
CIS 341: COMPILERS
Lecture 9

LEXING

Zdancewic CIS 341: Compilers 2

Lexical analysis, tokens, regular expressions, automata

Compilation in a Nutshell

CIS 341: Compilers 3

Source Code���
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
 cmpq %eax, $0  
 jeq l2
 jmp l3
l2:
 …

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis
Token stream:

 if (b == 0) { a = 0 ; }

Analysis &
Transformation

Intermediate code:
l1:
 %cnd = icmp eq i64 %b, 0
 br i1 %cnd, label %l2,
label %l3  
l2:
 store i64* %a, 1
 br label %l3
l3:

Today: Lexing

CIS 341: Compilers 4

Source Code���
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
 cmpq %eax, $0  
 jeq l2
 jmp l3
l2:
 …

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis
Token stream:

 if (b == 0) { a = 0 ; }

Analysis &
Transformation

Intermediate code:
l1:
 %cnd = icmp eq i64 %b, 0
 br i1 %cnd, label %l2,
label %l3  
l2:
 store i64* %a, 1
 br label %l3
l3:

First Step: Lexical Analysis
•  Change the character stream “if (b == 0) a = 0;” into tokens:

 ���

IF; LPAREN; Ident(“b”); EQEQ; Int(0); RPAREN; LBRACE;
Ident(“a”); EQ; Int(0); SEMI; RBRACE

•  Token: data type that represents indivisible “chunks” of text:
–  Identifiers: a y11 elsex _100
–  Keywords: if else while
–  Integers: 2 200 -500 5L
–  Floating point: 2.0 .02 1e5
–  Symbols: + * ` { } () ++ << >> >>>
–  Strings: “x” “He said, \”Are you?\””
–  Comments: (* CIS341: Project 1 … *) /* foo */

•  Often delimited by whitespace (‘ ‘, \t, etc.)
–  In some languages (e.g. Python or Haskell) whitespace is significant

CIS 341: Compilers 5

if (b == 0) { a = 0 ; }

DEMO: HANDLEX

Zdancewic CIS 341: Compilers 6

How hard can it be?
handlex.ml

Lexing By Hand
•  How hard can it be?

–  Tedious and painful!

CIS 341: Compilers 7

•  Problems:
–  Precisely define tokens
–  Matching tokens simultaneously
–  Reading too much input (need look ahead)
–  Error handling
–  Hard to compose/interleave tokenizer code
–  Hard to maintain

Regular Expressions
•  Regular expressions precisely describe sets of strings.
•  A regular expression R has one of the following forms:

–  ε Epsilon stands for the empty string
–  ‘a’ An ordinary character stands for itself
–  R1 | R2 Alternatives, stands for choice of R1 or R2
–  R1R2 Concatenation, stands for R1 followed by R2
–  R* Kleene star, stands for zero or more repetitions of R

•  Useful extensions:
–  “foo” Strings, equivalent to 'f''o''o'
–  R+ One or more repetitions of R, equivalent to RR*
–  R? Zero or one occurrences of R, equivalent to (ε|R)
–  ['a'-'z'] One of a or b or c or … z, equivalent to (a|b|…|z)
–  [^'0'-'9'] Any character except 0 through 9
–  R as x Name the string matched by R as x

CIS 341: Compilers 8

Example Regular Expressions
•  Recognize the keyword “if”: ”if”
•  Recognize a digit: ['0'-'9']
•  Recognize an integer literal: '-'?['0'-'9']+
•  Recognize an identifier: ���

 (['a'-'z']|['A'-'Z'])(['0'-'9']|'_'|['a'-'z']|
['A'-'Z'])*

•  In practice, it’s useful to be able to name regular expressions:

let lowercase = ['a'-'z']
let uppercase = ['A'-'Z']
let character = uppercase | lowercase

CIS 341: Compilers 9

How to Match?
•  Consider the input string: ifx = 0

–  Could lex as: or as:

•  Regular expressions alone are ambiguous, need a rule for choosing
between the options above

•  Most languages choose “longest match”
–  So the 2nd option above will be picked
–  Note that only the first option is “correct” for parsing purposes

•  Conflicts: arise due to two regular expressions with non-empty
intersection
–  Ties broken by giving some matches higher priority
–  Example: keywords have priority over identifiers
–  Usually specified by order the rules appear in the lex input file

CIS 341: Compilers 10

if x = 0 ifx = 0

Lexer Generators
•  Reads a list of regular expressions: R1,…,Rn , one per token.
•  Each token has an attached “action” Ai (just a piece of code to run

when the regular expression is matched):

rule token = parse
| '-'?digit+ { Int (Int32.of_string (lexeme lexbuf)) }
| '+' { PLUS }
| 'if' { IF }
| character (digit|character|'_')*{ Ident (lexeme lexbuf) }

| whitespace+ { token lexbuf }

•  Generates scanning code that:
1.  Decides whether the input is of the form (R1|…|Rn)*
2.  Whenever the scanner matches a (longest) token, it runs the associated

action

CIS 341: Compilers 11

DEMO: OCAMLLEX

Zdancewic CIS 341: Compilers 12

olex.mll

Implementation Strategies
•  Most Tools: lex, ocamllex, flex, etc.:

–  Table-based
–  Deterministic Finite Automata (DFA)
–  Goal: Efficient, compact representation, high performance

•  Other approaches:
–  Brzozowski derivatives
–  Idea: directly manipulate the (abstract syntax of) the regular expression
–  Compute partial “derivatives”

•  Regular expression that is “left-over” after seeing the next character

–  Elegant, purely functional, implementation
–  (very cool!)

Zdancewic CIS 341: Compilers 13

Finite Automata
•  Consider the regular expression: ‘”’[^’”’]*’”’
•  An automaton (DFA) can be represented as:

–  A transition table:

–  A graph:

CIS 341: Compilers 14

" Non-"

0 1 ERROR

1 2 1

2 ERROR ERROR

0	 1	 2	 "	 "	

Non-‐"	

RE to Finite Automaton?
•  Can we build a finite automaton for every regular expression?

–  Yes! Recall CIS 262 for the complete theory…

•  Strategy: consider every possible regular expression (by induction on
the structure of the regular expressions):

'a'

ε

R1R2

CIS 341: Compilers 15

a

R1 R2??

What about?

R1|R2

Nondeterministic Finite Automata
•  A finite set of states, a start state, and accepting state(s)
•  Transition arrows connecting states

–  Labeled by input symbols
–  Or ε (which does not consume input)

•  Nondeterministic: two arrows leaving the same state may have the
same label

CIS 341: Compilers 16

a

b

ε

ε

b

a
a

RE to NFA?
•  Converting regular expressions to NFAs is easy.
•  Assume each NFA has one start state, unique accept state

CIS 341: Compilers 17

a

R1 R2ε

‘a’

ε

R1R2

RE to NFA (cont’d)
•  Sums and Kleene star are easy with NFAs

CIS 341: Compilers 18

R1

R2ε

ε

ε

ε

R1|R2

R*
R

ε ε

ε

ε

DFA versus NFA
•  DFA:

–  Action of the automaton for each input is fully determined
–  Automaton accepts if the input is consumed upon reaching an accepting

state
–  Obvious table-based implementation

•  NFA:
–  Automaton potentially has a choice at every step
–  Automaton accepts an input string if there exists a way to reach an

accepting state
–  Less obvious how to implement efficiently

CIS 341: Compilers 19

NFA to DFA conversion (Intuition)
•  Idea: Run all possible executions of the NFA “in parallel”
•  Keep track of a set of possible states: “finite fingers”
•  Consider: -?[0-9]+

•  NFA representation:

•  DFA representation:

CIS 341: Compilers 20

1	 2	 3	
[0-‐9]	 ε

[0-‐9]	

0	

ε

-‐	

{1}	

{2,3}	 {0,1}	

-‐	 [0-‐9]	

[0-‐9]	
[0-‐9]	

Summary of Lexer Generator Behavior
•  Take each regular expression Ri and it’s action Ai
•  Compute the NFA formed by (R1 | R2 | … | Rn)

–  Remember the actions associated with the accepting states of the Ri

•  Compute the DFA for this big NFA
–  There may be multiple accept states (why?)
–  A single accept state may correspond to one or more actions (why?)

•  Compute the minimal equivalent DFA
–  There is a standard algorithm due to Myhill & Nerode

•  Produce the transition table
•  Implement longest match:

–  Start from initial state
–  Follow transitions, remember last accept state entered (if any)
–  Accept input until no transition is possible (i.e. next state is “ERROR”)
–  Perform the highest-priority action associated with the last accept state; if

no accept state there is a lexing error

CIS 341: Compilers 21

Lexer Generators in Practice
•  Many existing implementations: lex, Flex, Jlex, ocamllex, …

–  For example ocamllex program
•  see lexlex.mll, olex.mll, piglatin.mll on course website

•  Error reporting:
–  Associate line number/character position with tokens
–  Use a rule to recognize ‘\n’ and increment the line number
–  The lexer generator itself usually provides character position info.

•  Sometimes useful to treat comments specially
–  Nested comments: keep track of nesting depth

•  Lexer generators are usually designed to work closely with parser
generators…

CIS 341: Compilers 22

DEMO: OCAMLLEX

Zdancewic CIS 341: Compilers 23

 lexlex.mll, olex.mll, piglatin.mll

CORRECTNESS?

Zdancewic CIS 341: Compilers 24

Correct Execution?
•  What does it mean for an Imp program to be executed

correctly?

•  Even at the interpreter level we could show equivalence
between the small-step and the large-step operational
semantics:

cmd	 /	 st	 ⟼*	 SKIP	 /	 st’	 	 	 	 	 	
	
	 iff	
	

cmd	 /	 st	 	 ⇓	 	 st’	

Compiler Correctness?
•  We have to relate the source and target language semantics across the

compilation function C[-] : source ➞ target.

•  Is this enough?
•  What if cmd goes into an infinite loop?

cmd	 /	 st	 	 	 S⟼*	 	 SKIP	 /	 st’	 	 	 	 	 	
	
	 iff	
	

C[cmd]	 /	 C[st]	 	 T⟼*	 	 C[st’]	

Comparing Behaviors
•  Consider two programs P and P’ possibly in different languages.

–  e.g. P is an LLVMlite program, P’ is its compilation to x86

•  The semantics of the languages associate to each program a set of
observable behaviors:���

B(P) and B(P’)

•  Note: |B(P)| = 1 if P is deterministic, > 1 otherwise

What is Observable?
•  For Imp-like languages:���

 ���
 observable behavior ::= ���
 | terminates(st) (i.e. observe the final state)���
 | diverges ���
 | goeswrong

•  For pure functional languages:���
���
 observable behavior ::=���
 | terminates(v) (i.e. observe the final value)���
 | diverges���
 | goeswrong

What about I/O?
•  Add a trace of input-output events performed:���

���
 t ::= [] | e :: t (finite traces)���
 coind. T ::= [] | e :: T (finite and infinite traces)���
���
 observable behavior ::=���
 | terminates(t, st) (end in state st after trace t)���
 | diverges(T) (loop, producing trace T)���
 | goeswrong(t)

Examples
•  P1: ���

print(1); / st ⇒ terminates(out(1)::[],st)

•  P2: ���
print(1); print(2); / st ���
 ⇒ terminates(out(1)::out(2)::[],st)

•  P3:���
WHILE true DO print(1) END / st���
 ⇒ diverges(out(1)::out(1)::…)

•  So B(P1) ≠ B(P2) ≠ B(P3)

Bisimulation
•  Two programs P1 and P2 are bisimilar whenever:���

���
 B(P1) = B(P2)

•  The two programs are completely indistinguishable.

•  But… this is often too strong in practice.���

Compilation Reduces Nondeterminism
•  Some languages (like C) have underspecified behaviors:

–  Example: order of evaluation of expressions f() + g()

•  Concurrent programs often permit nondetermism
–  Classic optimizations can reduce this nondterminism
–  Example: ���

 a := x + 1; b := x + 1 || x := x+1
���

 vs.���
���
 a := x + 1; b := a || x := x+1

Backward Simulation
•  Program P2 can exhibit fewer behaviors than P1: ���

���
 B(P1) ⊇ B(P2)

•  All of the behaviors of P2 are permitted by P1, though some of them
may have been eliminated.

•  Also called refinement.

What about goeswrong?
•  Compilers often translate away bad behaviors.���

 x := 1/y ; x := 42 vs. x := 42���
 (divide by 0 error) (always terminates)

•  Justifications:

–  Compiled program does not “go wrong” because the program type checks
or is otherwise formally verified

–  Or just “garbage in/garbage out”

Safe Backwards Simulation
•  Only require the compiled program’s behaviors to agree if the source

program could not go wrong:���
 ���
 goeswrong(t) ∉ B(P1) ⇒ B(P1) ⊇ B(P2)

•  Idea: let S be the functional specification of the program:���
A set of behaviors not containing goeswrong(t).
–  A program P satsifies the spec if B(P) ⊆ S

•  Lemma: If P2 is a safe backwards simulation of P1 and P1 satisfies the
spec, then P2 does too.

Building Backward Simulations

Source:	

Target:	

σ1 σ2

τ1 τ2 τ3 τn

C[-‐]	

…	

C[-‐]	

Idea:	 The	 event	 trace	 along	 a	 	 (target)	 sequence	 of	 steps	 originaMng	 from	 a	
compiled	 program	 must	 correspond	 to	 some	 source	 sequence.	 	
Tricky	 parts:	 	 	

	 -‐	 	 Must	 consider	 all	 possible	 target	 steps	
	 -‐	 	 If	 the	 compiler	 uses	 many	 target	 steps	 for	 once	 source	 step,	 we	 have	
	 	 	 	 	 invent	 some	 way	 of	 relaMng	 the	 intermediate	 states	 to	 the	 source.	

	 	 	 	 	 	 	 	 -‐	 	 the	 compilaMon	 funcMon	 goes	 the	 wrong	 way	 to	 help!	

out(1)	

out(1)	

