
CIS 341: COMPILERS
Lecture 1

Administrivia
•  Instructor: Steve Zdancewic ���

Office hours: Tuesdays 3:30-5:00 & by appointment���
 Levine 511

•  TAs:
–  Dmitri Garbuzov
–  Rohan Shah���

 Office hours: To be determined

•  E-mail: cis341@seas.upenn.edu
•  Web site: http://www.seas.upenn.edu/~cis341
•  Piazza: http://piazza.com/upenn/spring2015/cis341

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 2	

Why CIS 341?
•  You will learn:

–  Practical applications of theory
–  Lexing/Parsing/Interpreters
–  How high-level languages are implemented in ���

machine language
–  (A subset of) Intel x86 architecture
–  More about common compilation tools like GCC and LLVM
–  A deeper understanding of code
–  A little about programming language semantics & types
–  Functional programming in OCaml
–  How to manipulate complex data structures
–  How to be a better programmer

•  Expect this to be a very challenging, implementation-
oriented course.
–  Programming projects can take up to tens of hours per

week…

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 3	

The Quaker OAT Compiler*
•  Course projects

–  HW1: OCaml Programming
–  HW2: X86lite interpreter
–  HW3: LLVMlite compiler
–  HW4: Lexing, Parsing, simple compilation
–  HW5: Type Checking
–  HW6: Higher-level Features
–  HW7: Optimizations
–  HW8: OAT programming

•  Goal: build a complete compiler from ���
a high-level type-safe language to x86 assembly.

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 4	

*The projects are undergoing a re-design this semester, so they’re a bit in flux. Also,���
we re-named from “Project 0” -> “HW1”, “Project 1” -> “HW2” etc.

Resources
•  Course textbook: (recommended, not required)

–  Modern compiler implementation in ML ���
(Appel)

•  Additional compilers books:
–  Compilers – Principles, Techniques & Tools ���

(Aho, Lam, Sethi, Ullman)
•  a.k.a. “The Dragon Book”

–  Advanced Compiler Design & Implementation ���
(Muchnick)

•  About Ocaml:
–  Real World Ocaml���

(Minsky, Madhavapeddy, Hickey)
•  realworldocaml.org

–  Introduction to Objective Caml���
(Hickey)

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 5	

Why OCaml?
•  OCaml is a dialect of ML – “Meta Language”

–  It was designed to enable easy ���
manipulation abstract syntax trees

–  Type-safe, mostly pure, functional ���
language with support for polymorphic ���
(generic) algebraic datatypes, modules,���
and mutable state

–  The OCaml compiler itself is well engineered
•  you can study its source!

–  It is the right tool for this job

•  Forgot about OCaml after CIS120?
–  Next couple lectures will (re)introduce it
–  First two projects will help you get up to speed programming
–  See “Introduction to Objective Caml” by Jason Hickey

•  book available on the course web pages, referred to in HW1

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 6	

HW1: Hellocaml
•  Homework 1 is available on the course web site.

–  Individual project – no groups
–  Due: Thursday, 22 Jan. 2013 at 11:59pm
–  Topic: OCaml programming, an introduction

•  OCaml head start on eniac:
–  Run “ocaml” from the command line to invoke the top-level loop
–  Run “ocamlbuild main.native” to run the compiler

•  We recommend using either:
–  Eclipse with the OcaIDE plugin
–  Emacs/Vim + merlin
–  See the course web pages about the CIS341 tool chain to get started

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 7	

Homework Policies
•  Homework (except HW1) may be done individually or in pairs
•  Late projects:

–  You each have four late days to use as you wish throughout the semester.
Each late day allows you to submit an assignment up to 24 hours late. Use
them wisely.

–  You may use at most two late days on any given assignment. After two
days, you will receive no credit.

•  Submission policy:
–  Projects that don’t compile will get no credit
–  Partial credit will be awarded according to the guidelines in the project

description

•  Academic integrity: don’t cheat
–  This course will abide by the University’s Code of Academic Integrity
–  “low level” and “high level” discussions across groups are fine
–  “mid level” discussions / code sharing are not permitted
–  General principle: When in doubt, ask!

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 8	

Course Policies
•  Prerequisites: CIS121 and CIS240

–  Significant programming experience
–  If HW1 is a struggle, this class might not be a good fit for you

Grading:
•  72% Projects: The Quaker OAT Compiler

–  Groups of 1 or 2 students
–  Implemented in OCaml

•  12% Midterm
•  16% Final exam

•  Lecture attendance is crucial
•  No laptops (or other devices)!

–  It’s too distracting for me and for others in the class.

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 9	

COMPILERS

What is a compiler?

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 10	

What is a Compiler?
•  A compiler is a program that translates from one programming

language to another.
•  Typically: high-level source code to low-level machine code ���

(object code)
–  Not always: Source-to-source translators, Java bytecode compiler, GWT

Java ⇒ Javascript

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 11	

High-‐level	 Code	

Low-‐level	 Code	

?	

Historical Aside
•  This is an old problem!
•  Until the 1950’s: computers were programmed

in assembly.
•  1951—1952: Grace Hopper developed ���

the A-0 system for the UNIVAC I
–  She later contributed significantly ���

to the design of COBOL

•  1957: the FORTRAN compiler was built ���
at IBM
–  Team led by John Backus

•  1960’s: development of the first ���
bootstrapping compiler for LISP

•  1970’s: language/compiler design blossomed

•  Today: thousands of languages (most little used)
–  Some better designed than others...

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 12	

1980s:	 ML	 /	 LCF	
1984:	 Standard	 ML	
1987:	 Caml	
1991:	 Caml	 Light	
1995:	 Caml	 Special	 Light	
1996:	 ObjecLve	 Caml	

Source Code
•  Optimized for human readability

–  Expressive: matches human ideas of grammar / syntax / meaning
–  Redundant: more information than needed to help catch errors
–  Abstract: exact computation possibly not fully determined by code

•  Example C source:

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 13	

#include <stdio.h> !
!
int factorial(int n) { !
 int acc = 1; !
 while (n > 0) { !
 acc = acc * n; !
 n = n - 1; !
 } !
 return acc; !
} !
!
int main(int argc, char *argv[]) { !
 printf("factorial(6) = %d\n", factorial(6)); !
}

Low-level code

•  Optimized for Hardware
–  Machine code hard for

people to read
–  Redundancy, ambiguity

reduced
–  Abstractions & information

about intent is lost

•  Machine code ≈ Assembly

•  Figure at right shows
(unoptimized) 32-bit code
for the factorial function

_factorial:
BB#0:

pushl %ebp
movl %esp, %ebp
subl $8, %esp
movl 8(%ebp), %eax
movl %eax, -4(%ebp)
movl $1, -8(%ebp)

LBB0_1:
cmpl $0, -4(%ebp)
jle LBB0_3

BB#2:
movl -8(%ebp), %eax
imull -4(%ebp), %eax
movl %eax, -8(%ebp)
movl -4(%ebp), %eax
subl $1, %eax
movl %eax, -4(%ebp)
jmp LBB0_1

LBB0_3:
movl -8(%ebp), %eax
addl $8, %esp
popl %ebp
retl

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 14	

How to translate?
•  Source code – Machine code mismatch
•  Some languages are farther from machine code than others:

–  Consider: C, C++, Java, Lisp, ML, Haskell, Ruby, Python, Javascript

•  Goals of translation:
–  Source level expressiveness for the task
–  Best performance for the concrete computation
–  Reasonable translation efficiency (< O(n3))
–  Maintainable code
–  Correctness!

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 15	

Correct Compilation
•  Programming languages describe computation precisely…

–  therefore, translation can be precisely described
–  a compiler can be correct with respect to the source and target language

semantics.

•  Correctness is important!
–  Broken compilers generate broken code.
–  Hard to debug source programs if the compiler is incorrect.
–  Failure has dire consequences for development cost, security, etc.

•  This course: some techniques for building correct compilers
–  Finding and Understanding Bugs in C Compilers,���

Yang et al. PLDI 2011���

–  There is much ongoing research about proving compilers correct.���
(Google for CompCert, Verified Software Toolchain, or Vellvm)

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 16	

Idea: Translate in Steps
•  Compile via a series of program representations

•  Intermediate representations are optimized for program manipulation
of various kinds:
–  Semantic analysis: type checking, error checking, etc.
–  Optimization: dead-code elimination, common subexpression

elimination, function inlining, register allocation, etc.
–  Code generation: instruction selection

•  Representations are more machine specific, less language specific as
translation proceeds

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 17	

(Simplified) Compiler Structure

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 18	

Lexical	 Analysis	

Parsing	

Intermediate	 Code	
GeneraLon	

Code	 GeneraLon	

Source	 Code	
(Character	 stream)	
if (b == 0) a = 0;

Token	 Stream	

Abstract	 Syntax	 Tree	

Intermediate	 Code	

Assembly	 Code	
CMP ECX, 0  
SETBZ EAX

Front End
(machine independent)

Back End
(machine dependent)

Middle End
(compiler dependent)

Typical Compiler Stages
•  Lexing à token stream
•  Parsing à abstract syntax
•  Disambiguation à abstract syntax
•  Semantic analysis à annotated abstract syntax
•  Translation à intermediate code
•  Control-flow analysis à control-flow graph
•  Data-flow analysis à interference graph
•  Register allocation à assembly
•  Code emission

•  Optimizations may be done at many of these stages
•  Different source language features may require more/different stages

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 19	

Compilation & Execution

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 20	

Compiler	

Assembler	

Linker	

Loader	

Source	 code

Executable	 image

Assembly	 Code

Object	 Code

Fully-‐resolved	 machine	 Code

foo.c

gcc	 -‐S

foo.s

as

foo.o

ld

foo

Library	 code

(Usually:	 gcc	 -‐o	 foo	 foo.c)	

OCAML

Introduction to OCaml programming
A little background about ML
Interactive tour via the OCaml top-loop & Eclipse
Writing simple interpreters

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 21	

ML’s History
•  1971: Robin Milner starts the LCF Project at Stanford

–  “logic of computable functions”
•  1973: At Edinburgh, Milner implemented his ���

theorem prover and dubbed it “Meta Language” – ML
•  1984: ML escaped into the wild and became ���

“Standard ML”
–  SML ‘97 newest version of the standard
–  There is a whole family of SML compilers:

•  SML/NJ – developed at AT&T Bell Labs
•  MLton – whole program, optimizing compiler
•  Poly/ML
•  Moscow ML
•  ML Kit compiler
•  MLj – SML to Java bytecode compiler

•  ML 2000: failed revised standardization
•  sML: successor ML – discussed intermittently
•  2014: sml-family.org + definition on github

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 22	

OCaml’s History
•  The Formel project at the Institut National de

Rechereche en Informatique et en Automatique (INRIA)
•  1987: Guy Cousineau re-implemented a variant of ML

–  Implementation targeted the ���
“Categorical Abstract Machine” (CAM)

–  As a pun, “CAM-ML” became “CAML”

•  1991: Xavier Leroy and Damien Doligez wrote ���
Caml-light
–  Compiled CAML to a virtual machine with simple

bytecode (much faster!)

•  1996: Xavier Leroy, Jérôme Vouillon, and Didier Rémy
–  Add an object system to create OCaml
–  Add native code compilation

•  Many updates, extensions, since…
•  Microsoft’s F# language is a descendent of OCaml
•  2013: ocaml.org

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 23	

OCaml Tools
•  ocaml – the top-level interactive loop
•  ocamlc – the bytecode compiler
•  ocamlopt – the native code compiler
•  ocamldep – the dependency analyzer
•  ocamldoc – the documentation generator
•  ocamllex – the lexer generator
•  ocamlyacc – the parser generator
•  ocamlbuild – a compilation manager

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 24	

Distinguishing Characteristics
•  Functional & (Mostly) “Pure”

–  Programs manipulate values rather than issue commands
–  Functions are first-class entities
–  Results of computation can be “named” using let
–  Has relatively few “side effects” (imperative updates to memory)

•  Strongly & Statically typed
–  Compiler typechecks every expression of the program, issues errors if it

can’t prove that the program is type safe
–  Good support for type inference & generic (polymorphic) types
–  Rich user-defined “algebraic data types” with pervasive use of ���

pattern matching

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 25	

Most Important Features for CIS341
•  Types:

–  int, bool, int32, int64, char, string, built-in lists, tuples, records, functions

•  Concepts:
–  Pattern matching
–  Recursive functions over algebraic datatypes

•  Libraries:
–  Int32, Int64, List, Printf, Format

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 26	

INTERPRETERS

How to represent programs as data structures.
How to write programs that process programs.

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 27	

Factorial: Everyone’s Favorite Function
•  Consider this implementation of factorial in a hypothetical

programming language:

•  We need to describe the constructs of this hypothetical language
–  Syntax: which sequences of characters count as a legal “program”?
–  Semantics: what is the meaning (behavior) of a legal “program”?

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 28	

X = 6;
ANS = 1;
whileNZ (x) {

 ANS = ANS * X;
 X = X + -1;

}

Grammar for a Simple Language

•  Concrete syntax (grammar) for a simple imperative language
–  Written in “Backus-Naur form”
–  <exp> and <cmd> are nonterminals
–  ‘::=‘ , ‘|’ , and <…> symbols are part of the meta language
–  keywords, like ‘skip’ and ‘ifNZ’ and symbols, like ‘{‘ and ‘+’ are part of the object language

•  Need to represent the abstract syntax (i.e. hide the irrelevant of the concrete syntax)
•  Implement the operational semantics (i.e. define the behavior, or meaning, of the program)

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 29	

<exp> ::=
 | <X>
 | <exp> + <exp>
 | <exp> * <exp>
 | <exp> < <exp>
 | <integer constant>
 | (<exp>)

<cmd> ::=
 | skip
 | <X> = <exp>
 | ifNZ <exp> { <cmd> } else { <cmd> }
 | whileNZ <exp> { <cmd> }
 | <cmd>; <cmd>

OCaml Demo

simple.ml

Zdancewic	 	 	 	 	 CIS	 341:	 Compilers	 	 	 	 	 30	

