
CIS 341: COMPILERS
Lecture 26

Announcements

•  Project 7: Oat programming
–  Due: May 5th

•  Final Exam:
–  Tuesday, April 30th noon-2:00 pm
–  Moore 216

Zdancewic CIS 341: Compilers 2

REFERENCE COUNTING

Zdancewic CIS 341: Compilers 3

Reference Counting
•  Idea: Keep track of the number of references to a given object.

–  When creating a new reference to the object, increase the reference count
–  On a call to free, decrement the reference count
–  If the reference count is 0, the object can be deallocated immediately

•  Deallocating an object will decrement reference counts of objects it
points to
–  Deallocations can “cascade,” causing lots of objects to be deallocated

•  Benefit: immediate reclamation of the space (no need to wait for
garbage collector)

•  Challenges:
–  Tracking reference counts efficiently
–  Cyclic data structures

Zdancewic CIS 341: Compilers 4

2

Example Reference Counts
•  Objects track reference counts.

CIS 341: Compilers 5

x!

EBX EAX

Stack

2

2

3 1 1

1

1 1

2

Example Reference Counts
•  On free(x)

CIS 341: Compilers 6

x!

EBX EAX

Stack

2

2

3 1 1

1

0 1

2

Example Reference Counts
•  On free(x)

CIS 341: Compilers 7

x!

EBX EAX

Stack

2

2

3 1 1

1

0

1

Example Reference Counts
•  On free(x)

CIS 341: Compilers 8

x!

EBX EAX

Stack

2

2

3 1 1

1

1

Example Reference Counts

CIS 341: Compilers 9

x!

EBX EAX

Stack

2

2

3 1 1

1

Note that the cycle won’t
be freed.

Dealing with Cycles
•  Option 1: Require programmers to explicitly null-out references to

break cycles.

•  Option 2: Periodically run GC to collect cycles

•  Option 3: Require programmers to distinguish “weak pointers” from
“strong pointers”
–  weak pointers: if all references to an object are “weak” then the object

can be freed even with non-zero reference count.
–  “Back edges” in the object graph should be designated as weak
–  (Aside: weak pointers useful in GC settings too.)

•  In practice:
–  Apples Cocoa framework used ref counts, recent versions use GC
–  iOS supports “automatic reference counting”

Zdancewic CIS 341: Compilers 10

OAT PROGRAMMING

Zdancewic CIS 341: Compilers 11

Oat Programming
•  Oat idioms

–  see lib/list.oat, tests/encroach.oat available in Project 7

•  Interfacing with C
–  see lib/console.*

•  What’s missing?
–  Generics/parametric polymorphism
–  Exceptions
–  Concurrency
–  Encapsulation (e.g. private keyword)

•  Better language design?
–  e.g. combine cast and if?!

Zdancewic CIS 341: Compilers 12

FINAL EXAM

Zdancewic CIS 341: Compilers 13

Final Exam
•  Will cover material since the midterm almost exclusively

–  Starting from Lecture 14 (First-class Functions)
–  Objects, inheritance, types, implementation of dynamic dispatch
–  Basic optimizations
–  Dataflow analysis (forward vs. backward, fixpoint computations, etc.)

•  Liveness

–  Control flow analysis
–  SSA
–  Graph-coloring Register Allocation

•  Will focus more on the theory side of things
•  Format will be similar to the midterm

–  Simple answer, computation, multiple choice, etc.
–  Sample exam from last time is on the web

CIS 341: Compilers 14

COURSE WRAP-UP

Zdancewic CIS 341: Compilers 15

What have we learned?
Where else is it applicable?
What next?

Why CIS 341?
•  You will learn:

–  Practical applications of theory
–  Parsing
–  How high-level languages are implemented in machine language
–  (A subset of) Intel x86 architecture
–  A deeper understanding of code
–  A little about programming language semantics
–  Functional programming in OCaml
–  How to manipulate complex data structures
–  How to be a better programmer

•  Did we meet these goals?

CIS 341: Compilers 16

Stuff we didn’t Cover
•  We skipped stuff at every level…
•  Concrete syntax/parsing:

–  Much more to the theory of parsing…
–  Good syntax is art not science!

•  Source language features:
–  Exceptions, recursive data types (easy!), advanced type systems, type

inference, concurrency

•  Intermediate languages:
–  Intermediate language design, bytecode, bytecode interpreters, just-in-

time compilation (JIT)

•  Compilation:
–  Continuation-passing transformation, efficient representations, scalability

•  Optimization:
–  Scientific computing, cache optimization, instruction selection/

optimization

CIS 341: Compilers 17

Course Work
•  72% Projects: The Quaker OAT Compiler

•  12% Midterm
•  16% Final exam

•  Expect this to be a challenging, implementation-oriented course.

CIS 341: Compilers 18

I think we met this goal…

Related Courses: Fall 2013
•  CIS 500: Software Foundations

–  I will be teaching it
–  Theoretical course about functional programming, proving program

properties, type systems, lambda calculus. Uses the theorem prover Coq.

•  CIS 501: Computer Architecture
–  Dr. Devietti
–  371++: pipelining, caches, VM, superscalar, multicore,…

•  CIS 552: Advanced Programming
–  Dr. Weirich
–  Advanced functional programming in Haskell, including generic

programming, metaprogramming, embedded languages, cool tricks with
fancy type systems

CIS 341: Compilers 19

Where to go from here?
•  Conferences (proceedings available on the web):

–  Programming Language Design and Implementation (PLDI)
–  Principles of Programming Langugaes (POPL)
–  Object Oriented Programming Systems, Languages & Applications

(OOPSLA)
–  International Conference on Functional Programming (ICFP)
–  European Symposium on Programming (ESOP)
–  …

•  Technologies
–  Yacc, lex, bison, flex, …
–  LLVM – low level virtual machine
–  Java virtual machine (JVM), Microsoft’s Common Language Runtime (CLR)
–  Languages: OCaml, F#, Haskell, Scala, Go, Rust, …?

CIS 341: Compilers 20

Where else is this stuff applicable?
•  General programming

–  In C/C++, better understanding of how the compiler works can help you
generate better code.

–  Ability to read assembly output from compiler
–  Experience with functional programming can give you different ways to

think about how to solve a problem

•  Writing domain specific languages
–  lex/yacc very useful for little utilities
–  understanding abstract syntax and interpretation

•  Understanding hardware/software interface
–  Different devices have different instruction sets, programming models

CIS 341: Compilers 21

Thanks!
•  To the TAs: Dmitri & Bob

–  for doing an amazing job putting together the projects for the course.

•  To you for taking the class!

•  How can I improve the course?
–  Better feedback to students during projects ���

(i.e. get the grading done sooner!)

–  Revisit projects to improve clarity and better

CIS 341: Compilers 22

