
CIS 341: COMPILERS
Lecture 8

Announcements
•  Homework 3: Compiling LLVMlite
•  Available later TODAY
•  Due: Monday, Feb. 23rd

Zdancewic CIS 341: Compilers 2

DATATYPES IN THE LLVM IR

Zdancewic CIS 341: Compilers 3

Structured Data in LLVM
•  LLVM’s IR is uses types to describe the structure of data.

•  <#elts> is an integer constant >= 0
•  Structure types can be named at the top level:

–  Such structure types can be recursive

Zdancewic CIS 341: Compilers 4

t ::=
void
i1 | i8 | i64 N-bit integers
[<#elts> x t] arrays
fty function types
{t1, t2, … , tn} structures
t* pointers
%Tident named (identified) type

fty ::= Function Types
 t (t1, .., tn) return, argument types

%T1 = type {t1, t2, … , tn}

Example LL Types
•  An array of 341 integers: [341 x i64]

•  A two-dimensional array of integers: [3 x [4 x i64]]

•  Structure for representing arrays with their length:���
 { i64 , [0 x i64] }
–  There is no array-bounds check; the static type information is only used

for calculating pointer offsets.

•  C-style linked lists (declared at the top level):���
 %Node = type { i64, %Node*}

•  Structs from the C program shown earlier:���
 %Rect = { %Point, %Point, %Point, %Point }  

%Point = { i64, i64 }

Zdancewic CIS 341: Compilers 5

getelementptr
•  LLVM provides the getelementptr instruction to compute pointer

values
–  Given a pointer and a “path” through the structured data pointed to by

that pointer, getelementptr computes an address
–  This is the abstract analog of the X86 LEA (load effective address). It does

not access memory.
–  It is a “type indexed” operation, since the sizescomputations involved

depend on the type

•  Example: access the x component of the first point of a rectangle:

Zdancewic CIS 341: Compilers 6

insn ::= …
| getelementptr t* %val, t1 idx1, t2 idx2 ,…

%tmp1 = getelementptr %Rect* %square, i32 0, i32 0
%tmp2 = getelementptr %Point* %tmp1, i32 0, i32 0

GEP Example*

Zdancewic CIS 341: Compilers 7

struct RT {
int A;
int B[10][20];
int C;

}
struct ST {

struct RT X;
int Y;
struct RT Z;

}
int *foo(struct ST *s) {
 return &s[1].Z.B[5][13];
}

%RT = type { i32, [10 x [20 x i32]], i32 }
%ST = type { %RT, i32, %RT }
define i32* @foo(%ST* %s) {
entry:

%arrayidx = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
ret i32* %arrayidx

}

*adapted from the LLVM documentaion: see http://llvm.org/docs/LangRef.html#getelementptr-instruction

1. %s is a pointer to an (array of) %ST structs,
suppose the pointer value is ADDR

2. Compute the index of the 1st element by
adding size_ty(%ST).

3. Compute the index of the Z field by
adding size_ty(%RT) +
size_ty(i32) to skip past X and Y.

4. Compute the index of the B field by
adding size_ty(i32) to skip past A.

5. Index into the 2d array.

Final answer: ADDR + size_ty(%ST) + size_ty(%RT) + size_ty(i32)  
 + size_ty(i32) + 5*20*size_ty(i32) + 13*size_ty(i32)

getelementptr
•  GEP never dereferences the address it’s calculating:

–  GEP only produces pointers by doing arithmetic
–  It doesn’t actually traverse the links of a datastructure

•  To index into a deeply nested structure, need to “follow the pointer”
by loadingfrom the computed pointer
–  See list.ll from HW3

Zdancewic CIS 341: Compilers 8

Compiling Datastructures via LLVM
1.  Translate high level language types into an LLVM representation type.

–  For some languages (e.g. C) this process is straight forward
•  The translation simply uses platform-specific alignment and padding

–  For other languages, (e.g. OO languages) there might be a fairly complex
elaboration.
•  e.g. for Ocaml, arrays types might be translated to pointers to length-indexed

structs.���
���
⟦int array⟧ = { i32, [0 x i32]}*

2.  Translate accesses of the data into getelementptr operations:
–  e.g. for Ocaml array size access:���

⟦length a⟧ = ���
%1 = getelementptr {i32, [0xi32]}* %a, i32 0, i32 0

Zdancewic CIS 341: Compilers 9

Bitcast
•  What if the LLVM IR’s type system isn’t expressive enough?

–  e.g. if the source language has subtyping, perhaps due to inheritance
–  e.g. if the source language has polymorphic/generic types

•  LLVM IR provides a bitcast instruction
–  This is a form of (potentially) unsafe cast. Misuse can cause serious bugs

(segmentation faults, or silent memory corruption)

Zdancewic CIS 341: Compilers 10

%rect2 = type { i64, i64 } ; two-field record
%rect3 = type { i64, i64, i64 } ; three-field record

define @foo() {
 %1 = alloca %rect3 ; allocate a three-field record
 %2 = bitcast %rect3* %1 to %rect2* ; safe cast
 %3 = getelementptr %rect2* %2, i32 0, i32 1 ; allowed
 …
}

LLVMLITE SPECIFICATION

Zdancewic CIS 341: Compilers 11

see HW3

Discussion: Defining a Language
•  Premise: programming languages are purely ‘formal’ objects

–  We (as language designers) get to determine the meaning of the language
constructs

•  Question: How do we specify that meaning?

•  Question: What are the properties of a good specification?

•  Examples?

Zdancewic CIS 341: Compilers 12

Approaches to Language Specification
•  Implementation

–  It does what it does!

•  Social
–  Authority figure says:���

“it means X”
–  English prose

•  Technological
–  Multiple implementations
–  Reference interpreter
–  Test cases / Examples

•  Translation
–  Semantics given in terms of���

(hopefully better specified)���
target

•  Mathematical
–  “Informal” specifications
–  “Formal” specifications

CIS 500: Fall 2014

More “formal”: eliminate ���
with certainty as many problems ���
as possible.

Less “formal”: Techniques may
miss problems in programs

This isn’t a tradeoff… all of ���
these methods should be used.

Even the most “formal” can still���
have holes:
•  Did you prove the right thing?
•  Do your assumptions match reality?
•  Knuth. “Beware of bugs in the above
 code; I have only proved it correct, not
 tried it.”

LLVMlite notes
•  Reall LLVM requires that constants appearing in getelementptr be

declared with type i32:���

•  LLVMlite ignores the i32 annotation and treats these as i64 values
–  we keep the i32 annotation in the syntax to retain compatibility with the

clang compiler

Zdancewic CIS 341: Compilers 14

%struct = type { i64, [5 x i64], i64}

@gbl = global %struct {i64 1,  
 [5 x i64] [i64 2, i64 3, i64 4, i64 5, i64 6], i64 7}

define void @foo() {
 %1 = getelementptr %struct* @gbl, i32 0, i32 0
 …
}

COMPILING LLVMLITE TO X86

Zdancewic CIS 341: Compilers 15

Compiling LLVMlite Types to X86
•  ⟦i1⟧, ⟦i64⟧, ⟦t*⟧ = quad word (8 bytes, 8-byte aligned)
•  raw i8 values are not allowed (they must be manipulated via i8*)
•  array and struct types are laid out sequentially in memory

•  getelementptr computations must be relative to the LLVMlite size
definitions
–  i.e. ⟦i1⟧ = quad

Zdancewic CIS 341: Compilers 16

Compiling LLVM locals
•  How do we manage storage for each %uid defined by an LLVM

instruction?

•  Option 1:
–  Map each %uid to a x86 register
–  Efficient!
–  Difficult to do effectively: many %uid values, only 16 registers

•  Option 2:
–  Map each %uid to a stack-allocated space
–  Less efficient!
–  Simple to implement

•  For HW3 we will follow Option 2

Zdancewic CIS 341: Compilers 17

Other LLVMlite Features
•  Globals

–  must use %rip relative addressing

•  Calls
–  Follow x64 AMD ABI calling conventions
–  Should interoperate with C programs

•  getelementptr
–  trickiest part

Zdancewic CIS 341: Compilers 18

TOUR OF HW 3

Zdancewic CIS 341: Compilers 19

see HW3 and README

ll.ml, using main.native, clang, etc.

