
CIS 341: COMPILERS
Lecture 24

Announcements

•  Projects 6
–  Due Thursday

•  Project 7
–  Available soon
–  Due: May 5th

•  Final Exam:
–  Tuesday, April 30th noon-2:00 pm
–  Moore 216

Zdancewic CIS 341: Compilers 2

REGISTER ALLOCATION

Zdancewic CIS 341: Compilers 3

Register Allocation
•  Once we have the program in SSA form we can do register allocation.

•  Basic process:
1.  Compute liveness information for each temporary.
2.  Create an interference graph:

–  Nodes are temporary variables.
–  There is an edge between node n and m if n is live at the same time as m

3.  Try to color the graph
–  Each color corresponds to a register

4.  In case step 3. fails, “spill” a register to the stack and repeat the
whole process.

5.  Rewrite the program to use registers

CIS 341: Compilers 4

Interference Graphs
•  Nodes of the graph are %uids!
•  Edges connect variables that interfere with each other

–  Two variables interfere if their live ranges intersect (i.e. there is an edge in
the control-flow graph across which they are both live).

•  Register assignment is a graph coloring.
–  A graph coloring assigns each node in the graph a color (register)
–  Any two nodes connected by an edge must have different colors.

•  Example:

CIS 341: Compilers 5

%b1 = add i32 %a, 2  

%c = mult i32 %b1, %b1  

%b2 = add i32 %c, 1  

%ans = mult i32 %b2, %a!

return %ans;!

// live = {%a}���
%b1 = add i32 %a, 2  
// live = {%a,%b1}  
%c = mult i32 %b1, %b1  
// live = {%a,%c} 
%b2 = add i32 %c, 1  
// live = {%a,%b2} 
%ans = mult i32 %b2, %a!
// live = {%ans} 
return %ans;!

Interference Graph

%a!

%b1! %b2! %c!

%ans!

2-Coloring of the graph���
red = EAX
yellow = EBX

%a!

%b1! %b2! %c!

%ans!

Register Allocation Questions
•  Can we efficiently find a k-coloring of the graph whenever possible?

–  Answer: in general the problem is NP-complete (it requires search)
–  But, we can do an efficient approximation using heuristics.

•  How do we assign registers to colors?
–  If we do this in a smart way, we can eliminate redundant MOV

instructions.

•  What do we do when there aren’t enough colors/registers?
–  We have to use stack space, but how do we do this effectively?

CIS 341: Compilers 6

Coloring a Graph: Kempe’s Algorithm
•  Kempe [1879] provides this algorithm for K-coloring a graph.
•  It’s a recursive algorithm that works in three steps:
•  Step 1: Find a node with degree < K and cut it out of the graph.

–  Remove the nodes and edges.
–  This is called simplifying the graph

•  Step 2: Recursively K-color the remaining subgraph
•  Step 3: When remaining graph is colored, there must be at least one

free color available for the deleted node (since its degree was < K).
Pick such a color.

CIS 341: Compilers 7

Example: 3-color this Graph

CIS 341: Compilers 8

Recursing Down the Simplified Graphs

Example: 3-color this Graph

CIS 341: Compilers 9

Assigning Colors on the way back up.

Failure of the Algorithm
•  If the graph cannot be colored, it will simplify to a graph where every

node has at least K neighbors.
–  This can happen even when the graph is K-colorable!
–  This is a symptom of NP-hardness (it requires search)

•  Example: When trying to 3-color this graph:

CIS 341: Compilers 10

?

Spilling
•  Idea: If we can’t K-color the graph, we need to store one temporary

variable on the stack.
•  Which variable to spill?

–  Pick one that isn’t used very frequently
–  Pick one that isn’t used in a (deeply nested) loop
–  Pick one that has high interference (since removing it will make the graph

easier to color)

•  In practice: some weighted combination of these criteria

•  When coloring:
–  Mark the node as spilled
–  Remove it from the graph
–  Keep recursively coloring

CIS 341: Compilers 11

Spilling, Pictorially
•  Select a node to spill
•  Mark it and remove it from the graph
•  Continue coloring

CIS 341: Compilers 12

X

Optimistic Coloring
•  Sometimes it is possible to color a node marked for spilling.

–  If we get “lucky” with the choices of colors made earlier.

•  Example: When 2-coloring this graph:

•  Even though the node was marked for spilling, we can color it.
•  So: on the way down, mark for spilling, but don’t actually spill…

CIS 341: Compilers 13

X

…
X

Accessing Spilled Registers
•  If optimistic coloring fails, we need to generate code to move the

spilled temporary to & from memory.
•  Option 1: Reserve registers specifically for moving to/from memory.

–  Con: Need at least two registers (one for each source operand of an
instruction), so decreases total # of available registers by 2.

–  Pro: Only need to color the graph once.
–  Not good on X86 because there are too few registers & too many

constraints on how they can be used.

•  Option 2: Rewrite the program to use a new temporary variable, with
explicit moves to/from memory.
–  Pro: Need to reserve fewer registers.
–  Con: Introducing temporaries changes live ranges, so must recompute

liveness & recolor graph
–  This strategy is usually used on X86.

CIS 341: Compilers 14

Example Spill Code
•  Suppose temporary t is marked for spilling !
•  Rewrite the program like this:���

%t = %a op %b;! ! !%t = %a op %b! ! ! !// defn. of t
!! ! ! ! ! ! !%slot = alloca i32  
… ! ! ! ! ! !store i32* %slot, t  
! ! ! ! ! ! !…  
%x = %t op %c! ! !%t37 = load i32* %slot !// use 1 of t 
… ! ! ! ! ! !%x = %t37 op %c  
! ! ! ! ! ! !…  
%y = %d op %t! ! !%t38 = load i32* %slot !// use 2 of t 
! ! ! ! ! ! !%y = %d op %t38!

•  Here, %t37 and %t38 are freshly generated temporaries that
replace t for different uses of t.

•  Rewriting the code in this way breaks t’s live range up:
 %t, %t7, %t38 are only live across one or two edges

CIS 341: Compilers 15

Precolored Nodes
•  Some variables must be pre-assigned to registers.

–  E.g. on X86 the multiplication instruction: IMul must define EAX
–  The “Call” instruction should kill the caller-save registers EAX, ECX, EDX.
–  Any temporary variable live across a call interferes with the caller-save

registers.

•  To properly allocate temporaries, we treat registers as nodes in the
interference graph with pre-assigned colors.
–  Pre-colored nodes can’t be removed during simplification.
–  Trick: Treat pre-colored nodes as having “infinite” degree in the

interference graph – this guarantees they won’t be simplified.
–  When the graph is empty except the pre-colored nodes, we have reached

the point where we start coloring the rest of the nodes.

CIS 341: Compilers 16

Picking Good Colors
•  When choosing colors during the coloring phase, any choice is

semantically correct, but some choices are better for performance.
•  If the IR has explicit move instruction:���

Mov %s, %t!
•  Or, if the IR has phi nodes:���

%s = phi i32 %t1, pred1, %t2, pred2!
–  Phi nodes are lowered to mov instructions (in each predecessor block)

–  If %t1 and %s or %t2 and %s can be assigned the same register (color)
then the move is redundant and can be eliminated.

–  Better still: all three given the same color

•  A simple color choosing strategy that helps eliminate such moves:
–  Add a new kind of “move related” edge between the nodes for s and t in

the interference graph.

–  When choosing a color for s (or t), if possible pick a color of an already
colored node reachable by a move-related edge.

CIS 341: Compilers 17

Example Color Choice
•  Consider 3-coloring this graph, where the dashed edge indicates that

there is a Mov from one temporary to another.

•  After coloring the rest, we have a choice:
–  Picking yellow is better than red because it will eliminate a move.

CIS 341: Compilers 18

Move
related
edge

?

Coalescing Interference Graphs
•  A more aggressive strategy is to coalesce nodes of the interference

graph if they are connected by move-related edges.
–  Coalescing the nodes forces the two temporaries to be assigned the same

register.

•  Idea: interleave simplification and coalescing to maximize the
number of moves that can be eliminated.

•  Problem: coalescing can sometimes increase the degree of a
node.

CIS 341: Compilers 19

t

u t,u

a b

c

a b

c

Conservative Coalescing
•  Two strategies are guaranteed to preserve the k-colorability of the

interference graph.

•  Brigg’s strategy: It's safe to coalesce x & y if the resulting node will
have fewer than k neighbors (with degree ≥ k).

•  George’s strategy: We can safely coalesce x & y if for every neighbor t
of x, either t already interferes with y or t has degree < k.

CIS 341: Compilers 20

Complete Register Allocation Algorithm
1.  Build interference graph (precolor nodes as necessary).

–  Add move related edges
2.  Reduce the graph (building a stack of nodes to color).

1.  Simplify the graph as much as possible without removing nodes that are
move related (i.e. have a move-related neighbor). Remaining nodes are
high degree or move-related.

2.  Coalesce move-related nodes using Brigg’s or George’s strategy.
3.  Coalescing can reveal more nodes that can be simplified, so repeat 2.1

and 2.2 until no node can be simplified or coalesced.
4.  If no nodes can be coalesced freeze (remove) a move-related edge and

keep trying to simplify/coalesce.
3.  If there are non-precolored nodes left, mark one for spilling, remove

it from the graph and continue doing step 2.
4.  When only pre-colored node remain, start coloring (popping

simplified nodes off the top of the stack).
1.  If a node must be spilled, insert spill code as on slide 14 and rerun the

whole register allocation algorithm starting at step 1.

CIS 341: Compilers 21

Last details
•  After register allocation, the compiler should do a peephole

optimization pass to remove redundant moves.
•  Some architectures specify calling conventions that use registers to

pass function arguments.
–  It’s helpful to move such arguments into temporaries in the function

prelude so that the compiler has as much freedom as possible during
register allocation. (Not an issue on X86, though.)

CIS 341: Compilers 22

MEMORY MANAGEMENT

Zdancewic CIS 341: Compilers 23

Memory Management
•  Program data is stored in memory.

–  Memory is a finite resource: programs may need to reuse some of it.
•  Most programming languages provide two means of structuring data

stored in memory:
•  Stack: memory space (stack frames) for storing data local to a function

body.
–  The programming language provides facilities for automatically managing

stack-allocated data. (i.e. compiler emits code for allocating/freeing stack
frames)

–  (Aside: Unsafe languages like C/C++ don’t enforce the stack invariant,
which leads to bugs that can be exploited for code injection attacks…)

•  Heap: memory space for storing data that is created by a function but
needed in a caller. (Its lifetime is unknown at compile time.)
–  Freeing/reusing this memory can be up to the programmer (C/C++)
–  (Aside: Freeing memory twice or never freeing it also leads to many bugs

in C/C++ programs…)
–  Garbage collection automates memory management for Java/ML/C#/etc.

CIS 341: Compilers 24

EXPLICIT MEMORY
MANAGEMENT

Zdancewic CIS 341: Compilers 25

Unix Memory Layout

CIS 341: Compilers 26

Kernel Text / Data

User Stack

Uninitialized

Initialized

User Program Text / Data

Reserved

User Heap

User stack is
automatically

managed by the
compiler

infrastructure

User Heap is
managed by a
combination of
malloc & free.

This region is not
allocated to the
program – the

boundary can be set
by the brk
function.

Explicit Memory Management
•  On unix, libc provides a library that allows programmers to manage

the heap:
•  void * malloc(size_t n)!

–  Allocates n bytes of storage on the heap and returns its address.

•  void free(void *addr)!
–  Releases the memory previously allocated by malloc address addr.

•  These are user-level library functions. Internally, malloc uses brk
(or sbrk) system calls to have the kernel allocate space to the
process.

CIS 341: Compilers 27

Simple Implementation: Free Lists
•  Arrange the blocks of unused memory in a free list.

–  Each block has a pointer to the next free block.
–  Each block keeps track of its size. (Stored before & after data parts.)
–  Each block has a status flag = allocated or unallocated (Kept as a bit in the first

size (assuming size is a multiple of 2 so the last bit is unused)

•  Malloc: walk down free list, find a block big enough
–  First fit? Best fit?

•  Free: insert the freed block into the free list.
–  Perhaps keep list sorted so that adjacent blocks can be merged.

•  Problems:
–  Fragmentation ruins the heap
–  Malloc can be slow

CIS 341: Compilers 28

free free free allocated

Exponential Scaling / Buddy System
•  Keep an array of freelists: FreeList[i]

–  FreeList[i] points to a list of blocks of size 2i

•  Malloc: round requested size up to nearest power of 2
–  When FreeList[i] is empty, divide a block from FreeList[i+1] into two

halves, put both chunks into FreeList[i]
–  Alternatively, merge together two adjacent nodes from FreeList[i-1]

•  Free: puts freed block back into appropriate free list

•  Malloc & free take O(1) time
•  This approach trades external fragmentation (within the heap as a

whole) for internal fragmentation (within each block).
–  Wasted space: ~30%

CIS 341: Compilers 29

