
•  Output: in[n] (resp. out[n]) is the set of nodes defining some variable

such that the definition may reach the beginning (resp. end) of node n

CIS 341: Compilers 29

Example of Reaching Definitions
•  Results of computing reaching definitions on this simple CFG:

CIS 341: Compilers 30

b = a + 2

c = b * b

b = c + 1

1

2

3

return b * a
4

out[1]: {1}
in[2]: {1}

out[2]: {1,2}
in[3]: {1,2}

out[3]: {2,3}
in[4]: {2,3}

Reaching Definitions Step 1
•  Define the sets of interest for the analysis
•  Let defs[a] be the set of nodes that define the variable a
•  Define gen[n] and kill[n] as follows:
•  Quadruple forms n: gen[n] kill[n] ���

a = b op c {n} defs[a] - {n} ���
a = [b] {n} defs[a] - {n}���
[a] = b Ø Ø ���
jump L Ø Ø ���
if a goto L1 else L2 Ø Ø ���
L: Ø Ø ���
a = f(b1,…,bn) {n} defs[a] - {n} ���
f(b1,…,bn) Ø Ø ���
return a Ø Ø

CIS 341: Compilers 31

Reaching Definitions Step 2
•  Define the constraints that a reaching definitions solution must satisfy.
•  out[n] ⊇ gen[n]���

“The definitions that reach the end of a node at least include the
definitions generated by the node”

•  in[n] ⊇ out[n’] if n’ is in pred[n]���
“The definitions that reach the beginning of a node include those that
reach the exit of any predecessor”

•  out[n] ∪ kill[n] ⊇ in[n]���
“The definitions that come in to a node either reach the end of the
node or are killed by it.”
–  Equivalently: out[n] ⊇ in[n] - kill[n]

CIS 341: Compilers 32

Reaching Definitions Step 3
•  Convert constraints to iterated update equations:

•  in[n] := ∪n’∈pred[n]out[n’]

•  out[n] := gen[n] ∪ (in[n] - kill[n])

•  Algorithm: initialize in[n] and out[n] to Ø
–  Iterate the update equations until a fixed point is reached

•  The algorithm terminates because in[n] and out[n] increase only
monotonically
–  At most to a maximum set that includes all variables in the program

•  The algorithm is precise because it finds the smallest sets that satisfy
the constraints.

CIS 341: Compilers 33

AVAILABLE EXPRESSIONS

Zdancewic CIS 341: Compilers 34

