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Announcements 

•  Project 6 
–  Due  tonight! 

•  Project 7 
–  Available soon 
–  Due: May 5th 

•  Final Exam: 
–  Tuesday, April 30th noon-2:00 pm  
–  Moore 216 
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GARBAGE COLLECTION 
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Why Garbage Collection? 
•  Manual memory management is cumbersome & error prone: 

–  Freeing the same pointer twice is ill defined (seg fault or other bugs) 
–  Calling free on some pointer not created by malloc (e.g. to an element 

of an array) is also ill defined 
–  malloc and free aren’t modular: To properly free all allocated 

memory, the programmer has to know what code “owns” each object.  
Owner code must ensure free is called just once. 

–  Not calling free leads to space leaks: memory never reclaimed 
•  Many examples of space leaks in long-running programs  

•  Garbage collection: 
–  Have the language runtime system determine when an allocated chunk of 

memory will no longer be used and free it automatically. 

–  But… garbage collector is usually the most complex part of a language’s 
runtime system. 

–  Garbage collection does impose costs (performance, predictability) 
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Memory Use & Reachability 
•  When is a chunk of memory no longer needed? 

–  In general, this problem is undecidable. 

•  We can approximate this information by freeing memory that can’t be 
reached from any root references. 
–  A root pointer is one that might be accessible directly from the program 

(i.e. they’re not in the heap).   
–  Root pointers include pointer values stored in registers, in global 

variables, or on the stack. 

•  If a memory cell is part of a record (or other data structure) that can be 
reached by traversing pointers from the root, it is live. 

•  It is safe to reclaim all memory cells not reachable from a root (such 
cells are garbage). 
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Reachability & Pointers 
•  Starting from stack, registers, & globals (roots), determine which 

objects in the heap are reachable following pointers. 
•  Reclaim any object that isn't reachable. 
•  Requires being able to distinguish pointer values from other 

values (e.g., ints). 
•  Type safe languages: 

–  OCaml, SML/NJ use the low bit:  ���
1 it's a scalar, 0 it's a pointer.  (Hence 31-bit ints in OCaml) 

–  Java puts the tag bits in the object meta-data (uses more space). 
–  Type safety implies that casts can’t introduce new pointers 
–  Also, pointers are abstract (references), so objects can be moved 

without changing the meaning of the program 
•  Unsafe languages: 

–  Pointers aren’t abstract, they can’t be moved. 
–  Boehm-Demers-Weiser conservative collector for C use heuristics:  

(e.g., the value doesn't point into an allocated object, pointers are 
multiples of 4, etc.) 

–  May not find as much garbage due to conservativity. 
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Example Object Graph 
•  Pointers in the stack, registers, and globals are roots 
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MARK & SWEEP GC 
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Mark and Sweep Garbage Collection 
•  Classic algorithm with two phases: 

•  Phase 1: Mark 
–  Start from the roots 
–  Do depth-first traversal, marking every object reached. 

•  Phase 2: Sweep 
–  Walk over all allocated objects and check for marks. 
–  Unmarked objects are reclaimed. 
–  Marked objects have their marks cleared. 
–  Optional: compact all live objects in heap by moving them adjacent to 

one another. (needs extra work & indirection to “patch up” pointers) 
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Stack 

Results of Marking Graph 
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Implementing the Mark Phase 
•  Depth-first search has a natural recursive algorithm. 
•  Question: what happens when traversing a long linked list? 

•  Where do we store the information needed to  perform the traversal? 
–  (In general, garbage collectors are tricky to implement because if they 

allocate memory who manages that?!) 
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Deutsch-Schorr-Waite (DSW) Algorithm 
•  No need for a stack, it is possible to use the graph being traversed 

itself to store the data necessary… 
•  Idea: during depth-first-search, each pointer is followed only once.  

The algorithm can reverse the pointers on the way down and restore 
them on the way back up. 
–  Mark a bit on each object traversed on the way down. 

•  Two pointers:  
–  curr: points to the current node 
–  prev points to the previous node 

•  On the way down, flip pointers as you traverse them: 
–  tmp := curr���

curr := curr.next���
tmp.next := prev���
prev := curr 
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Example of DSW (traversing down) 
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Costs & Implications 
•  Need to generalize to account for objects that have multiple outgoing 

pointers. 
•  Depth-first traversal terminates when there are no children pointers or 

all children are already marked. 
–  Accounts for cycles in the object graph.  

•  The Deutsch-Schorr-Waite algorithm breaks objects during the 
traversal. 
–  All computation must be halted during the mark phase. (Bad for 

concurrent programs!) 

•  Mark & Sweep algorithm reads all memory in use by the program 
(even if it’s garbage!) 
–  Running time is proportional to the total amount of allocated memory 

(both live and garbage). 
–  Can pause the programs for long times during garbage collection. 
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COPYING COLLECTION 
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Copying Garbage Collection 
•  Like mark & sweep: collects all garbage. 
•  Basic idea: use two regions of memory 

–  One region is the memory in use by the program.  New allocation 
happens in this region. 

–  Other region is idle until the GC requires it.  

•  Garbage collection algorithm: 
–  Traverse over live objects in the active region (called the “from- space”), 

copying them to the idle region (called the “to-space”).  
–  After copying all reachable data, switch the roles of the from-space and 

to-space. 
–  All dead objects in the (old) from-space are discarded en masse. 
–  A side effect of copying is that all live objects are compacted together. 
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Cheney’s Algorithm (1) 
•  Idea: maintain two pointers into the to-space 

–  Scan – points to the next piece of data to be examined 
–  Free – points to the next available word of memory 
–  Invariant: data pointed to by values between the scan and free pointers 

might need to be copied to the to-space 
–  Leave behind “forwarding pointers” to the new copies. 

•  Crucial subroutine:  (note implicit use of type information) 

 pointer copy-forward(pointer p)!
–  If structure pointed to by p has already been copied, return the 

corresponding forwarding pointer. 
–  Otherwise: 

•  Copy the structure pointed to by p into the to-space. (Incrementing the free 
pointer) 

•  Mark the structure in from-space as copied and put a forwarding pointer in 
from-space to the copy in to-space 

•  Return the pointer to the new copy in to-space 
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Cheney’s Algorithm (2) 
•  When garbage collection is triggered: 

–  Initialize the free pointer to be beginning of to-space 

•  For each root R containing a pointer ptr:���
  Set ptr’ = copy-forward(ptr)���
  Set R := ptr’���
  Set the scan pointer to ptr’.���
  While (scan != free)  
–  Increment the scan pointer (element-wise according to types of the fields 

in the underlying structure) 
–  If the scan pointer points to a pointer ptr 

•  Set *scan := copy-forward(ptr)!

CIS 341: Compilers 18 



Run of Cheney’s Algorithm 
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Run of Cheney’s Algorithm 
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Run of Cheney’s Algorithm 
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Run of Cheney’s Algorithm 
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Run of Cheney’s Algorithm 

CIS 341: Compilers 24 

A’ A 

C’ C B’ B 

D
’ 

D E 

From-space 

To-space 

Roots 

A’ 

scan free 

B’ C’ D’ 

= Marked as forwarded 
= Copied, not yet scanned 
= Copied & scanned 

Scan the second element ���
of B’ in to-space – it’s not���
a pointer. 



Run of Cheney’s Algorithm 
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Run of Cheney’s Algorithm 
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Run of Cheney’s Algorithm 
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Run of Cheney’s Algorithm 
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Run of Cheney’s Algorithm 
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Tradeoffs of Copying Collection 
•  Benefits: 

–  Simple, no stack space needed to implement the algorithm. 
–  Running time is proportional to the number of reachable objects (not all 

allocated objects) 
–  Automatically eliminates fragmentation by compacting memory during 

copy phase. 
–  malloc(n) is implemented by free := free + n!

•  Drawbacks: 
–  Twice as much memory is needed 
–  Lots of memory traffic 
–  Precise pointer/type information is required for traversal 
–  Still can have long pauses 
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Baker’s Concurrent GC 
•  Variant of copying collection in which the program and the garbage 

collector run concurrently. 
•  Program holds only pointers to to-space 
•  On field-fetch operation, if the pointer is in from-space, run copy-

forward instead of directly fetching. 
–  Moves the structure to to-space to maintain the invariant 
–  Incrementally garbage collects as the program touches data. 

•  When the to-space fills up, swap to/from by copying the roots and 
fixing up the stack and registers. 

•  Avoids long pauses due to copying   
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Generational Garbage Collection 
•  Observation: If an object has been reachable for a long time, it is 

likely to remain so. 
•  In long-running programs, mark & sweep and copying collection 

waste time and cache by scanning/copying old objects. 
•  Idea: Assign objects to different generations G0, G1, G2, … 

–  Generation G0 contains newest objects, most likely to become garbage (< 
10% live) 

–  Younger generations scanned for garbage much more frequently than 
older generations. 

–  New object eventually given tenure (promoted to the next generation) if 
they last long enough. 

–  Roots of garbage collection for G0 include objects in G1 

•  Remembered sets: 
–  Avoid scanning all tenured objects by keeping track of pointers from old 

objects to new objects.  Compiler emits extra code to keep track of such 
pointer updates. 

–  Pointers from old generations to new generations are uncommon 
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GC in Practice 
•  Combination of generational and incremental GC techniques reduce 

delay  
–  Millisecond pause times 

•  Very large objects (e.g. big arrays) can be copied in a “virtual” fashion 
without doing a physical copy 
–  Complicates the book keeping  

•  Some systems combine copying collection (for young data) with mark 
& sweep (for old data) 

•  Challenging to scale to server-scale systems with terabytes of memory 
•  Interactions with OS matter a lot 

–  It can be cheaper to do GC than it is to start paging 

•  GC is here to stay (thanks to Java, C#, etc.) 
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REFERENCE COUNTING 
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Reference Counting 
•  Idea: Keep track of the number of references to a given object. 

–  When creating a new reference to the object, increase the reference count 
–  On a call to free, decrement the reference count 
–  If the reference count is 0, the object can be deallocated immediately 

•  Deallocating an object will decrement reference counts of objects it 
points to 
–  Deallocations can “cascade,” causing lots of objects to be deallocated 

•  Benefit: immediate reclamation of the space (no need to wait for 
garbage collector) 

•  Challenges: 
–  Tracking reference counts efficiently 
–  Cyclic data structures 
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Example Reference Counts 
•  Objects track reference counts.   
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Example Reference Counts 
•  On free(x)   
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Example Reference Counts 
•  On free(x)   
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Example Reference Counts 
•  On free(x)   
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Example Reference Counts 
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Dealing with Cycles 
•  Option 1:  Require programmers to explicitly null-out references to 

break cycles. 

•  Option 2: Periodically run GC to collect cycles 

•  Option 3: Require programmers to distinguish “weak pointers” from 
“strong pointers” 
–  weak pointers: if all references to an object are “weak” then the object 

can be freed even with non-zero reference count. 
–  “Back edges” in the object graph should be designated as weak 
–  (Aside: weak pointers useful in GC settings too.) 

•  In practice: Reference counts  
–  Apples Cocoa framework used ref counts, recent versions use GC 
–  iOS supports “automatic reference counting” 
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