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Compilation in a Nutshell 
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Source Code���
(Character stream) 
if (b == 0) { a = 1; }

Backend 
Assembly Code 
l1:
  cmpq %eax, $0  
  jeq l2
  jmp l3
l2:
  …

Abstract Syntax Tree: 
 
 
 
 

Parsing 

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis 
Token stream: 
 
 if ( b == 0 ) { a = 0 ; }

Analysis & 
Transformation 

Intermediate code: 
l1:
  %cnd = icmp eq i64 %b, 0 
  br i1 %cnd, label %l2, 
label %l3  
l2:
  store i64* %a, 1
  br label %l3
l3:



Today: Lexing 
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First Step: Lexical Analysis 
•  Change the character stream “if (b == 0) a = 0;” into tokens: 

 
     ���

IF; LPAREN; Ident(“b”); EQEQ; Int(0); RPAREN; LBRACE; 
Ident(“a”); EQ; Int(0); SEMI; RBRACE

•  Token: data type that represents indivisible “chunks” of text: 
–  Identifiers:    a y11  elsex  _100
–  Keywords:   if  else  while
–  Integers:    2  200  -500   5L
–  Floating point:  2.0   .02   1e5
–  Symbols:    +  *  `   {   }   (  )  ++   <<   >>  >>>
–  Strings:      “x”    “He said, \”Are you?\””
–  Comments:   (* CIS341: Project 1 … *)  /* foo */

•  Often delimited by whitespace (‘ ‘, \t, etc.) 
–  In some languages (e.g. Python or Haskell) whitespace is significant 
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if ( b == 0 ) { a = 0 ; }



DEMO: HANDLEX 
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How hard can it be?   
handlex.ml 
 
 
 
 



Lexing By Hand 
•  How hard can it be? 

–  Tedious and painful! 
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•  Problems: 
–  Precisely define tokens 
–  Matching tokens simultaneously 
–  Reading too much input  (need look ahead) 
–  Error handling 
–  Hard to compose/interleave tokenizer code 
–  Hard to maintain 



Regular Expressions 
•  Regular expressions precisely describe sets of strings. 
•  A regular expression R has one of the following forms: 

–  ε    Epsilon stands for the empty string 
–  ‘a’    An ordinary character stands for itself 
–  R1 | R2   Alternatives, stands for choice of R1 or R2
–  R1R2    Concatenation, stands for R1 followed by R2
–  R*    Kleene star, stands for zero or more repetitions of R

•  Useful extensions: 
–  “foo”   Strings, equivalent to 'f''o''o'
–  R+    One or more repetitions of R,  equivalent to RR*
–  R?    Zero or one occurrences of R, equivalent to (ε|R)
–  ['a'-'z']  One of a or b or c or … z, equivalent to (a|b|…|z)
–  [^'0'-'9']  Any character except 0 through 9
–  R as x   Name the string matched by R as x
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Example Regular Expressions 
•  Recognize the keyword  “if”:   ”if”
•  Recognize a digit:  ['0'-'9'] 
•  Recognize an integer literal:  '-'?['0'-'9']+
•  Recognize an identifier: ���

 (['a'-'z']|['A'-'Z'])(['0'-'9']|'_'|['a'-'z']|
['A'-'Z'])* 

•  In practice, it’s useful to be able to name regular expressions: 

let lowercase = ['a'-'z']
let uppercase = ['A'-'Z']
let character = uppercase | lowercase
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How to Match? 
•  Consider the input string:     ifx = 0

–  Could lex as:         or as:   

•  Regular expressions alone are ambiguous, need a rule for choosing 
between the options above 

•  Most languages choose “longest match” 
–  So the 2nd option above will be picked 
–  Note that only the first option is “correct” for parsing purposes 

•  Conflicts: arise due to two regular expressions with non-empty 
intersection 
–  Ties broken by giving some matches higher priority 
–  Example: keywords have priority over identifiers 
–  Usually specified by order the rules appear in the lex input file 
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if x = 0 ifx = 0



 
 
 
 
 
 
 

Lexer Generators 
•  Reads a list of regular expressions:  R1,…,Rn , one per token. 
•  Each token has an attached “action” Ai (just a piece of code to run 

when the regular expression is matched):

rule token = parse
| '-'?digit+    { Int (Int32.of_string (lexeme lexbuf)) }
| '+'    { PLUS }
| 'if'        { IF }
| character (digit|character|'_')*{ Ident (lexeme lexbuf) }

| whitespace+                { token lexbuf }
 

•  Generates scanning code that: 
1.  Decides whether the input is of the form (R1|…|Rn)* 
2.  Whenever the scanner matches a (longest) token, it runs the associated 

action  
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DEMO: OCAMLLEX 
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olex.mll 
 
 
 
 



Implementation Strategies 
•  Most Tools:  lex, ocamllex, flex, etc.: 

–  Table-based  
–  Deterministic Finite Automata (DFA) 
–  Goal: Efficient, compact representation, high performance 

•  Other approaches: 
–  Brzozowski derivatives 
–  Idea: directly manipulate the (abstract syntax of) the regular expression 
–  Compute partial “derivatives”  

•  Regular expression that is “left-over” after seeing the next character 

–  Elegant, purely functional, implementation 
–  (very cool!) 
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Finite Automata 
•  Consider the regular expression: ‘”’[^’”’]*’”’
•  An automaton (DFA) can be represented as: 

–  A transition table: 

–  A graph: 
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" Non-" 

0 1 ERROR 

1 2 1 

2 ERROR ERROR 

0	   1	   2	  "	   "	  

Non-‐"	  



RE to Finite Automaton? 
•  Can we build a finite automaton for every regular expression? 

–  Yes!  Recall CIS 262 for the complete theory… 

•  Strategy: consider every possible regular expression (by induction on 
the structure of the regular expressions): 

 
'a'

ε

R1R2
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a

R1 R2?? 

What about? 
 
 
 
R1|R2



Nondeterministic Finite Automata 
•  A finite set of states, a start state, and accepting state(s) 
•  Transition arrows connecting states 

–  Labeled by input symbols 
–  Or ε (which does not consume input) 

•  Nondeterministic: two arrows leaving the same state may have the 
same label 
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a

b

ε

ε
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RE to NFA? 
•  Converting regular expressions to NFAs is easy. 
•  Assume each NFA has one start state, unique accept state 

CIS 341: Compilers 17 

a
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‘a’
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R1R2



RE to NFA (cont’d) 
•  Sums and Kleene star are easy with NFAs 
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DFA versus NFA 
•  DFA:  

–  Action of the automaton for each input is fully determined 
–  Automaton accepts if the input is consumed upon reaching an accepting 

state 
–  Obvious table-based implementation 

•  NFA:  
–  Automaton potentially has a choice at every step 
–  Automaton accepts an input string if there exists a way to reach an 

accepting state 
–  Less obvious how to implement efficiently 
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NFA to DFA conversion (Intuition) 
•  Idea:  Run all possible executions of the NFA “in parallel” 
•  Keep track of a set of possible states:  “finite fingers” 
•  Consider: -?[0-9]+

•  NFA representation: 

•  DFA representation: 
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1	   2	   3	  
[0-‐9]	   ε

[0-‐9]	  

0	  

ε

-‐	  

{1}	  

{2,3}	  {0,1}	  

-‐	   [0-‐9]	  

[0-‐9]	  
[0-‐9]	  



Summary of Lexer Generator Behavior 
•  Take each regular expression Ri and it’s action Ai 
•  Compute the NFA formed by (R1 | R2 | … | Rn) 

–  Remember the actions associated with the accepting states of the Ri 

•  Compute the DFA for this big NFA 
–  There may be multiple accept states (why?) 
–  A single accept state may correspond to one or more actions (why?) 

•  Compute the minimal equivalent DFA 
–  There is a standard algorithm due to Myhill & Nerode 

•  Produce the transition table 
•  Implement longest match: 

–  Start from initial state 
–  Follow transitions, remember last accept state entered (if any) 
–  Accept input until no transition is possible (i.e. next state is “ERROR”) 
–  Perform the highest-priority action associated with the last accept state; if 

no accept state there is a lexing error 
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Lexer Generators in Practice 
•  Many existing implementations: lex, Flex, Jlex, ocamllex, … 

–  For example ocamllex program 
•  see lexlex.mll, olex.mll, piglatin.mll on course website 

•  Error reporting: 
–  Associate line number/character position with tokens 
–  Use a rule to recognize ‘\n’ and increment the line number 
–  The lexer generator itself usually provides character position info. 

•  Sometimes useful to treat comments specially 
–  Nested comments: keep track of nesting depth 

•  Lexer generators are usually designed to work closely with parser 
generators… 
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DEMO: OCAMLLEX 
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 lexlex.mll, olex.mll, piglatin.mll 
 
 
 
 



CORRECTNESS? 

Zdancewic     CIS 341: Compilers     24 



Correct Execution? 
•  What does it mean for an Imp program to be executed 

correctly? 

•  Even at the interpreter level we could show equivalence 
between the small-step and the large-step operational 
semantics: 

cmd	  /	  st	  ⟼*	  SKIP	  /	  st’	  	  	  	  	  	  
	  
	  iff	  
	  

cmd	  /	  st	  	  ⇓	  	  st’	  



Compiler Correctness? 
•  We have to relate the source and target language semantics across the 

compilation function C[-] : source ➞ target. 

•  Is this enough? 
•  What if cmd goes into an infinite loop? 

cmd	  /	  st	  	  	  S⟼*	  	  SKIP	  /	  st’	  	  	  	  	  	  
	  
	  iff	  
	  

C[cmd]	  /	  C[st]	  	  T⟼*	  	  C[st’]	  



Comparing Behaviors 
•  Consider two programs P and P’ possibly in different languages. 

–  e.g. P is an LLVMlite program, P’ is its compilation to x86 

•  The semantics of the languages associate to each program a set of 
observable behaviors:���
     

B(P)  and  B(P’) 

•  Note: |B(P)| = 1 if P is deterministic, > 1 otherwise 



What is Observable? 
•  For Imp-like languages:���

  ���
  observable behavior ::=  ���
   | terminates(st)            (i.e. observe the final state)���
   | diverges ���
   | goeswrong 

•  For pure functional languages:���
���
  observable behavior ::=���
   | terminates(v)   (i.e. observe the final value)���
   | diverges���
   | goeswrong 



What about I/O? 
•  Add a trace of input-output events performed:���

���
   t  ::=  []   |   e :: t    (finite traces)���
 coind.  T  ::=  []   |   e :: T    (finite and infinite traces)���
���
  observable behavior ::=���
    | terminates(t, st)     (end in state st after trace t)���
    | diverges(T)      (loop, producing trace T)���
    | goeswrong(t) 



Examples 
•  P1:   ���

print(1); / st    ⇒   terminates(out(1)::[],st) 

•  P2:  ���
print(1); print(2);  / st   ���
       ⇒   terminates(out(1)::out(2)::[],st) 

•  P3:���
WHILE true DO print(1) END  / st���
       ⇒   diverges(out(1)::out(1)::…) 

•  So     B(P1)  ≠   B(P2)  ≠  B(P3) 



Bisimulation 
•  Two programs P1 and P2 are bisimilar whenever:���

���
      B(P1)  =   B(P2) 

•  The two programs are completely indistinguishable. 

•  But… this is often too strong in practice.���
 



Compilation Reduces Nondeterminism 
•  Some languages (like C) have underspecified behaviors: 

–  Example: order of evaluation of expressions    f() + g() 

•  Concurrent programs often permit nondetermism 
–  Classic optimizations can reduce this nondterminism  
–  Example:  ���

 a := x + 1; b := x + 1     ||   x := x+1 
���

       vs.���
���
 a := x + 1; b := a          ||   x := x+1 



Backward Simulation  
•  Program P2 can exhibit fewer behaviors than P1: ���

���
      B(P1)  ⊇   B(P2) 

•  All of the behaviors of P2 are permitted by P1, though some of them 
may have been eliminated. 

•  Also called refinement. 



What about goeswrong? 
•  Compilers often translate away bad behaviors.���

 
    x := 1/y ; x := 42  vs.    x := 42���
  (divide by 0 error)        (always terminates) 

 
•  Justifications: 

–  Compiled program does not “go wrong” because the program type checks 
or is otherwise formally verified 

–  Or just “garbage in/garbage out” 



Safe Backwards Simulation 
•  Only require the compiled program’s behaviors to agree if the source 

program could not go wrong:���
 ���
   goeswrong(t)  ∉  B(P1)      ⇒     B(P1)  ⊇   B(P2) 

•  Idea: let    S   be the functional specification of the program:���
A set of behaviors not containing goeswrong(t). 
–  A program P satsifies the spec if     B(P) ⊆ S 

•  Lemma: If P2 is a safe backwards simulation of P1 and P1 satisfies the 
spec, then P2 does too. 



Building Backward Simulations 

Source:	  

Target:	  

σ1 σ2

τ1 τ2 τ3 τn

C[-‐]	  

…	  

C[-‐]	  

Idea:	  The	  event	  trace	  along	  a	  	  (target)	  sequence	  of	  steps	  originaMng	  from	  a	  
compiled	  program	  must	  correspond	  to	  some	  source	  sequence.	  	  
Tricky	  parts:	  	  	  

	  -‐	  	  Must	  consider	  all	  possible	  target	  steps	  
	  -‐	  	  If	  the	  compiler	  uses	  many	  target	  steps	  for	  once	  source	  step,	  we	  have	  
	  	  	  	  	  invent	  some	  way	  of	  relaMng	  the	  intermediate	  states	  to	  the	  source.	  

	  	  	  	  	  	  	  	  -‐	  	  the	  compilaMon	  funcMon	  goes	  the	  wrong	  way	  to	  help!	  

out(1)	  

out(1)	  


