Lecture 21
CIS 341: COMPILERS

Announcements

- HW6: Dataflow Analysis
 - Available soon
- Talk: Sumit Gulwani of Microsoft
 "Data Manipulation using Programming By Examples and Natural Language"
 3:00-4:00 in Wu & Chen
- My office hours: 4:00 5:15 today

CODE ANALYSIS

Zdancewic CIS 341: Compilers

Iterative Dataflow Analysis

- Find a solution to those constraints by starting from a rough guess.
- Start with: $in[n] = \emptyset$ and $out[n] = \emptyset$
- They don't satisfy the constraints:
 - in[n] ⊇ use[n]
 - in[n] ⊇ out[n] def[n]
 - out[n] ⊇ in[n'] if n' ∈ succ[n]
- Idea: iteratively re-compute in[n] and out[n] where forced to by the constraints.
 - Each iteration will add variables to the sets in[n] and out[n] (i.e. the live variable sets will increase monotonically)
- We stop when in[n] and out[n] satisfy these equations: (which are derived from the constraints above)
 - in[n] = use[n] U (out[n] def[n])
 - out[n] = $U_{n' \in succ[n]}in[n']$

A Worklist Algorithm

• Use a FIFO queue of nodes that might need to be updated.

```
for all n, in[n] := Ø, out[n] := Ø

w = new queue with all nodes

repeat until w is empty

let n = w.pop() // pull a node off the queue

old_in = in[n] // remember old in[n]

out[n] := \bigcup_{n' \in succ[n]} in[n']

in[n] := use[n] U (out[n] - def[n])

if (old_in != in[n]), // if in[n] has changed

for all m in pred[n], w.push(m)// add to worklist

end
```

OTHER DATAFLOW ANALYSES

Zdancewic CIS 341: Compilers

Generalizing Dataflow Analyses

- The kind of iterative constraint solving used for liveness analysis applies to other kinds of analyses as well.
 - Reaching definitions analysis
 - Available expressions analysis
 - Alias Analysis
 - Constant Propagation
 - These analyses follow the same 3-step approach as for liveness.
- To see these as an instance of the same kind of algorithm, the next few examples to work over a canonical intermediate instruction representation called *quadruples*
 - Allows easy definition of def[n] and use[n]
 - A "looser" variant of LLVM's IR that doesn't require the "static single assignment" i.e. it has *mutable* local variables

Quadruple Format

• A Quadruple sequence is just a control-flow graph (flowgraph) where each node is a quadruple:

•	Quadruple forms n:	def[n]	use[n]	description
	a = b op c	{a}	{b,c}	arithmetic
	a = [b]	{a}	{b}	load
	[a] = b	Ø	{b}	store
	$\mathbf{a} = \mathbf{f}(\mathbf{b}_1, \dots, \mathbf{b}_n)$	{a}	$\{b_1,, b_n\}$	call w/return
	$f(b_1,,b_n)$	Ø	$\{b_1,, b_n\}$	call no return
	jump L	Ø	Ø	jump
	if a goto L1 else L2	Ø	{a}	branch
	return a	Ø	{a}	return

REACHING DEFINITIONS

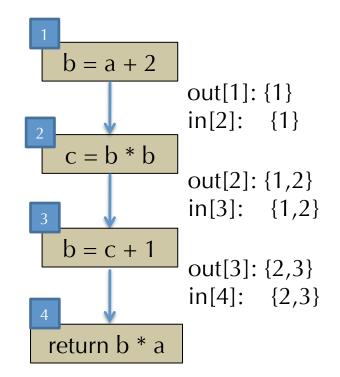
Zdancewic CIS 341: Compilers

Reaching Definition Analysis

- Question: what uses in a program does a given variable definition reach?
- This analysis is used for constant propagation & copy prop.
 - If only one definition reaches a particular use, can replace use by the definition (for constant propagation).
 - Copy propagation additionally requires that the copied value still has its same value – computed using an *available expressions* analysis (next)
- Input: Quadruple CFG
- Output: in[n] (resp. out[n]) is the set of nodes defining some variable such that the definition may reach the beginning (resp. end) of node n

Example of Reaching Definitions

• Results of computing reaching definitions on this simple CFG:



Reaching Definitions Step 1

- Define the sets of interest for the analysis
- Let defs[a] be the set of *nodes* that define the variable a
- Define gen[n] and kill[n] as follows:

•	Quadruple forms n:	gen[n]	kill[n]
	a = b op c	{n}	defs[a] - {n}
	a = load b	{n}	defs[a] - {n}
	[a] = b	Ø	Ø
	$a = f(b_1, \dots, b_n)$	{n}	defs[a] - {n}
	$f(b_1,\ldots,b_n)$	Ø	Ø
	jump L	Ø	Ø
	if a goto L1 else L2	Ø	Ø
	L:	Ø	Ø
	return a	Ø	Ø

Reaching Definitions Step 2

- Define the constraints that a reaching definitions solution must satisfy.
- out[n] ⊇ gen[n]
 "The definitions that reach the end of a node at least include the definitions generated by the node"
- $in[n] \supseteq out[n']$ if n' is in pred[n]

"The definitions that reach the beginning of a node include those that reach the exit of *any* predecessor"

• $out[n] \cup kill[n] \supseteq in[n]$

"The definitions that come in to a node either reach the end of the node or are killed by it."

- Equivalently: $out[n] \supseteq in[n] - kill[n]$

Reaching Definitions Step 3

- Convert constraints to iterated update equations:
- $in[n] := \bigcup_{n' \in pred[n]} out[n']$
- out[n] := gen[n] U (in[n] kill[n])
- Algorithm: initialize in[n] and out[n] to Ø
 - Iterate the update equations until a fixed point is reached
- The algorithm terminates because in[n] and out[n] increase only *monotonically*
 - At most to a maximum set that includes all variables in the program
- The algorithm is precise because it finds the *smallest* sets that satisfy the constraints.

AVAILABLE EXPRESSIONS

Zdancewic CIS 341: Compilers

Available Expressions

• Idea: want to perform common subexpression elimination:

$$\begin{array}{c} - a = x + 1 \\ \cdots \\ b = x + 1 \end{array} \qquad \begin{array}{c} a = x + 1 \\ \cdots \\ b = a \end{array}$$

- This transformation is safe if x+1 means computes the same value at both places (i.e. x hasn't been assigned).
 - "x+1" is an available expression
- Dataflow values:
 - in[n] = set of nodes whose values are available on entry to n
 - out[n] = set of nodes whose values are available on exit of n

Available Expressions Step 1

- Define the sets of values
- Define gen[n] and kill[n] as follows:

•	Quadruple forms n:	gen[n]	kill[n]	
	a = b op c	{n} - kill[n]	uses[a]	
	a = [b]	{n} - kill[n]	uses[a]	
	[a] = b	Ø	uses[[x]]
			(for all x	(that may equal a)
	jump L	Ø	Ø	Note the need for "may
	if a goto L1 else L2	Ø	Ø	alias" information
	L:	Ø	Ø	
	$a = f(b_1, \dots, b_n)$	Ø	uses[a] U	uses[[x]]
			(for all x	()
	$f(b_1,\ldots,b_n)$	Ø	uses[[x]] (for all x)
	return a	Ø	Ø	

Note that functions are assumed to be impure...

Available Expressions Step 2

- Define the constraints that an available expressions solution must satisfy.
- $out[n] \supseteq gen[n]$

"The expressions made available by n that reach the end of the node"

• $in[n] \subseteq out[n']$ if n' is in pred[n]

"The expressions available at the beginning of a node include those that reach the exit of *every* predecessor"

• $out[n] \cup kill[n] \supseteq in[n]$

"The expressions available on entry either reach the end of the node or are killed by it."

- Equivalently: $out[n] \supseteq in[n] - kill[n]$

Note similarities and differences with constraints for "reaching definitions".

Available Expressions Step 3

- Convert constraints to iterated update equations:
- $in[n] := \bigcap_{n' \in pred[n]} out[n']$
- out[n] := gen[n] U (in[n] kill[n])
- Algorithm: initialize in[n] and out[n] to {set of all nodes}
 - Iterate the update equations until a fixed point is reached
- The algorithm terminates because in[n] and out[n] *decrease* only *monotonically*
 - At most to a minimum of the empty set
- The algorithm is precise because it finds the *largest* sets that satisfy the constraints.

GENERAL DATAFLOW ANALYSIS

Zdancewic CIS 341: Compilers

Comparing Dataflow Analyses

- Look at the update equations in the inner loop of the analyses
- Liveness:
 - Let gen[n] = use[n] and kill[n] = def[n]
 - out[n] := = $U_{n' \in succ[n]}in[n']$
 - $in[n] := gen[n] \cup (out[n] kill[n])$
- Reaching Definitions:

(forward)

(backward)

- $in[n] := U_{n' \in pred[n]}out[n']$
- $out[n] := gen[n] \cup (in[n] kill[n])$
- Available Expressions:

(forward)

- in[n] := $\bigcap_{n' \in pred[n]} out[n']$
- $out[n] := gen[n] \cup (in[n] kill[n])$

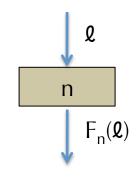
Common Features

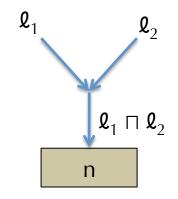
- All of these analyses have a *domain* over which they solve constraints.
 - Liveness, the domain is sets of variables
 - Reaching defns., Available exprs. the domain is sets of nodes
- Each analysis has a notion of gen[n] and kill[n]
 - Used to explain how information propagates across a node.
- Each analysis is propagates information either *forward* or *backward*
 - Forward: in[n] defined in terms of predecessor nodes' out[]
 - Backward: out[n] defined in terms of successor nodes' in[]
- Each analysis has a way of aggregating information
 - Liveness & reaching definitions take union (U)
 - Available expressions uses intersection (\cap)
 - Union expresses a property that holds for *some* path (existential)
 - Intersection expresses a property that holds for *all* paths (universal)

(Forward) Dataflow Analysis Framework

A forward dataflow analysis can be characterized by:

- 1. A domain of dataflow values \mathcal{L}
 - e.g. \mathcal{L} = the powerset of all variables
 - Think of $l \in \mathcal{L}$ as a property, then " $x \in l$ " means "x has the property"
- 2. For each node n, a flow function $F_n : \mathcal{L} \to \mathcal{L}$
 - So far we've seen $F_n(\ell) = gen[n] \cup (\ell kill[n])$
 - So: $out[n] = F_n(in[n])$
 - "If l is a property that holds before the node n, then $F_n(l)$ holds after n"
- 3. A combining operator ⊓
 - "If we know *either* l_1 *or* l_2 holds on entry to node n, we know at most $l_1 \sqcap l_2$ "
 - $in[n] := \prod_{n' \in pred[n]} out[n']$





Generic Iterative (Forward) Analysis

```
for all n, in[n] := ⊤, out[n] := ⊤
repeat until no change
for all n
```

```
in[n] := \prod_{n' \in pred[n]} out[n']out[n] := F_n(in[n])end
```

end

- Here, ⊤ ∈ *L* ("top") represents having the "maximum" amount of information.
 - Having "more" information enables more optimizations
 - "Maximum" amount could be inconsistent with the constraints.
 - Iteration refines the answer, eliminating inconsistencies

Structure of \mathcal{L}

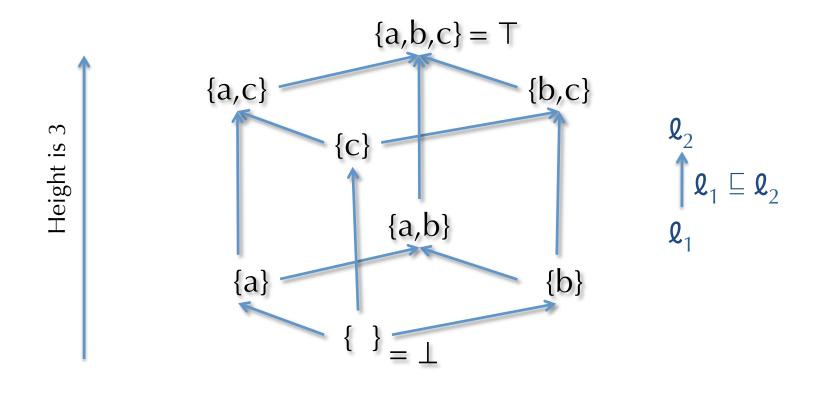
- The domain has structure that reflects the "amount" of information contained in each dataflow value.
- Some dataflow values are more informative than others:
 - Write $l_1 \sqsubseteq l_2$ whenever l_2 provides at least as much information as l_1 .
 - The dataflow value l_2 is "better" for enabling optimizations.
- Example 1: for liveness analysis, *smaller* sets of variables are more informative.
 - Having smaller sets of variables live across an edge means that there are fewer conflicts for register allocation assignments.
 - So: $\mathbf{l}_1 \sqsubseteq \mathbf{l}_2$ if and only if $\mathbf{l}_1 \supseteq \mathbf{l}_2$
- Example 2: for available expressions analysis, larger sets of nodes are more informative.
 - Having a larger set of nodes (equivalently, expressions) available means that there is more opportunity for common subexpression elimination.
 - So: $\mathbf{l}_1 \sqsubseteq \mathbf{l}_2$ if and only if $\mathbf{l}_1 \sqsubseteq \mathbf{l}_2$

L as a Partial Order

- \mathcal{L} is a *partial order* defined by the ordering relation \sqsubseteq .
- A partial order is an ordered set.
- Some of the elements might be *incomparable*.
 - That is, there might be $l_1, l_2 \in \mathcal{L}$ such that neither $l_1 \sqsubseteq l_2$ nor $l_2 \sqsubseteq l_1$
- Properties of a partial order:
 - Reflexivity: $Q \sqsubseteq Q$
 - *Transitivity*: $\mathbf{l}_1 \sqsubseteq \mathbf{l}_2$ and $\mathbf{l}_2 \sqsubseteq \mathbf{l}_3$ implies $\mathbf{l}_1 \sqsubseteq \mathbf{l}_2$
 - Anti-symmetry: $l_1 \sqsubseteq l_2$ and $l_2 \sqsubseteq l_1$ implies $l_1 = l_2$
- Examples:
 - Integers ordered by \leq
 - Types ordered by <:
 - Sets ordered by \subseteq or \supseteq

Subsets of {a,b,c} ordered by ⊆

Partial order presented as a Hasse diagram.



order \sqsubseteq is \subseteq meet \sqcap is \cap join \sqcup is \cup

Meets and Joins

- The combining operator ⊓ is called the "meet" operation.
- It constructs the *greatest lower bound*:
 - $l_1 \sqcap l_2 \sqsubseteq l_1$ and $l_1 \sqcap l_2 \sqsubseteq l_2$ "the meet is a lower bound"
 - If $\boldsymbol{\varrho} \subseteq \boldsymbol{\varrho}_1$ and $\boldsymbol{\varrho} \subseteq \boldsymbol{\varrho}_2$ then $\boldsymbol{\varrho} \subseteq \boldsymbol{\varrho}_1 \sqcap \boldsymbol{\varrho}_2$ "there is no greater lower bound"
- Dually, the ⊔ operator is called the "join" operation.
- It constructs the *least upper bound*:
 - $\mathbf{l}_1 \sqsubseteq \mathbf{l}_1 \sqcup \mathbf{l}_2$ and $\mathbf{l}_2 \sqsubseteq \mathbf{l}_1 \sqcup \mathbf{l}_2$ "the join is an upper bound"
 - If $l_1 \sqsubseteq l$ and $l_2 \sqsubseteq l$ then $l_1 \sqcup l_2 \sqsubseteq l$ "there is no smaller upper bound"
- A partial order that has all meets and joins is called a *lattice*.
 - If it has just meets, it's called a *meet semi-lattice*.

Another Way to Describe the Algorithm

- Algorithm repeatedly computes (for each node n):
- $out[n] := F_n(in[n])$
- Equivalently: $out[n] := F_n(\prod_{n' \in pred[n]} out[n'])$
 - By definition of in[n]
- We can write this as a simultaneous update of the vector of out[n] values:
 - let $x_n = out[n]$
 - Let $\mathbf{X} = (x_1, x_2, \dots, x_n)$ it's a vector of points in \mathcal{L}
 - $\mathbf{F}(\mathbf{X}) = (F_1(\bigcap_{j \in pred[1]} out[j]), F_2(\bigcap_{j \in pred[2]} out[j]), ..., F_n(\bigcap_{j \in pred[n]} out[j]))$
- Any solution to the constraints is a *fixpoint* X of F
 i.e. F(X) = X

Iteration Computes Fixpoints

- Let $\mathbf{X}_0 = (\top, \top, \ldots, \top)$
- Each loop through the algorithm apply F to the old vector:
 X₁ = F(X₀)
 X₂ = F(X₁)
 - • •
- $\bullet \quad \boldsymbol{F}^{k+1}(\boldsymbol{X}) = \boldsymbol{F}(\boldsymbol{F}^k(\boldsymbol{X}))$
- A fixpoint is reached when $\mathbf{F}^{k}(\mathbf{X}) = \mathbf{F}^{k+1}(\mathbf{X})$
 - That's when the algorithm stops.
- Wanted: a maximal fixpoint
 - Because that one is more informative/useful for performing optimizations

Monotonicity & Termination

- Each flow function F_n maps lattice elements to lattice elements; to be sensible is should be *monotonic*:
- $F : \mathcal{L} \to \mathcal{L}$ is monotonic iff: $\ell_1 \sqsubseteq \ell_2$ implies that $F(\ell_1) \sqsubseteq F(\ell_2)$
 - Intuitively: "If you have more information entering a node, then you have more information leaving the node."
- Monotonicity lifts point-wise to the function: $\mathbf{F} : \mathcal{L}^n \to \mathcal{L}^n$

- vector $(x_1, x_2, ..., x_n) \sqsubseteq (y_1, y_2, ..., y_n)$ iff $x_i \sqsubseteq y_i$ for each i

- Note that **F** is consistent: $\mathbf{F}(\mathbf{X}_0) \sqsubseteq \mathbf{X}_0$
 - So each iteration moves at least one step down the lattice (for some component of the vector)

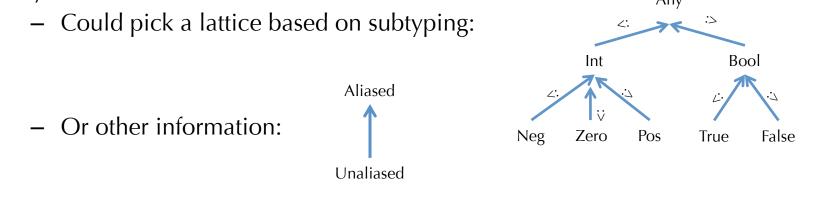
 $- \ldots \sqsubseteq \mathbf{F}(\mathbf{F}(\mathbf{X}_0)) \sqsubseteq \mathbf{F}(\mathbf{X}_0) \sqsubseteq \mathbf{X}_0$

• Therefore, # steps needed to reach a fixpoint is at most the height H of \mathcal{L} times the number of nodes: O(Hn)

Building Lattices?

- Information about individual nodes or variables can be lifted *pointwise:*
 - If \mathcal{L} is a lattice, then so is $\{f : X \rightarrow \mathcal{L}\}$ where $f \sqsubseteq g$ if and only if $f(x) \sqsubseteq g(x)$ for all $x \in X$.

• Like *types*, the dataflow lattices are *static approximations* to the dynamic behavior:



• Points in the lattice are sometimes called dataflow "facts"

See HW6: Dataflow Analysis

IMPLEMENTATION

Zdancewic CIS 341: Compilers

Def / Use for SSA

{a}

{a}

- def[n] Instructions n: ulleta = b op c{a} a = load b{a} store a, b Ø a = alloca t{a} a = bitcast b to u{a} a = gep b [c,d, ...]{a} $\mathbf{a} = \mathbf{f}(\mathbf{b}_1, \dots, \mathbf{b}_n)$ {a} $f(b_1,...,b_n)$ Ø
- Terminators
 br L
 br a L1 L2
 return a

Ø

Ø

Ø

use[n]	description
{b,c}	arithmetic
{b}	load
{b}	store
Ø	alloca
{b}	bitcast
{b,c,d,.	} getelementptr
{b ₁ ,,I	o_n call w/return
{b ₁ ,,I	o_n^{n} void call (no return)
Ø	jump

Jump	
conditional	branch
return	