
CIS 341: COMPILERS 
Lecture 18 



Announcements 
 
•  HW5: Full OAT: Objects & Typechecking 

–  Implement (parts of) the typechecker and compiler for an OO-language 

•  DUE:  Monday April 6th  
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COMPILING CLASSES AND 
OBJECTS 
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Compiling Objects 
•  Objects contain  a pointer to a 

dispatch vector (also called a 
virtual table or vtable) with 
pointers to method code. 

•  Code receiving set:IntSet 
only knows that set has an 
initial dispatch vector pointer 
and the layout of that vector. 
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Method Dispatch (Single Inheritance) 
•  Idea: every method has its own small integer index. 
•  Index is used to look up the method in the dispatch vector. 
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interface A {
  void foo();
}

interface B extends A {
  void bar(int x);
  void baz();
}

class C implements B {
  void foo() {…} 
  void bar(int x) {…}
  void baz() {…}
  void quux() {…}
}

Index 

0 

1 
2 

0 
1 
2 
3 

Inheritance / Subtyping: 
C <: B <: A 



Dispatch Vector Layouts 
•  Each interface and class gives rise to a dispatch vector layout. 
•  Note that inherited methods have identical dispatch indices in the 

subclass.  (Width subtyping) 
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MULTIPLE INHERITANCE 
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Multiple Inheritance 
•  C++: a class may declare more than one superclass. 
•  Semantic problem: Ambiguity 

class A { int m(); }
class B { int m(); }
class C extends A,B {…}   // which m? 
 
–  Same problem can happen with fields. 
–  In C++, fields and methods can be duplicated when such ambiguity arises 

(though explicit sharing can be declared too) 

 
•  Java: a class may implement more than one interface.   

–  No semantic ambiguity: if two interfaces contain the same method 
declaration, then the class will implement a single method 

interface A { int m(); }
interface B { int m(); }
class C implements A,B {int m() {…}}   // only one m 
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Dispatch Vector Layout Strategy Breaks 
interface Shape { D.V.Index
  void setCorner(int w, Point p); 0
}

interface Color {
  float get(int rgb); 0
  void set(int rgb, float value); 1
}

class Blob implements Shape, Color {
  void setCorner(int w, Point p) {…} 0?
  float get(int rgb) {…} 0?
  void set(int rgb, float value) {…} 1?
}
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General Approaches 
•  Can’t directly identify methods by position anymore. 
 
•  Option 1: Use a level of indirection: 

–  Map method identifiers to code pointers (e.g. index by method name) 
–  Use a hash table 
–  May need to do search up the class hierarchy 

•  Option 2: Give up separate compilation 
–  Use “sparse” dispatch vectors, or binary decision trees 
–  Must know then entire class hierarchy 

•  Option 3: Allow multiple D.V. tables  (C++) 
–  Choose which D.V. to use based on static type 
–  Casting from/to a class may require run-time operations 

•  Note: many variations on these themes 
–  Different Java compilers pick different approaches… 
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Option 1: Search + Inline Cache 
•  For each class & interface keep a table mapping method names to 

method code 
–  Recursively walk up the hierarchy looking for the method name 

•  Note: Identifiers are in quotes are not strings; in practice they are 
some kind of unique identifier. 
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Inline Cache Code 
•  Optimization: At call site, store class and code pointer in a cache  

–  On method call, check whether class matches cached value 
•  Compiling:  Shape s = new Blob();  s.get();
                                                    Call site 434 
•  Compiler knows that s is a Shape 

–  Suppose %rax holds object pointer 

•  Cached interface dispatch: 
// set up parameters 
  movq [%rax], tmp
  cmpq tmp, [cacheClass434]
  Jnz __miss434
  callq [cacheCode434]
__miss434:
  // do the slow search  
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Option 1 variant 2: Hash Table 
•  Idea: don’t try to give all methods unique indices 

–  Resolve conflicts by checking that the entry is correct at dispatch 

•  Use hashing to generate indices 
–  Range of the hash values should be relatively small  
–  Hash indices can be pre computed, but passed as an extra parameter 
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interface Shape { D.V.Index
  void setCorner(int w, Point p); hash(“setCorner”) = 11
}

interface Color {
  float get(int rgb); hash(“get”) = 4
  void set(int rgb, float value); hash(“set”) = 7
}

class Blob implements Shape, Color {
  void setCorner(int w, Point p) {…} 11
  float get(int rgb) {…} 4
  void set(int rgb, float value) {…} 7
}



Dispatch with Hash Tables 
•  What if there is a conflict? 

–  Entries containing several methods point to code that resolves conflict (e.g. by 
searching through a table based on class name) 

•  Advantage:  
–  Simple, basic code dispatch is ���

(almost) identical 
–  Reasonably���

efficient 
•  Disadvantage:  

–  Wasted space in DV 
–  Extra argument needed for resolution 
–  Slower dispatch if conflict 
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Option 2 variant 1: Sparse D.V. Tables 
•  Give up on separate compilation… 
•  Now we have access to the whole class hierarchy. 

•  So: ensure that no two methods in the same class are allocated the 
same D.V. offset. 
–  Allow holes in the D.V. just like the hash table solution 
–  Unlike hash table, there is never a conflict! 

•  Compiler needs to construct the method indices 
–  Graph coloring techniques can be used to construct the D.V. layouts in a 

reasonably efficient way (to minimize size) 
–  Finding an optimal solution is NP complete! 
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Example Object Layout 
•  Advantage: Identical dispatch and performance to single-inheritance 

case 
•  Disadvantage: Must know entire class hierarchy 
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Option 2 variant 2: Binary Search Trees 
•  Idea: Use conditional branches not indirect jumps 
•  Each object has a class index (unique per class) as first word 

–  Instead of D.V. pointer  (no need for one!) 
•  Method invocation uses range tests to select among n possible classes in lg n time 

–  Direct branches to code at the leaves. 

Shape x;
x.SetCorner(…);

  Mov eax, ⟦x⟧
  Mov ebx, [eax]
  Cmp ebx, 1
  Jle  __L1
  Cmp ebx, 2
  Je __CircleSetCorner
  Jmp __EggSetCorner
__L1:
  Cmp ebx, 0
  Je __BlobSetCorner
  Jmp __RectangleSetCorner
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Search Tree Tradeoffs 
•  Binary decision trees work well if the distribution of classes that may 

appear at a call site is skewed. 
–  Branch prediction hardware eliminates the branch stall of ~10 cycles (on 

X86) 

•  Can use profiling to find the common paths for each call site 
individually 
–  Put the common case at the top of the decision tree (so less search) 
–  90%/10% rule of thumb: 90% of the invocations at a call site go to the 

same class 

•  Drawbacks: 
–  Like sparse D.V.’s you need the whole class hierarchy to know how many 

leaves you need in the search tree. 
–  Indirect jumps can have better performance if there are >2 classes (at most 

one mispredict) 
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Option 3: Multiple Dispatch Vectors  
•  Duplicate the D.V. pointers in the object representation. 
•  Static type of the object determines which D.V. is used. 
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interface Shape { D.V.Index
  void setCorner(int w, Point p); 0
}

interface Color {
  float get(int rgb); 0
  void set(int rgb, float value);  1
}

class Blob implements Shape, Color {
  void setCorner(int w, Point p) {…}
  float get(int rgb) {…}
  void set(int rgb, float value) {…}
}

Shape 
setCorner
D.V. 

Color 
get

set

D.V. 

get

set

setCorner

Color 

Blob, Shape 



Multiple Dispatch Vectors 
•  A reference to an object might have multiple “entry points” 

–  Each entry point corresponds to a dispatch vector 
–  Which one is used depends on the statically known type of the program.  

Blob b = new Blob();
Color y = b;   // implicit cast! 
 
 

•  Compile  
Color y = b;  
As 
Movq ⟦b⟧ + 8 , y 
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Multiple D.V. Summary 
•  Benefit: Efficient dispatch, same cost as for multiple inheritance 
•  Drawbacks:  

–  Cast has a runtime cost 
–  More complicated programming model… hard to understand/debug? 

•  What about multiple inheritance and fields? 
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Multiple Inheritance: Fields 
•  Multiple supertypes (Java): methods conflict (as we saw) 
•  Multiple inheritance (C++): fields can also conflict 
•  Location of the object’s fields can no longer be a constant offset from 

the start of the object. 

class Color {
  float r, g, b; /* offsets: 4,8,12 */ 
}
class Shape {
  Point LL, UR; /* offsets: 4, 8 */ 
}
class ColoredShape extends 
Color, Shape {
  int z;
}
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C++ approach:  

•  Add pointers to the 
superclass fields 
–  Need to have multiple 

dispatch vectors 
anyway (to deal with 
methods) 

•  Extra indirection 
needed to access 
superclass fields 

•  Used even if there is a 
single superclass 
–  Uniformity 
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Observe: Closure ≈ Single-method Object 

•  Free variables 
•  Environment pointer 
•  Closure for function: 
fun (x,y) ->  

x + y + a + b

Fields 
“this” parameter 
Instance of this class: 
class C {
  int a, b;
  int apply(x,y) { 
    x + y + a + b
  }
}
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OPTIMIZATIONS 
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Optimizations 
•  The code generated by our OAT compiler so far is pretty inefficient. 

–  Lots of redundant moves. 
–  Lots of unnecessary arithmetic instructions. 

•  Consider this OAT / C program: 

•  See opt.c, opt-oat.oat
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int foo(int w) {
  int x = 3 + 5;
  int y = x * w;
  int z = y - 0;
  return z * 4;
}
 



Unoptimized vs. Optimized Output 
.globl _foo
_foo:

pushl %ebp

movl %esp, %ebp

subl $64, %esp
__fresh2:

leal -64(%ebp), %eax

movl %eax, -48(%ebp)

movl 8(%ebp), %eax
movl %eax, %ecx

movl -48(%ebp), %eax

movl %ecx, (%eax)

movl $3, %eax
movl %eax, -44(%ebp)

movl $5, %eax

movl %eax, %ecx

addl %ecx, -44(%ebp)
leal -60(%ebp), %eax

movl %eax, -40(%ebp)

movl -44(%ebp), %eax

movl %eax, %ecx

movl -40(%ebp), %eax
movl %ecx, (%eax)

movl -40(%ebp), %eax

movl (%eax), %ecx

movl %ecx, -36(%ebp)
movl -48(%ebp), %eax

movl (%eax), %ecx

movl %ecx, -32(%ebp)

movl -36(%ebp), %eax
movl %eax, -28(%ebp)

movl -32(%ebp), %eax

movl %eax, %ecx

movl -28(%ebp), %eax
imull %ecx, %eax

movl %eax, -28(%ebp)

leal -56(%ebp), %eax

movl %eax, -24(%ebp)
movl -28(%ebp), %eax

movl %eax, %ecx

movl -24(%ebp), %eax

movl %ecx, (%eax)
movl -24(%ebp), %eax

movl (%eax), %ecx

movl %ecx, -20(%ebp)

movl -20(%ebp), %eax

movl %eax, -16(%ebp)
movl $0, %eax

movl %eax, %ecx

subl %ecx, -16(%ebp)

leal -52(%ebp), %eax
movl %eax, -12(%ebp)

movl -16(%ebp), %eax

movl %eax, %ecx

movl -12(%ebp), %eax
movl %ecx, (%eax)

movl -12(%ebp), %eax

movl (%eax), %ecx

movl %ecx, -8(%ebp)
movl -8(%ebp), %eax

movl %eax, -4(%ebp)

movl $4, %eax

movl %eax, %ecx
movl -4(%ebp), %eax

imull %ecx, %eax

movl %eax, -4(%ebp)

movl -4(%ebp), %eax
movl %ebp, %esp

popl %ebp

ret

Hand optimized code: 

_foo:
shlq    $5, %rdi

    movq    %rdi, %rax    
ret

•  Function foo may be inlined by 
the compiler, so it can be 
implemented by just one 
instruction! 
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Why do we need optimizations? 
•  To help programmers… 

–  They write modular, clean, high-level programs 
–  Compiler generates efficient, high-performance assembly 

•  Programmers don’t write optimal code 
•  High-level languages make avoiding redundant computation 

inconvenient or impossible 
–  e.g.   A[i][j] = A[i][j] + 1

•  Architectural independence 
–  Optimal code depends on features not expressed to the programmer 
–  Modern architectures assume optimization 

•  Different kinds of optimizations: 
–  Time: improve execution speed 
–  Space: reduce amount of memory needed 
–  Power: lower power consumption (e.g. to extend battery life) 
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Some caveats 
•  Optimization are code transformations: 

–  They can be applied at any stage of the compiler 
–  They must be safe – they can’t change the meaning of the program. 

•  In general, optimizations require some program analysis: 
–  To determine if the transformation really is safe 
–  To determine whether the transformation is cost effective 

•  This course: most common and valuable performance optimizations 
–  See Muchnick (optional text) for ~10 chapters about optimization 
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When to apply optimization 
•  Inlining 
•  Function specialization 
•  Constant folding 
•  Constant propagation 
•  Value numbering 
•  Dead code elimination 
•  Loop-invariant code motion 
•  Common sub-expression elimination 
•  Strength Reduction 
•  Constant folding & propagation 
•  Branch prediction / optimization 
•  Register allocation 
•  Loop unrolling 
•  Cache optimization 
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Where to Optimize? 
•  Usual goal:  improve time performance 
•  Problem: many optimizations trade space for time 
•  Example:  Loop unrolling 

–  Idea: rewrite a loop like:  ���
for(int i=0; i<100; i=i+1) {  
  s = s + a[i];  
}

–  Into a loop like:  ���
for(int i=0; i<99; i=i+2){  
  s = s + a[i];  
  s = s + a[i+1];  
}

•  Tradeoffs: 
–  Increasing codes space slows down whole program a tiny bit but speeds 

up the loop 
–  Frequently executed code with long loops, generally a win 
–  Interacts with instruction cache and branch prediction hardware 

•  Complex optimizations may never pay off! 
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Writing Fast Programs In Practice 
•  Pick the right algorithms and data structures. 

–  These have a much bigger impact on performance that compiler 
optimizations. 

–  Reduce # of operations 
–  Reduce memory accesses 
–  Minimize indirection – it breaks working-set coherence 

•  Then turn on compiler optimizations 
•  Profile to determine program hot spots 
•  Evaluate whether the algorithm/data structure design works 
•  …if so: “tweak” the source code until the optimizer does “the right 

thing” to the machine code 
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Safety 
•  Whether an optimization is safe depends on the programming 

language semantics. 
–  Languages that provide weaker guarantees to the programmer permit 

more optimizations, but have more ambiguity in their behavior. 
–  e.g. In Java tail-call optimization (that turns recursive function calls into 

loops) is not valid. 
–  e.g. In C, loading from initialized memory is undefined, so the compiler 

can do anything. 

•  Example: loop-invariant code motion 
–  Idea: hoist invariant code out of a loop 

•  Is this more efficient? 
•  Is this safe? 

 
CIS 341: Compilers 33 

while (b) {
  z = y/x;
  … // y, x not updated
}

z = y/x;
while (b) {
  … // y, x not updated
}



Constant Folding 
•  Idea: If operands are known at compile type, perform the operation 

statically. 

int x = (2 + 3) * y  è  int x = 5 * y
b  & false     è  false

•  Performed at every stage of optimization… 
•  Why? 

–  Constant expressions can be created by translation or earlier 
optimizations 

•  Example: A[2] might be compiled to:  ���
MEM[MEM[A] + 2 * 4]    è   MEM[MEM[A] + 8]
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Constant Folding Conditionals 

if (true) S è S
if (false) S  è ;
if (true) S else S’ è S
if (false) S else S’ è S’
while (false) S è ;

if (2 > 3) S è ;
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Algebraic Simplification 
•  More general form of constant folding 

–  Take advantage of mathematically sound simplification rules 

•  Identities: 
–  a * 1 è a a * 0 è 0
–  a + 0 è a a – 0 è a
–  b | false è b b & true è b

•  Reassociation & commutativity: 
–  (a + 1) + 2 è a + (1 + 2) è a + 3
–  (2 + a) + 4 è (a + 2) + 4 è a + (2 + 4) è a + 6

•  Strength reduction:  (replace expensive op with cheaper op) 
–  a * 4 è a << 2
–  a * 7 è (a << 3) – a
–  a / 32767 è (a >> 15) + (a >> 30)

•  Note 1: must be careful with floating point (due to rounding) 
•  Note 2: iteration of these optimizations is useful… how much? 
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Constant Propagation 
•  If the value is known to be a constant, replace the use of the variable 

by the constant 
•  Value of the variable must be propagated forward from the point of 

assignment 
–  This is a substitution operation 

•  Example: 
int x = 5;
int y = x * 2; è int y = 5 * 2; è int y = 10;  è 
int z = a[y];    int z = a[y];   int z = a[y];  int z = a[10];

•  To be most effective, constant propagation should be interleaved with 
constant folding 

CIS 341: Compilers 37 



Copy Propagation 
•  If one variable is assigned to another, replace uses of the assigned 

variable with the copied variable. 
•  Need to know where copies of the variable propagate. 
•  Interacts with the scoping rules of the language. 

•  Example: 
x = y; x = y;
if (x > 1) { è if (y > 1) {
  x = x * f(x – 1);   x = y * f(y – 1);
} }

•  Can make the first assignment to x dead code (that can be eliminated). 
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Dead Code Elimination 
•  If a side-effect free statement can never be observed, it is safe to 

eliminate the statement. 

x  = y * y  // x is dead!
…    // x never used  è … 
x = z * z x = z * z

•  A variable is dead if it is never used after it is defined. 
–  Computing such definition and use information is an important 

component of compiler 

•  Dead variables can be created by other optimizations… 
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Unreachable/Dead Code 
•  Basic blocks not reachable by any trace leading from the starting basic 

block are unreachable and can be deleted. 
–  Performed at the canonical IR or assembly level 
–  Improves cache, TLB performance 

•  Dead code: similar to unreachable blocks. 
–  A value might be computed but never subsequently used. 

•  Code for computing the value can be dropped 
•  But only if it’s pure, i.e. it has no externally visible side effects 

–  Externally visible effects: raising an exception, modifying a global 
variable, going into an infinite loop, printing to standard output, sending a 
network packet, launching a rocket 

–  Note: Pure functional languages (e.g. Haskell) make reasoning about the 
safety of optimizations (and code transformations in general) easier! 
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Inlining 
•  Replace a call to a function with the body of the function itself with 

arguments rewritten to be local variables: 
•  Example in OAT code: 
int g(int x) { return x + pow(x); }
int pow(int a) { int b = 1; int n = 0; 
   while (n < a) {b = 2 * b}; return b; }

è 
 
int g(int x) { int a = x; int b = 1; int n = 0;  

 while (n < a) {b = 2 * b}; tmp = b; return x + tmp;
}  
•  May need to rename variable names to avoid name capture  

–  Example of what can go wrong?   
•  Best done at the AST or relatively high-level IR. 
•  When is it profitable? 

–  Eliminates the stack manipulation, jump, etc. 
–  Can increase code size. 
–  Enables further optimizations 
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Code Specialization 
•  Idea: create specialized versions of a function that is called from 

different places with different arguments. 
•  Example: specialize function f in: 
class A implements I { int m() {…} }
class B implements I { int m() {…} }
int f(I x) { x.m(); } // don’t know which m
A a = new A(); f(a); // know it’s A.m
B b = new B(); f(b); // know it’s B.m
 
•  f_A would have code specialized to dispatch to A.m
•  f_B would have code specialized to dispatch to B.m
•  You can also inline methods when the run-time type is known 

statically 
–  Often just one class implements a method. 
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