Lecture 22
CIS 341: COMPILERS

Announcements

- Projects 6 & 7
 - Information available soon (after late deadline for Project 5)
 - Should be significantly lighter work load than Project 5

- Final Exam:
 - Tuesday, April 30th noon-2:00 pm
 - Moore 216

CODE ANALYSIS

Zdancewic CIS 341: Compilers

Dataflow over CFGs

- For precision, it is helpful to think of the "fall through" between sequential instructions as an edge of the control-flow graph too.
 - In practice, identify instructions by offsets within basic blocks

Example Dataflow Analyses

- Liveness:
 - Computes, for each edge, the set of variables that are live across the edge.
 - A variable is live across the edge if it used before it is redefined on the path originating at the edge.
- Reaching Definitions:
 - Computes, for each edge, the set of variables whose definitions might reach the edge.
 - Useful for constant propagation. (If there is only one reaching definition to a node and it's a constant, it's OK to substitute the constant for uses.)
- Available Expressions:
 - Computes, for each edge, the set of expressions whose values are the same along all paths to the edge.

A Worklist Algorithm for Livemeness

• Use a FIFO queue of nodes that might need to be updated.

```
for all n, in[n] := Ø, out[n] := Ø

w = new queue with all nodes

repeat until w is empty

let n = w.pop() // pull a node off the queue

old_in = in[n] // remember old in[n]

out[n] := \bigcup_{n' \in succ[n]} in[n']

in[n] := use[n] \bigcup (out[n] - def[n])

if (old_in != in[n]), // if in[n] has changed

for all m in pred[n], w.push(m)// add to worklist

end
```

AVAILABLE EXPRESSIONS

Zdancewic CIS 341: Compilers

Available Expressions

• Idea: want to perform common subexpression elimination:

$$\begin{array}{c} - a = x + 1 \\ \cdots \\ b = x + 1 \end{array} \qquad \begin{array}{c} a = x + 1 \\ \cdots \\ b = a \end{array}$$

- This transformation is safe if x+1 means computes the same value at both places (i.e. x hasn't been assigned).
 - "x+1" is an available expression
- Dataflow values:
 - in[n] = set of nodes whose values are available on entry to n
 - out[n] = set of nodes whose values are available on exit of n

Available Expressions Step 1

- Define the sets of values
- Define gen[n] and kill[n] as follows:

•	Quadruple forms n:	gen[n]	kill[n]
	a = b op c	{n} - kill[n]	uses[a]
	a = [b]	{n} - kill[n]	uses[a]
	[a] = b	Ø	uses[[x]]
			(for all x that may equal a)
	jump L	Ø	Ø Note the need for "may
	if a goto L1 else L2	Ø	Ø alias" information
	L:	Ø	Ø
	$a = f(b_1, \dots, b_n)$	Ø	uses[a] U uses[[x]] (for all x)
	$f(b_1,\ldots,b_n)$	Ø	uses[[x]] (for all x)
	return a	Ø	Ø

Note that functions are assumed to be impure...

Available Expressions Step 2

- Define the constraints that an available expressions solution must satisfy.
- $out[n] \supseteq gen[n]$

"The expressions made available by n reach the end of the node"

• $in[n] \subseteq out[n']$ if n' is in pred[n]

"The expressions available at the beginning of a node include those that reach the exit of *every* predecessor"

• $out[n] \cup kill[n] \supseteq in[n]$

"The expressions available on entry either reach the end of the node or are killed by it."

- Equivalently: $out[n] \supseteq in[n] - kill[n]$

Note similarities and differences with constraints for "reaching definitions".

Available Expressions Step 3

- Convert constraints to iterated update equations:
- $in[n] := \bigcap_{n' \in pred[n]} out[n']$
- out[n] := gen[n] U (in[n] kill[n])
- Algorithm: initialize in[n] and out[n] to {set of all nodes}
 - Iterate the update equations until a fixed point is reached
- The algorithm terminates because in[n] and out[n] *decrease* only *monotonically*
 - At most to a minimum of the empty set
- The algorithm is precise because it finds the *largest* sets that satisfy the constraints.

GENERAL DATAFLOW ANALYSIS

Zdancewic CIS 341: Compilers

Comparing Dataflow Analyses

- Look at the update equations in the inner loop of the analyses
- Liveness:
 - Let gen[n] = use[n] and kill[n] = def[n]
 - out[n] := = $U_{n' \in succ[n]}in[n']$
 - $in[n] := gen[n] \cup (out[n] kill[n])$
- Reaching Definitions:

(forward)

(backward)

- in[n] := $U_{n' \in pred[n]}out[n']$
- $out[n] := gen[n] \cup (in[n] kill[n])$
- Available Expressions:

(forward)

- in[n] := $\bigcap_{n' \in \text{pred}[n]} \text{out}[n']$
- $out[n] := gen[n] \cup (in[n] kill[n])$

Common Features

- All of these analyses have a *domain* over which they solve constraints.
 - Liveness, the domain is sets of variables
 - Reaching defns., Available exprs. the domain is sets of nodes
- Each analysis has a notion of gen[n] and kill[n]
 - Used to explain how information propagates across a node.
- Each analysis is propagates information either *forward* or *backward*
 - Forward: in[n] defined in terms of predecessor nodes' out[]
 - Backward: out[n] defined in terms of successor nodes' in[]
- Each analysis has a way of aggregating information
 - Liveness & reaching definitions take union (U)
 - Available expressions uses intersection (\bigcap)
 - Union expresses a property that holds for *some* path (existential)
 - Intersection expresses a property that holds for *all* paths (universal)

(Forward) Dataflow Analysis Framework

A forward dataflow analysis can be characterized by:

- 1. A domain of dataflow values \mathcal{L}
 - e.g. \mathcal{L} = the powerset of all variables
 - Think of $l \in \mathcal{L}$ as a property, then " $x \in l$ " means "x has the property"
- 2. For each node n, a flow function $F_n : \mathcal{L} \to \mathcal{L}$
 - So far we've seen $F_n(\ell) = gen[n] \cup (\ell kill[n])$
 - So: $out[n] = F_n(in[n])$
 - "If l is a property that holds before the node n, then $F_n(l)$ holds after n"
- 3. A combining operator ⊓
 - "If we know *either* l_1 *or* l_2 holds on entry to node n, we know at most $l_1 \sqcap l_2$ "

- $in[n] := \prod_{n' \in pred[n]} out[n']$

Generic Iterative (Forward) Analysis

```
for all n, in[n] := ⊤, out[n] := ⊤
repeat until no change
for all n
```

```
in[n] := \prod_{n' \in pred[n]} out[n']out[n] := F_n(in[n])end
```

```
end
```

- Here, ⊤ ∈ *L* ("top") represents having the "maximum" amount of information.
 - Having "more" information enables more optimizations
 - "Maximum" amount could be inconsistent with the constraints.
 - Iteration refines the answer, eliminating inconsistencies

Structure of \mathcal{L}

- The domain has structure that reflects the "amount" of information contained in each dataflow value.
- Some dataflow values are more informative than others:
 - Write $l_1 \sqsubseteq l_2$ whenever l_2 provides at least as much information as l_1 .
 - The dataflow value l_2 is "better" for enabling optimizations.
- Example 1: for liveness analysis, *smaller* sets of variables are more informative.
 - Having smaller sets of variables live across an edge means that there are fewer conflicts for register allocation assignments.
 - So: $\mathbf{l}_1 \sqsubseteq \mathbf{l}_2$ if and only if $\mathbf{l}_1 \supseteq \mathbf{l}_2$
- Example 2: for available expressions analysis, larger sets of nodes are more informative.
 - Having a larger set of nodes (equivalently, expressions) available means that there is more opportunity for common subexpression elimination.
 - So: $\mathbf{l}_1 \sqsubseteq \mathbf{l}_2$ if and only if $\mathbf{l}_1 \sqsubseteq \mathbf{l}_2$

L as a Partial Order

- \mathcal{L} is a *partial order* defined by the ordering relation \sqsubseteq .
- A partial order is an ordered set.
- Some of the elements might be *incomparable*.
 - That is, there might be $l_1, l_2 \in \mathcal{L}$ such that neither $l_1 \sqsubseteq l_2$ nor $l_2 \sqsubseteq l_1$
- Properties of a partial order:
 - Reflexivity: $Q \sqsubseteq Q$
 - *Transitivity*: $\mathbf{l}_1 \sqsubseteq \mathbf{l}_2$ and $\mathbf{l}_2 \sqsubseteq \mathbf{l}_3$ implies $\mathbf{l}_1 \sqsubseteq \mathbf{l}_2$
 - Anti-symmetry: $l_1 \sqsubseteq l_2$ and $l_2 \sqsubseteq l_1$ implies $l_1 = l_2$
- Examples:
 - Integers ordered by \leq
 - Types ordered by <:
 - Sets ordered by \subseteq or \supseteq

Subsets of {a,b,c} ordered by ⊆

Partial order presented as a Hasse diagram.

order \sqsubseteq is \subseteq meet \sqcap is \cap join \sqcup is \cup

Meets and Joins

- The combining operator ⊓ is called the "meet" operation.
- It constructs the *greatest lower bound*:
 - $l_1 \sqcap l_2 \sqsubseteq l_1$ and $l_1 \sqcap l_2 \sqsubseteq l_2$ "the meet is a lower bound"
 - If $\mathbf{l} \subseteq \mathbf{l}_1$ and $\mathbf{l} \subseteq \mathbf{l}_2$ then $\mathbf{l} \subseteq \mathbf{l}_1 \sqcap \mathbf{l}_2$ "there is no greater lower bound"
- Dually, the \sqcup operator is called the "join" operation.
- It constructs the *least upper bound*:
 - $l_1 \sqsubseteq l_1 \sqcup l_2$ and $l_2 \sqsubseteq l_1 \sqcup l_2$ "the join is an upper bound"
 - If $l_1 \sqsubseteq l$ and $l_2 \sqsubseteq l$ then $l_1 \sqcup l_2 \sqsubseteq l$ "there is no smaller upper bound"
- A partial order that has all meets and joins is called a *lattice*.
 - If it has just meets, it's called a *meet semi-lattice*.

Another Way to Describe the Algorithm

- Algorithm repeatedly computes (for each node n):
- $out[n] := F_n(in[n])$
- Equivalently: $out[n] := F_n(\prod_{n' \in pred[n]} out[n'])$
 - By definition of in[n]
- We can write this as a simultaneous update of the vector of out[n] values:
 - let $x_n = out[n]$
 - Let $\mathbf{X} = (x_1, x_2, \dots, x_n)$ it's a vector of points in \mathcal{L}
 - $\mathbf{F}(\mathbf{X}) = (F_1(\bigcap_{j \in pred[1]} out[j]), F_2(\bigcap_{j \in pred[2]} out[j]), \dots, F_n(\bigcap_{j \in pred[n]} out[j]))$
- Any solution to the constraints is a *fixpoint* X of F
 i.e. F(X) = X

Iteration Computes Fixpoints

- Let $\mathbf{X}_0 = (\top, \top, \ldots, \top)$
- Each loop through the algorithm apply F to the old vector:
 X₁ = F(X₀)
 X₂ = F(X₁)
- $\mathbf{F}^{k+1}(\mathbf{X}) = \mathbf{F}(\mathbf{F}^k(\mathbf{X}))$

. . .

- A fixpoint is reached when $\mathbf{F}^{k}(\mathbf{X}) = \mathbf{F}^{k+1}(\mathbf{X})$
 - That's when the algorithm stops.
- Wanted: a maximal fixpoint
 - Because that one is more informative/useful for performing optimizations

Monotonicity & Termination

- Each flow function F_n maps lattice elements to lattice elements; to be sensible is should be *monotonic*:
- $F: \mathcal{L} \to \mathcal{L}$ is monotonic iff:
 - $\mathbf{Q}_1 \sqsubseteq \mathbf{Q}_2$ implies that $F(\mathbf{Q}_1) \sqsubseteq F(\mathbf{Q}_2)$
 - Intuitively: "If you have more precise information entering a node, then you have more precise information leaving the node."
- Monotonicity lifts point-wise to the function: $\mathbf{F} : \mathcal{L}^n \to \mathcal{L}^n$

- vector $(x_1, x_2, ..., x_n) \sqsubseteq (y_1, y_2, ..., y_n)$ iff $x_i \sqsubseteq y_i$ for each i

- Note that **F** is consistent: $\mathbf{F}(\mathbf{X}_0) \sqsubseteq \mathbf{X}_0$
 - So each iteration moves at least one step down the lattice (for some component of the vector)
 - $\ldots \sqsubseteq \mathbf{F}(\mathbf{F}(\mathbf{X}_0)) \sqsubseteq \mathbf{F}(\mathbf{X}_0) \sqsubseteq \mathbf{X}_0$
- Therefore, # steps needed to reach a fixpoint is at most the height H of \mathcal{L} times the number of nodes: O(Hn)

Reaching Definitions is Monotone

- Reaching definitions is a forward analysis.
- $in[n] = \bigcup_{n' \in pred[n]} out[n']$
- $out[n] = gen[n] \cup (in[n] kill[n])$
- Top $T = \emptyset$, meet $\prod = U$, join \coprod is \cap , order \sqsubseteq is \supseteq
- So: $F_n[x] = gen[n] \cup (x kill[n])$ is it monotonic? Let $x \sqsubseteq z$, so $z = x \sqcup y$ for some y.
- $F_n[x \sqcup y]$
 - = gen[n] U ((x \cap y) kill[n])
 - $= gen[n] \cup ((x kill[n]) \cap (y kill[n]))$
 - = $(gen[n] \cup (x kill[n])) \cap (gen[n] \cup (y kill[n]))$
 - $= F_n[x] \cap F_n[y]$
 - $\subseteq F_n[x]$

QUALITY OF DATAFLOW ANALYSIS SOLUTIONS

Best Possible Solution

- Suppose we have a control-flow graph.
- If there is a path p₁ starting from the root node (entry point of the function) traversing the nodes n₀, n₁, n₂, ... n_k
- The best possible information along the path p_1 is: $l_{p1} = F_{nk}(...F_{n2}(F_{n1}(F_{n0}(T)))...)$
- Best solution at the output is some $\[mathcal{l} \sqsubseteq \[mathcal{l}]_p\]$ for *all* paths p.
- Meet-over-paths (MOP) solution:

 $\prod_{p \in paths_to[n]} \mathbf{l}_p$

What about quality of iterative solution?

- Does the iterative solution: $out[n] = F_n(\prod_{n' \in pred[n]} out[n'])$ compute the MOP solution?
- MOP Solution: $\prod_{p \in paths_{to[n]}} l_p$
- Answer: Yes, *if* the flow functions *distribute* over \square
 - Distributive means: $\prod_{i} F_{n}(\boldsymbol{\ell}_{i}) = F_{n}(\prod_{i} \boldsymbol{\ell}_{i})$
 - Proof is a bit tricky & beyond the scope of this class. (Difficulty: loops in the control flow graph might mean there are infinitely many paths...)
- Not all analyses give MOP solution
 - They are more conservative.

Reaching Definitions is MOP

- $F_n[x] = gen[n] \cup (x kill[n])$
- Does F_n distribute over meet $\square = U$?
- $F_n[x \sqcap y]$
 - $= gen[n] \cup ((x \cup y) kill[n])$
 - $= gen[n] \cup ((x kill[n]) \cup (y kill[n]))$
 - = (gen[n] U(x kill[n])) U (gen[n] U(y kill[n]))
 - $= F_n[x] \ U \ F_n[y]$
 - $= F_n[x] \prod F_n[y]$
- Therefore: Reaching Definitions with iterative analysis always terminates with the MOP (i.e. best) solution.

"Classic" Constant Propagation

- Constant propagation can be formulated as a dataflow analysis.
- Idea: propagate and fold integer constants in one pass:

$$x = 1;$$

 $y = 5 + x;$
 $z = y * y;$
 $x = 1;$
 $y = 6;$
 $z = 36;$

- Information about a single variable:
 - Variable is never defined.
 - Variable has a single, constant value.
 - Variable is assigned multiple values.

Domains for Constant Propagation

• We can make a constant propagation lattice \mathcal{L} for *one variable* like this:

- To accommodate multiple variables, we take the product lattice, with one element per variable.
 - Assuming there are three variables, x, y, and z, the elements of the product lattice are of the form $(l_{x'}, l_{y'}, l_{z})$.
 - Alternatively, think of the product domain as a context that maps variable names to their "*abstract interpretations*"
- What are "meet" and "join" in this product lattice?
- What is the height of the product lattice?

Flow Functions

- Consider the node x = y op z ٠
- $F(\boldsymbol{\varrho}_{x'} \boldsymbol{\varrho}_{y'} \boldsymbol{\varrho}_{z}) = ?$

- F(l_x, T, l_z) = (T, T, l_z)
 F(l_x, l_y, T) = (T, l_y, T)
 "If either input might have multiple values the result of the operation might too."

- F(ℓ_x, ⊥, ℓ_z) = (⊥, ⊥, ℓ_z)
 F(ℓ_x, ℓ_y, ⊥) = (⊥, ℓ_y, ⊥)
 "If either input is undefined the result of the operation is the result of the operation is too."
- $F(l_{x'}, i, j) = (i \text{ op } j, i, j)$ "If the inputs are known constants, calculate the output statically."

- Flow functions for the other nodes are easy... •
- Monotonic? •
- Distributes over meets? ٠

Iterative Solution

MOP Solution \neq **Iterative Solution**

Dataflow Analysis: Summary

- Many dataflow analyses fit into a common framework.
- Key idea: *Iterative solution* of a system of equations over a *lattice* of constraints.
 - Iteration terminates if flow functions are monotonic.
 - Solution is equivalent to meet-over-paths answer if the flow functions distribute over meet (□).
- Dataflow analyses as presented work for an "imperative" intermediate representation.
 - The values of temporary variables are updated ("mutated") during evaluation.
 - Such mutation complicates calculations
 - SSA = "Single Static Assignment" eliminates this problem, by introducing more temporaries – each one assigned to only once.
 - Next up: Converting to SSA, finding loops and dominators in CFGs