
CIS 341: COMPILERS
Lecture 18

Announcements

•  HW5: Full OAT: Objects & Typechecking

–  Implement (parts of) the typechecker and compiler for an OO-language

•  DUE: Monday April 6th

Zdancewic CIS 341: Compilers 2

COMPILING CLASSES AND
OBJECTS

Zdancewic CIS 341: Compilers 3

���

Compiling Objects
•  Objects contain a pointer to a

dispatch vector (also called a
virtual table or vtable) with
pointers to method code.

•  Code receiving set:IntSet
only knows that set has an
initial dispatch vector pointer
and the layout of that vector.

CIS 341: Compilers 4

rep:List

IntSet1.insert

IntSet1.has

IntSet1.size

rep:Tree

size:int

IntSet2.insert

IntSet2.has

IntSet2.size

IntSet1
Dispatch Vector

IntSet2
Dispatch Vector

set

IntSet

?

?.insert

?.has

?.size

Dispatch Vector

Method Dispatch (Single Inheritance)
•  Idea: every method has its own small integer index.
•  Index is used to look up the method in the dispatch vector.

CIS 341: Compilers 5

interface A {
 void foo();
}

interface B extends A {
 void bar(int x);
 void baz();
}

class C implements B {
 void foo() {…}
 void bar(int x) {…}
 void baz() {…}
 void quux() {…}
}

Index

0

1
2

0
1
2
3

Inheritance / Subtyping:
C <: B <: A

Dispatch Vector Layouts
•  Each interface and class gives rise to a dispatch vector layout.
•  Note that inherited methods have identical dispatch indices in the

subclass. (Width subtyping)

CIS 341: Compilers 6

A

A fields

foo
Dispatch Vector

B

B fields

foo

bar

baz

Dispatch Vector

C

C fields

foo

bar

baz

quux

Dispatch Vector

MULTIPLE INHERITANCE

Zdancewic CIS 341: Compilers 7

���

Multiple Inheritance
•  C++: a class may declare more than one superclass.
•  Semantic problem: Ambiguity

class A { int m(); }
class B { int m(); }
class C extends A,B {…} // which m?

–  Same problem can happen with fields.
–  In C++, fields and methods can be duplicated when such ambiguity arises

(though explicit sharing can be declared too)

•  Java: a class may implement more than one interface.

–  No semantic ambiguity: if two interfaces contain the same method
declaration, then the class will implement a single method

interface A { int m(); }
interface B { int m(); }
class C implements A,B {int m() {…}} // only one m

CIS 341: Compilers 8

Dispatch Vector Layout Strategy Breaks
interface Shape { D.V.Index
 void setCorner(int w, Point p); 0
}

interface Color {
 float get(int rgb); 0
 void set(int rgb, float value); 1
}

class Blob implements Shape, Color {
 void setCorner(int w, Point p) {…} 0?
 float get(int rgb) {…} 0?
 void set(int rgb, float value) {…} 1?
}

CIS 341: Compilers 9

General Approaches
•  Can’t directly identify methods by position anymore.

•  Option 1: Use a level of indirection:

–  Map method identifiers to code pointers (e.g. index by method name)
–  Use a hash table
–  May need to do search up the class hierarchy

•  Option 2: Give up separate compilation
–  Use “sparse” dispatch vectors, or binary decision trees
–  Must know then entire class hierarchy

•  Option 3: Allow multiple D.V. tables (C++)
–  Choose which D.V. to use based on static type
–  Casting from/to a class may require run-time operations

•  Note: many variations on these themes
–  Different Java compilers pick different approaches…

CIS 341: Compilers 10

Option 1: Search + Inline Cache
•  For each class & interface keep a table mapping method names to

method code
–  Recursively walk up the hierarchy looking for the method name

•  Note: Identifiers are in quotes are not strings; in practice they are
some kind of unique identifier.

CIS 341: Compilers 11

__get:
 <code>

Blob

Blob fields

“Blob”

super

itable

setCorner

get

set

Class Info
s

“setCorner”

“get”

“set”

Interface Map

Inline Cache Code
•  Optimization: At call site, store class and code pointer in a cache

–  On method call, check whether class matches cached value
•  Compiling: Shape s = new Blob(); s.get();
 Call site 434
•  Compiler knows that s is a Shape

–  Suppose %rax holds object pointer

•  Cached interface dispatch:
// set up parameters
 movq [%rax], tmp
 cmpq tmp, [cacheClass434]
 Jnz __miss434
 callq [cacheCode434]
__miss434:
 // do the slow search

CIS 341: Compilers 12

Blob

Blob fields

“Blob”

super

itable

setCorner

get

set

Class Info
s

cacheClass434:
 “Blob”
cacheCode434:
 <ptr>

Table in data seg.

Option 1 variant 2: Hash Table
•  Idea: don’t try to give all methods unique indices

–  Resolve conflicts by checking that the entry is correct at dispatch

•  Use hashing to generate indices
–  Range of the hash values should be relatively small
–  Hash indices can be pre computed, but passed as an extra parameter

CIS 341: Compilers 13

interface Shape { D.V.Index
 void setCorner(int w, Point p); hash(“setCorner”) = 11
}

interface Color {
 float get(int rgb); hash(“get”) = 4
 void set(int rgb, float value); hash(“set”) = 7
}

class Blob implements Shape, Color {
 void setCorner(int w, Point p) {…} 11
 float get(int rgb) {…} 4
 void set(int rgb, float value) {…} 7
}

Dispatch with Hash Tables
•  What if there is a conflict?

–  Entries containing several methods point to code that resolves conflict (e.g. by
searching through a table based on class name)

•  Advantage:
–  Simple, basic code dispatch is ���

(almost) identical
–  Reasonably���

efficient
•  Disadvantage:

–  Wasted space in DV
–  Extra argument needed for resolution
–  Slower dispatch if conflict

CIS 341: Compilers 14

Blob

Blob fields

“Blob”

super

<empty>

…

get

…

set

<empty>

setCorner

Class Info
s

Fixed #
Of entries

Option 2 variant 1: Sparse D.V. Tables
•  Give up on separate compilation…
•  Now we have access to the whole class hierarchy.

•  So: ensure that no two methods in the same class are allocated the
same D.V. offset.
–  Allow holes in the D.V. just like the hash table solution
–  Unlike hash table, there is never a conflict!

•  Compiler needs to construct the method indices
–  Graph coloring techniques can be used to construct the D.V. layouts in a

reasonably efficient way (to minimize size)
–  Finding an optimal solution is NP complete!

CIS 341: Compilers 15

Example Object Layout
•  Advantage: Identical dispatch and performance to single-inheritance

case
•  Disadvantage: Must know entire class hierarchy

CIS 341: Compilers 16

Blob

Blob fields

“Blob”

super

setCorner

set

get

Class Info
s

Minimize #
Of entries

Option 2 variant 2: Binary Search Trees
•  Idea: Use conditional branches not indirect jumps
•  Each object has a class index (unique per class) as first word

–  Instead of D.V. pointer (no need for one!)
•  Method invocation uses range tests to select among n possible classes in lg n time

–  Direct branches to code at the leaves.

Shape x;
x.SetCorner(…);

 Mov eax, ⟦x⟧
 Mov ebx, [eax]
 Cmp ebx, 1
 Jle __L1
 Cmp ebx, 2
 Je __CircleSetCorner
 Jmp __EggSetCorner
__L1:
 Cmp ebx, 0
 Je __BlobSetCorner
 Jmp __RectangleSetCorner

CIS 341: Compilers 17

Color Shape

RGBColor Blob Rectangle Circle Egg
 3 0 1 2 4

// interfaces

// classes

0 1 2 4

Decision tree

Search Tree Tradeoffs
•  Binary decision trees work well if the distribution of classes that may

appear at a call site is skewed.
–  Branch prediction hardware eliminates the branch stall of ~10 cycles (on

X86)

•  Can use profiling to find the common paths for each call site
individually
–  Put the common case at the top of the decision tree (so less search)
–  90%/10% rule of thumb: 90% of the invocations at a call site go to the

same class

•  Drawbacks:
–  Like sparse D.V.’s you need the whole class hierarchy to know how many

leaves you need in the search tree.
–  Indirect jumps can have better performance if there are >2 classes (at most

one mispredict)

CIS 341: Compilers 18

Option 3: Multiple Dispatch Vectors
•  Duplicate the D.V. pointers in the object representation.
•  Static type of the object determines which D.V. is used.

CIS 341: Compilers 19

interface Shape { D.V.Index
 void setCorner(int w, Point p); 0
}

interface Color {
 float get(int rgb); 0
 void set(int rgb, float value); 1
}

class Blob implements Shape, Color {
 void setCorner(int w, Point p) {…}
 float get(int rgb) {…}
 void set(int rgb, float value) {…}
}

Shape
setCorner
D.V.

Color
get

set

D.V.

get

set

setCorner

Color

Blob, Shape

Multiple Dispatch Vectors
•  A reference to an object might have multiple “entry points”

–  Each entry point corresponds to a dispatch vector
–  Which one is used depends on the statically known type of the program.

Blob b = new Blob();
Color y = b; // implicit cast!

•  Compile
Color y = b;
As
Movq ⟦b⟧ + 8 , y

CIS 341: Compilers 20

get

set

setCorner

y

b

Multiple D.V. Summary
•  Benefit: Efficient dispatch, same cost as for multiple inheritance
•  Drawbacks:

–  Cast has a runtime cost
–  More complicated programming model… hard to understand/debug?

•  What about multiple inheritance and fields?

CIS 341: Compilers 21

Multiple Inheritance: Fields
•  Multiple supertypes (Java): methods conflict (as we saw)
•  Multiple inheritance (C++): fields can also conflict
•  Location of the object’s fields can no longer be a constant offset from

the start of the object.

class Color {
 float r, g, b; /* offsets: 4,8,12 */
}
class Shape {
 Point LL, UR; /* offsets: 4, 8 */
}
class ColoredShape extends
Color, Shape {
 int z;
}

CIS 341: Compilers 22

D.V.

r

g

b

Color

D.V.

LL

UR

Shape

ColoredShape ??

C++ approach:

•  Add pointers to the
superclass fields
–  Need to have multiple

dispatch vectors
anyway (to deal with
methods)

•  Extra indirection
needed to access
superclass fields

•  Used even if there is a
single superclass
–  Uniformity

CIS 341: Compilers 23

D.V.

r

g

b

Color

D.V.

LL

UR

ColoredShape D.V.

super

super

z

Shape

Observe: Closure ≈ Single-method Object

•  Free variables
•  Environment pointer
•  Closure for function:
fun (x,y) ->  

x + y + a + b

Fields
“this” parameter
Instance of this class:
class C {
 int a, b;
 int apply(x,y) {
 x + y + a + b
 }
}

CIS 341: Compilers 24

≈
≈

≈

D.V.

a

b
__apply: <code>

env

__apply

a

b

__apply: <code>
__apply

OPTIMIZATIONS

Zdancewic CIS 341: Compilers 25

���
A high-level tour of a variety of optimizations.

Optimizations
•  The code generated by our OAT compiler so far is pretty inefficient.

–  Lots of redundant moves.
–  Lots of unnecessary arithmetic instructions.

•  Consider this OAT / C program:

•  See opt.c, opt-oat.oat

CIS 341: Compilers 26

int foo(int w) {
 int x = 3 + 5;
 int y = x * w;
 int z = y - 0;
 return z * 4;
}

Unoptimized vs. Optimized Output
.globl _foo
_foo:

pushl %ebp

movl %esp, %ebp

subl $64, %esp
__fresh2:

leal -64(%ebp), %eax

movl %eax, -48(%ebp)

movl 8(%ebp), %eax
movl %eax, %ecx

movl -48(%ebp), %eax

movl %ecx, (%eax)

movl $3, %eax
movl %eax, -44(%ebp)

movl $5, %eax

movl %eax, %ecx

addl %ecx, -44(%ebp)
leal -60(%ebp), %eax

movl %eax, -40(%ebp)

movl -44(%ebp), %eax

movl %eax, %ecx

movl -40(%ebp), %eax
movl %ecx, (%eax)

movl -40(%ebp), %eax

movl (%eax), %ecx

movl %ecx, -36(%ebp)
movl -48(%ebp), %eax

movl (%eax), %ecx

movl %ecx, -32(%ebp)

movl -36(%ebp), %eax
movl %eax, -28(%ebp)

movl -32(%ebp), %eax

movl %eax, %ecx

movl -28(%ebp), %eax
imull %ecx, %eax

movl %eax, -28(%ebp)

leal -56(%ebp), %eax

movl %eax, -24(%ebp)
movl -28(%ebp), %eax

movl %eax, %ecx

movl -24(%ebp), %eax

movl %ecx, (%eax)
movl -24(%ebp), %eax

movl (%eax), %ecx

movl %ecx, -20(%ebp)

movl -20(%ebp), %eax

movl %eax, -16(%ebp)
movl $0, %eax

movl %eax, %ecx

subl %ecx, -16(%ebp)

leal -52(%ebp), %eax
movl %eax, -12(%ebp)

movl -16(%ebp), %eax

movl %eax, %ecx

movl -12(%ebp), %eax
movl %ecx, (%eax)

movl -12(%ebp), %eax

movl (%eax), %ecx

movl %ecx, -8(%ebp)
movl -8(%ebp), %eax

movl %eax, -4(%ebp)

movl $4, %eax

movl %eax, %ecx
movl -4(%ebp), %eax

imull %ecx, %eax

movl %eax, -4(%ebp)

movl -4(%ebp), %eax
movl %ebp, %esp

popl %ebp

ret

Hand optimized code:

_foo:
shlq $5, %rdi

 movq %rdi, %rax
ret

•  Function foo may be inlined by
the compiler, so it can be
implemented by just one
instruction!

CIS 341: Compilers 27

?

Why do we need optimizations?
•  To help programmers…

–  They write modular, clean, high-level programs
–  Compiler generates efficient, high-performance assembly

•  Programmers don’t write optimal code
•  High-level languages make avoiding redundant computation

inconvenient or impossible
–  e.g. A[i][j] = A[i][j] + 1

•  Architectural independence
–  Optimal code depends on features not expressed to the programmer
–  Modern architectures assume optimization

•  Different kinds of optimizations:
–  Time: improve execution speed
–  Space: reduce amount of memory needed
–  Power: lower power consumption (e.g. to extend battery life)

CIS 341: Compilers 28

Some caveats
•  Optimization are code transformations:

–  They can be applied at any stage of the compiler
–  They must be safe – they can’t change the meaning of the program.

•  In general, optimizations require some program analysis:
–  To determine if the transformation really is safe
–  To determine whether the transformation is cost effective

•  This course: most common and valuable performance optimizations
–  See Muchnick (optional text) for ~10 chapters about optimization

CIS 341: Compilers 29

When to apply optimization
•  Inlining
•  Function specialization
•  Constant folding
•  Constant propagation
•  Value numbering
•  Dead code elimination
•  Loop-invariant code motion
•  Common sub-expression elimination
•  Strength Reduction
•  Constant folding & propagation
•  Branch prediction / optimization
•  Register allocation
•  Loop unrolling
•  Cache optimization

CIS 341: Compilers 30

Assembly

Abstract assembly

Canonical IR

IR

AST

H
ig

h
le

ve
l

M
id

 le
ve

l
Lo

w
 le

ve
l

Where to Optimize?
•  Usual goal: improve time performance
•  Problem: many optimizations trade space for time
•  Example: Loop unrolling

–  Idea: rewrite a loop like: ���
for(int i=0; i<100; i=i+1) {  
 s = s + a[i];  
}

–  Into a loop like: ���
for(int i=0; i<99; i=i+2){  
 s = s + a[i];  
 s = s + a[i+1];  
}

•  Tradeoffs:
–  Increasing codes space slows down whole program a tiny bit but speeds

up the loop
–  Frequently executed code with long loops, generally a win
–  Interacts with instruction cache and branch prediction hardware

•  Complex optimizations may never pay off!

CIS 341: Compilers 31

Writing Fast Programs In Practice
•  Pick the right algorithms and data structures.

–  These have a much bigger impact on performance that compiler
optimizations.

–  Reduce # of operations
–  Reduce memory accesses
–  Minimize indirection – it breaks working-set coherence

•  Then turn on compiler optimizations
•  Profile to determine program hot spots
•  Evaluate whether the algorithm/data structure design works
•  …if so: “tweak” the source code until the optimizer does “the right

thing” to the machine code

CIS 341: Compilers 32

Safety
•  Whether an optimization is safe depends on the programming

language semantics.
–  Languages that provide weaker guarantees to the programmer permit

more optimizations, but have more ambiguity in their behavior.
–  e.g. In Java tail-call optimization (that turns recursive function calls into

loops) is not valid.
–  e.g. In C, loading from initialized memory is undefined, so the compiler

can do anything.

•  Example: loop-invariant code motion
–  Idea: hoist invariant code out of a loop

•  Is this more efficient?
•  Is this safe?

CIS 341: Compilers 33

while (b) {
 z = y/x;
 … // y, x not updated
}

z = y/x;
while (b) {
 … // y, x not updated
}

Constant Folding
•  Idea: If operands are known at compile type, perform the operation

statically.

int x = (2 + 3) * y è int x = 5 * y
b & false è false

•  Performed at every stage of optimization…
•  Why?

–  Constant expressions can be created by translation or earlier
optimizations

•  Example: A[2] might be compiled to: ���
MEM[MEM[A] + 2 * 4] è MEM[MEM[A] + 8]

CIS 341: Compilers 34

Constant Folding Conditionals

if (true) S è S
if (false) S è ;
if (true) S else S’ è S
if (false) S else S’ è S’
while (false) S è ;

if (2 > 3) S è ;

CIS 341: Compilers 35

Algebraic Simplification
•  More general form of constant folding

–  Take advantage of mathematically sound simplification rules

•  Identities:
–  a * 1 è a a * 0 è 0
–  a + 0 è a a – 0 è a
–  b | false è b b & true è b

•  Reassociation & commutativity:
–  (a + 1) + 2 è a + (1 + 2) è a + 3
–  (2 + a) + 4 è (a + 2) + 4 è a + (2 + 4) è a + 6

•  Strength reduction: (replace expensive op with cheaper op)
–  a * 4 è a << 2
–  a * 7 è (a << 3) – a
–  a / 32767 è (a >> 15) + (a >> 30)

•  Note 1: must be careful with floating point (due to rounding)
•  Note 2: iteration of these optimizations is useful… how much?

CIS 341: Compilers 36

Constant Propagation
•  If the value is known to be a constant, replace the use of the variable

by the constant
•  Value of the variable must be propagated forward from the point of

assignment
–  This is a substitution operation

•  Example:
int x = 5;
int y = x * 2; è int y = 5 * 2; è int y = 10; è
int z = a[y]; int z = a[y]; int z = a[y]; int z = a[10];

•  To be most effective, constant propagation should be interleaved with
constant folding

CIS 341: Compilers 37

Copy Propagation
•  If one variable is assigned to another, replace uses of the assigned

variable with the copied variable.
•  Need to know where copies of the variable propagate.
•  Interacts with the scoping rules of the language.

•  Example:
x = y; x = y;
if (x > 1) { è if (y > 1) {
 x = x * f(x – 1); x = y * f(y – 1);
} }

•  Can make the first assignment to x dead code (that can be eliminated).

CIS 341: Compilers 38

Dead Code Elimination
•  If a side-effect free statement can never be observed, it is safe to

eliminate the statement.

x = y * y // x is dead!
… // x never used è …
x = z * z x = z * z

•  A variable is dead if it is never used after it is defined.
–  Computing such definition and use information is an important

component of compiler

•  Dead variables can be created by other optimizations…

CIS 341: Compilers 39

Unreachable/Dead Code
•  Basic blocks not reachable by any trace leading from the starting basic

block are unreachable and can be deleted.
–  Performed at the canonical IR or assembly level
–  Improves cache, TLB performance

•  Dead code: similar to unreachable blocks.
–  A value might be computed but never subsequently used.

•  Code for computing the value can be dropped
•  But only if it’s pure, i.e. it has no externally visible side effects

–  Externally visible effects: raising an exception, modifying a global
variable, going into an infinite loop, printing to standard output, sending a
network packet, launching a rocket

–  Note: Pure functional languages (e.g. Haskell) make reasoning about the
safety of optimizations (and code transformations in general) easier!

CIS 341: Compilers 40

Inlining
•  Replace a call to a function with the body of the function itself with

arguments rewritten to be local variables:
•  Example in OAT code:
int g(int x) { return x + pow(x); }
int pow(int a) { int b = 1; int n = 0;
 while (n < a) {b = 2 * b}; return b; }

è

int g(int x) { int a = x; int b = 1; int n = 0;  

 while (n < a) {b = 2 * b}; tmp = b; return x + tmp;
}
•  May need to rename variable names to avoid name capture

–  Example of what can go wrong?
•  Best done at the AST or relatively high-level IR.
•  When is it profitable?

–  Eliminates the stack manipulation, jump, etc.
–  Can increase code size.
–  Enables further optimizations

CIS 341: Compilers 41

Code Specialization
•  Idea: create specialized versions of a function that is called from

different places with different arguments.
•  Example: specialize function f in:
class A implements I { int m() {…} }
class B implements I { int m() {…} }
int f(I x) { x.m(); } // don’t know which m
A a = new A(); f(a); // know it’s A.m
B b = new B(); f(b); // know it’s B.m

•  f_A would have code specialized to dispatch to A.m
•  f_B would have code specialized to dispatch to B.m
•  You can also inline methods when the run-time type is known

statically
–  Often just one class implements a method.

CIS 341: Compilers 42

