
CIS 341: COMPILERS 
Lecture 26 



Announcements 
 

•  HW 7: Optimization & Experiments 
–  Due: April 29th 

 
•  Final Exam: 

–  Thursday, May 7th  
–  9:00AM 
–  Moore 216 

•  Visitor: Yaron Minsky of Jane St. Capital 
–  Monday, April 27th 
–  Lunch: noon – 1:15 (Raisler Lounge)    sign-up sheet on Piazza 
–  Talk: 2:00 – 3:00 (Raisler Lounge)���

From Theory into Practice: the story of Incremental  
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COMPILER VERIFICATION 
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Compiler Correctness? 
•  We have to relate the source and target language semantics across the 

compilation function C[-] : source ➞ target. 

•  Is this enough? 
•  What if cmd goes into an infinite loop? 

cmd / st   S⟼*  SKIP / st’     ���
 

 iff 
 

C[cmd] / C[st]  T⟼*  C[st’] 



Comparing Behaviors 
•  Consider two programs P1 and P2 possibly in different languages. 

–  e.g. P1 is an Oat program, P2 is its compilation to LL 

•  The semantics of the languages associate to each program a set of 
observable behaviors:���
     

B(P)  and  B(P’) 

•  Note: |B(P)| = 1 if P is deterministic, > 1 otherwise 



What is Observable? 
•  For C-like languages:���

  ���
  observable behavior ::=  ���
   | terminates(st)            (i.e. observe the final state)���
   | diverges ���
   | goeswrong 

•  For pure functional languages:���
���
  observable behavior ::=���
   | terminates(v)   (i.e. observe the final value)���
   | diverges���
   | goeswrong 



What about I/O? 
•  Add a trace of input-output events performed:���

���
   t  ::=  []   |   e :: t    (finite traces)���
 coind.  T  ::=  []   |   e :: T    (finite and infinite traces)���
���
  observable behavior ::=���
    | terminates(t, st)     (end in state st after trace t)���
    | diverges(T)      (loop, producing trace T)���
    | goeswrong(t) 



Examples 
•  P1:   ���

print(1); / st    ⇒   terminates(out(1)::[],st) 

•  P2:  ���
print(1); print(2);  / st   ���
       ⇒   terminates(out(1)::out(2)::[],st) 

•  P3:���
WHILE true DO print(1) END  / st���
       ⇒   diverges(out(1)::out(1)::…) 

•  So     B(P1)  ≠   B(P2)  ≠  B(P3) 



Bisimulation 
•  Two programs P1 and P2 are bisimilar whenever:���

���
      B(P1)  =   B(P2) 

•  The two programs are completely indistinguishable. 

•  But… this is often too strong in practice.���
 



Compilation Reduces Nondeterminism 
•  Some languages (like C) have underspecified behaviors: 

–  Example: order of evaluation of expressions    f() + g() 

•  Concurrent programs often permit nondeterminism 
–  Classic optimizations can reduce this nondeterminism  
–  Example:  ���

 a := x + 1; b := x + 1     ||   x := x+1 
���

       vs.���
���
 a := x + 1; b := a          ||   x := x+1 

•  LLVM explicitly allows nondeterminism: 
–  undef values  (not part of LLVM lite)   
–  see the discussion later 



Backward Simulation  
•  Program P2 can exhibit fewer behaviors than P1: ���

���
      B(P1)  ⊇   B(P2) 

•  All of the behaviors of P2 are permitted by P1, though some of them 
may have been eliminated. 

•  Also called refinement. 



What about goeswrong? 
•  Compilers often translate away bad behaviors.���

 
    x := 1/y ; x := 42  vs.    x := 42���
  (divide by 0 error)        (always terminates) 

 
•  Justifications: 

–  Compiled program does not “go wrong” because the program type checks 
or is otherwise formally verified 

–  Or just “garbage in/garbage out” 



Safe Backwards Simulation 
•  Only require the compiled program’s behaviors to agree if the source 

program could not go wrong:���
 ���
   goeswrong(t)  ∉  B(P1)      ⇒     B(P1)  ⊇   B(P2) 

•  Idea: let    S   be the functional specification of the program:���
A set of behaviors not containing goeswrong(t). 
–  A program P satisfies the spec if     B(P) ⊆ S 

•  Lemma: If P2 is a safe backwards simulation of P1 and P1 satisfies the 
spec, then P2 does too. 



Building Backward Simulations 

Source: 

Target: 

σ1 σ2

τ1 τ2 τ3 τn

C[-] 

… 

C[-] 

Idea: The event trace along a  (target) sequence of steps originating 
from a compiled program must correspond to some source sequence.  
Tricky parts:  ���

 -  Must consider all possible target steps���
 -  If the compiler uses many target steps for once source step, we have 
     invent some way of relating the intermediate states to the source.���

        -  the compilation function goes the wrong way to help! 

out(1) 

out(1) 



Safe Forwards Simulation 
•  Source program’s behaviors are a subset of the target’s:���

 ���
   goeswrong(t)  ∉  B(P1)      ⇒     B(P1)  ⊆   B(P2) 

•  P2 captures all the good behaviors of P1, but could exhibit more 
(possibly bad) behaviors. 

•  But:  Forward simulation is significantly easier to prove: 
–  Only need to show the existence of a compatible target trace.���

 



Determinism! 
•  Lemma:  If P2 is deterministic then forward simulation implies 

backward simulation. 

•  Proof:     ∅ ⊂  B(P1)  ⊆   B(P2) =  {b}     so    B(P1) = {b}. 

•  Corollary:  safe forward simulation implies safe backward simulation if 
P2 is deterministic. 



Forward Simulations 

Source: 

Target: 

σ1 σ2

C[σ1] τ2 τ3
… 

Idea:     Show that every transition in the source program: 
   -   is simulated by some sequence of transitions in the 
target 
   -   while preserving a relation ~ between the states 

C[σ2] 

~ ~ 



Lock-step Forward Simulation 

Source: 

Target: 

σ1 σ2

C[σ1] 

A single source-program step is simulated by a single target 
step. 
 
 

(Solid = assumptions, Dashed = must be shown) 

C[σ2] 

~ ~ 



“Plus”-step Forward Simulation 

Source: 

Target: 

σ1 σ2

C[σ1] 

A single source-program step is simulated by one or more  
target steps. (But only finitely many!) 
 
 

(Solid = assumptions, Dashed = must be shown) 

~ ~ 

τ0 τ1 τn … 



Optional Forward Simulation 

Source: 

Target: 

σ1 σ2

C[σ1] 

A single source-program step is simulated by zero steps in the 
target. 

~ ~ 



Problem with “Infinite Stuttering” 

Source: 

Target: 

σ1 σ2

C[σ1] 

An infinite sequence of source transitions can be “simulated” 
by 0 transitions in the target! 
 
(This simulation doesn’t preserve nontermination.) 

~ ~ 

σ3 σ4 σ5 … 

~ ~ ~ 



Solution: Disallow such “trivial” simulations 

Source: 

Target: 

σ1 σ2

C[σ1] 

~ ~ 

Equip the source language with a measure |σ| and require that 
|σ2| < |σ1|. 
 
The measure can’t decrease indefinitely, so the target program 
must either take a step or the source must terminate. 
 
The target diverges if the source program does. 

|σ2| < |σ1| 



Is Backward Simulation Hopeless? 
•  Suppose the source & target languages are the same. 

–  So they share the same definition of program state. 

•  Further suppose that the steps are very “small”. 
–  Abstract machine (i.e. no “complex” instructions). 

•  Further suppose that “compilation” is only a very minor change. 
–  add or remove a single instruction 
–  substitute a value for a variable 
 

•  Then: backward simulation is more achievable 
–  it’s easier to invent the “decompilation” function because the 

“compilation” function is close to trivial 

•  Happily: This is the situation for many LLVM optimizations  



Lock-Step Backward Simulation 

S1 S2 

T1 T2 

~ 
o 

o 

~ 

o is either an “observable event” or a “silent event”  
o ::= e | ε

Example use: proving variable substitution correct.



Right-Option Backward Simulation 

•  Either: 
–   the source and target are in lock-step simulation. 

 Or 
–  the source takes a silent transition to a smaller state 

S1 S2 

T1 T2 

~ 
o 

o 

~ 
S1 S2 

T1 

~ 

ε

~ OR 

|S2| < |S1| 

Example use: removing an instruction in the target.



Left-Option Backward Simulation 

•  Either: 
–   the source and target are in lock-step simulation. 

 Or 
–  the target takes a silent transition to a smaller state 

S1 S2 

T1 T2 

~ 
o 

o 

~ OR 

|T2| < |T1| 

Example use: adding an instruction to the target.

S1 

T1 T2 

~ 
ε

~ 



EXAMPLE: VELLVM  
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Verifying optimizations at the LLVM level of abstraction. 
���
 
 



Step 1: Define LLVM IR Semantics 
•  Essentially: define an interpreter for LLVM IR code 

•  But: more complex than the LLVMlite we use in class 
–  Aggregate / Structured data 
–  Undefined behaviors 
–  Nondeterminism 

•  So: can’t be just an interpreter 
–  Semantics is given by a relation 
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Other Parts of the LLVM IR 

29 

op ::= %uid | constant | undef    Operands 
bop ::= add | sub | mul | shl | …    Operations 
cmpop ::= eq | ne | slt | sle | …    Comparison 

insn ::=
 | %uid = alloca ty Stack Allocation 
 | %uid = load ty op1 Load 
 | store ty op1, op2 Store 
 | %uid = getelementptr ty op1 … Address Calculation 
 | %uid = call rt fun(…args…) Function Calls 
 | …

phi ::=
 | φ[op1;lbl1]...[opn;lbln]

terminator ::=
 | ret %ty op
 | br op label %lbl1, label %lbl2
 | br label %lbl



Fatal Errors Target-dependent Results 

Sources of Undefined Behavior 

•  Uninitialized variables: 

•  Uninitialized memory: 
 
 
•  Ill-typed memory usage 

 

•  Out-of-bounds accesses 

•  Access dangling pointers 

•  Free invalid pointers 

•  Invalid indirect calls 

%v = add i32 %x, undef

%ptr = alloca i32
%v = load (i32*) %ptr

Nondeterminism Stuck States 



Sources of Undefined Behavior 

Stuck(f, σ) =  BadFree(f, σ) 
                  ˅ BadLoad(f, σ) 
                  ˅ BadStore(f, σ) 
                  ˅ … 
                  ˅ … 

Defined by a predicate on 
the program configuration. 
 
A program configuration is ���
stuck if there is no transition  
it can make. 

Target-dependent Results 

%v = add i32 %x, undef

%ptr = alloca i32
%v = load (i32*) %ptr

•  Uninitialized variables: 

•  Uninitialized memory: 
 
 
•  Ill-typed memory usage 

 

Nondeterminism Stuck States 



LLVM’s memory model 

•  Manipulate structured types. 

%ST = type {i10,[10 x i8*]}

i10 

i8* 

i8* 

i8* 

i8* 

i8* 

i8* 

i8* 

i8* 

i8* 

i8* 

High-level���
Representation 

%val = load %ST* %ptr
…
store %ST* %ptr, %new



LLVM’s memory model 

•  Manipulate structured types. 

•  Semantics is given in terms of 
byte-oriented low-level memory. 
–  padding & alignment 
–  physical subtyping 

%ST = type {i10,[10 x i8*]}

b(10, 136) 0 

b(10, 2) 1 

uninit 2 

uninit 3 

ptr(Blk32,0,0) 4 

ptr(Blk32,0,1) 5 

ptr(Blk32,0,2) 6 

ptr(Blk32,0,3) 7 

ptr(Blk32,8,0) 8 

ptr(Blk32,8,1) 9 

ptr(Blk32,8,2) 1
0 

ptr(Blk32,8,3) 1
1 

… 1
2 

… … 

i10 

i8* 

i8* 

i8* 

i8* 

i8* 

i8* 

i8* 

i8* 

i8* 

i8* 

High-level���
Representation 

Low-level���
Representation 

%val = load %ST* %ptr
…
store %ST* %ptr, %new



Adapting CompCert’s Memory Model 

b(10, 136) 0 

b(10, 2) 1 

uninit 2 

uninit 3 

ptr(Blk32,0,0) 4 

ptr(Blk32,0,1) 5 

ptr(Blk32,0,2) 6 

ptr(Blk32,0,3) 7 

ptr(Blk32,8,0) 8 

ptr(Blk32,8,1) 9 

ptr(Blk32,8,2) 1
0 

ptr(Blk32,8,3) 1
1 

… 1
2 

… … 

•  Data lives in blocks 
•  Represent pointers abstractly 

–  block + offset  

•  Deallocate by invalidating blocks  
•  Allocate by creating new blocks 

–  infinite memory available 

Blk0 Blk1 ✗ 



Dynamic Physical Subtyping 

b(10, 136) 0 

b(10, 2) 1 

uninit 2 

uninit 3 

ptr(Blk32,0,0) 4 

ptr(Blk32,0,1) 5 

ptr(Blk32,0,2) 6 

ptr(Blk32,0,3) 7 

ptr(Blk32,8,0) 8 

ptr(Blk32,8,1) 9 

ptr(Blk32,8,2) 1
0 

ptr(Blk32,8,3) 1
1 

… 1
2 

… … 

Blk0 Blk1 Blk32 

b(16, 1) 0 

b(16, 0) 1 

uninit 2 

uninit 3 

uninit 4 

uninit 5 

uninit 6 

uninit 7 

ptr(Blk1,0,0) 8 

ptr(Blk1,0,1) 9 

ptr(Blk1,0,2) 1
0 

ptr(Blk1,0,3) 1
1 

… 1
2 

… … 

i10

load i16*  
⇒ 1 ✓ 

load i16*  
⇒ undef

✗ 

[Nita, et al. POPL 
’08] 



undef
•  What is the value of %y after running the 

following? 

•  One plausible answer: 0 
•  Not LLVM’s semantics!���

   (LLVM is more liberal to permit more aggressive optimizations) 

%x = or i8 undef, 1
%y = xor i8 %x %x



undef
•  Partially defined values are interpreted 

nondeterministically as sets of possible values: 

⟦%x⟧ = {a or b | a∈⟦i8 undef⟧, b ∈⟦1⟧}  
= {1,3,5,…,255}

⟦%y⟧ = {a xor b | a∈⟦%x⟧, b∈⟦%x⟧}
= {0,2,4,…,254}

%x = or i8 undef, 1
%y = xor i8 %x %x

⟦i8 undef⟧ = {0,…,255}
⟦i8 1⟧ = {1}



Nondeterministic Branches 

l1: 
   … 
 … 
 … 

  br undef l2 l3 

l2: 
   … 
 … 
 … 

l2: 
   … 
 … 
 … 

? 



LLVMND Operational Semantics 
•  Define a transition relation:  

f ⊢ σ1 ⟼ σ2 

–  f is the program 
–  σ is the program state: pc, locals(δ), stack, heap 

•  Nondeterministic 
–  δ maps local %uids to sets. 
–  Step relation is nondeterministic 

•  Mostly straightforward (given the heap model) 
–  Another wrinkle: phi-nodes executed atomically 



Need for Atomic Phi-node Updates 

blk:
     %x = phi i32 [ %z, %blk ], [ 0, %pred ]
     %z = phi i32 [ %x, %blk ], [ 1, %pred ]
     %b = icmp leq %x %z
     br %b %blk %succ



Operational Semantics 

Small Step Big Step 

Nondeterministic 

Deterministic 

LLVMND 



Deterministic Refinement 

Small Step Big Step 

Nondeterministic 

Deterministic 

LLVMND 

LLVMD 
∋
︎

Instantiate ‘undef’ with default value (0 or null) ⇒ deterministic. 



Big-step Deterministic Refinements 

Small Step Big Step 

Nondeterministic 

Deterministic 

LLVMND 

LLVMD LLVMInterp ≈︎
∋
︎

Bisimulation up to “observable events”: 
•     external function calls 



Big-step Deterministic Refinements 

[Tristan, et al. POPL ’08, Tristan, et al. PLDI 
’09] 

Small Step Big Step 

Nondeterministic 

Deterministic 

LLVMND 

LLVMD LLVM*
DFn LLVM*

DB LLVMInterp ≈︎ ≿︎ ≿︎
∋
︎

Simulation up to “observable events”: 
•     useful for encapsulating behavior of function calls 
•     large step evaluation of basic blocks 


