
CIS 341: COMPILERS
Lecture 27

Announcements

•  HW 7: Optimization & Experiments
–  Post your benchmark programs early (i.e. tonight!)
–  Due: Tomorrow April 29th

•  Final Exam:

–  Thursday, May 7th
–  9:00AM
–  Moore 216

Zdancewic CIS 341: Compilers 2

VERIFYING COMPILER
TRANSFORMATIONS

Vellvm

Zdancewic CIS 341: Compilers 3

LLVMND Operational Semantics
•  Define a transition relation:

f ⊢ σ1 ⟼ σ2

–  f is the program
–  σ is the program state: pc, locals(δ), stack, heap

•  Nondeterministic
–  δ maps local %uids to sets.
–  Step relation is nondeterministic

•  Mostly straightforward (given the heap model)
–  Another wrinkle: phi-nodes executed atomically

Operational Semantics

Small Step Big Step

Nondeterministic

Deterministic

LLVMND

Deterministic Refinement

Small Step Big Step

Nondeterministic

Deterministic

LLVMND

LLVMD
∋
︎

Instantiate ‘undef’ with default value (0 or null) ⇒ deterministic.

Big-step Deterministic Refinements

Small Step Big Step

Nondeterministic

Deterministic

LLVMND

LLVMD LLVMInterp ≈︎
∋
︎

Bisimulation up to “observable events”:
•  external function calls

Big-step Deterministic Refinements

[Tristan, et al. POPL ’08, Tristan, et al. PLDI
’09]

Small Step Big Step

Nondeterministic

Deterministic

LLVMND

LLVMD LLVM*
DFn LLVM*

DB LLVMInterp ≈︎ ≿︎ ≿︎
∋
︎

Simulation up to “observable events”:
•  useful for encapsulating behavior of function calls
•  large step evaluation of basic blocks

Strategy for Proving Optimizations
•  Decompose the program transformation into a sequence of “micro”

transformations
–  e.g. code motion =���

 1. insert “redundant” instruction���
 2. substitute equivalent definitions���
 3. remove the “dead” instruction

•  Use the backward simulations to show each “micro” transformation
correct.
–  Often uses a safety property
–  Safety: establish an invariant of the execution of the program

•  Compose the individual proofs of correctness

Safety Properties
•  A well-formed program never accesses undefined

variables.

•  Initialization: ���

•  Preservation:

•  Progress: ���

If ⊢ f and f ⊢ σ0 ⟼* σ then σ is not stuck.
⊢ f program f is well formed
σ program state
f ⊢ σ ⟼* σ evaluation of f

If ⊢ f then wf(f, σ0).

If ⊢ f and f ⊢ σ ⟼ σ’ and wf(f, σ) then wf(f, σ’)

If ⊢ f and wf(f, σ) then f ⊢ σ ⟼ σ’

Safety Properties
•  A well-formed program never accesses undefined

variables.

•  Initialization: ���

•  Preservation:

•  Progress: ���

If ⊢ f and f ⊢ σ0 ⟼* σ then σ is not stuck.
⊢ f program f is well formed
σ program state
f ⊢ σ ⟼* σ evaluation of f

If ⊢ f then wf(f,σ0).

If ⊢ f and f ⊢ σ ⟼ σ’ and wf(f, σ) then wf(f, σ’)

If ⊢ f and wf(f, σ) then f ⊢ σ ⟼ σ’

Well-formed States

entry:
 r0 = ...
 r1 = ...
 r2 = ...

 br r0 loop exit

exit:
 r7 = φ[0;entry][r5;loop]
 r8 = r1 x r2
 r9 = r7 + r8
 ret r9

loop:
 r3 = φ[0;entry][r5;loop]
 r4 = r1 x r2
 r5 = r3 + r4
 r6 = r5 ≥ 100
 br r6 loop exit

pc

State σ is:
 pc = program counter���
 δ = local values

Well-formed States (Roughly)

entry:
 r0 = ...
 r1 = ...
 r2 = ...

 br r0 loop exit

exit:
 r7 = φ[0;entry][r5;loop]
 r8 = r1 x r2
 r9 = r7 + r8
 ret r9

loop:
 r3 = φ[0;entry][r5;loop]
 r4 = r1 x r2
 r5 = r3 + r4
 r6 = r5 ≥ 100
 br r6 loop exit

pc

State σ is:
 pc = program counter���
 δ = local values

 sdom(f,pc) = variable

defns. that strictly
dominate pc.

Well-formed States (Roughly)

entry:
 r0 = ...
 r1 = ...
 r2 = ...

 br r0 loop exit

exit:
 r7 = φ[0;entry][r5;loop]
 r8 = r1 x r2
 r9 = r7 + r8
 ret r9

loop:
 r3 = φ[0;entry][r5;loop]
 r4 = r1 x r2
 r5 = r3 + r4
 r6 = r5 ≥ 100
 br r6 loop exit

pc

State σ contains:
 pc = program counter���
 δ = local values

 sdom(f,pc) = variable

defns. that strictly
dominate pc.

wf(f,σ) =
∀r∊sdom(f,pc). ∃v. δ(r) = ⎣v⎦

“All variables in scope ���
are initialized.”

mem2reg in LLVM (part of SROA)

Front-ends
w/o SSA

construction

The LLVM IR
w/o φ-nodes mem2reg

•  Promote stack allocas to
temporaries
•  Insert minimal φ-nodes

•  imperative variables ⇒ stack allocas
•  no φ-nodes
•  trivially in SSA form

Backends

SSA-based
optimizations

The LLVM IR in the
minimal SSA form

mem2reg Example

int x = 0;
if (y > 0)  
 x = 1;
return x;

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0
 br %b, %l2, %l3

l2:
 store 1, %p
 br %l3

l3:
 %x = load %p
 ret %x

The LLVM IR in the trivial SSA form

mem2reg Example

int x = 0;
if (y > 0)  
 x = 1;
return x;

l1: %p = alloca i32
 store 0, %p
 %b = %y > 0
 br %b, %l2, %l3

l2:
 store 1, %p
 br %l3

l3:
 %x = load %p
 ret %x

The LLVM IR in the trivial SSA form

l1:

 %b = %y > 0
 br %b, %l2, %l3

l2:

 br %l3

l3:
 %x = φ[1,%l2]
[0,%l1]
 ret %x

Minimal SSA after mem2reg

mem2reg

mem2reg Algorithm
•  Two main operations

–  Phi placement (Lengauer-Tarjan algorithm)
–  Renaming of the variables

•  Intermediate stage breaks SSA invariant
–  Defining semantics & well formedness non-trivial

vmem2reg Algorithm

•  Incremental algorithm
•  Pipeline of micro-transformations

–  Preserves SSA semantics
–  Preserves well-formedness

•  Inspired by Aycock & Horspool
2002.

max
φs

LAS/
LAA

DSE

DAE

elim
φs

Find
alloca

How to Establish Correctness?

max
φs

LAS/
LAA

DSE

DAE

elim
φ

Find
alloca

How to Establish Correctness?

max
φs

LAS/
LAA

DSE

DAE

elim
φ

Find
alloca

1.  Simple aliasing properties���
(e.g. to determine promotability)

2.  Instantiate proof technique
for
–  Substitution
–  Dead Instruction Elimination
 PDIE = …���
Initialize(PDIE)���
Preservation(PDIE)���

Progress(PDIE)
4. Put it all together to prove

composition of “pipeline”
correct.

Aliasing���
Properties

subst

DIE

vmem2reg is Correct

Theorem: The vmem2reg algorithm
preserves the semantics of the source
program.

Proof:
 Composition of simulation relations from the “mini”

transformations, each built using instances of the sdom
proof technique.

(See Coq Vellvm development.) □

Runtime overhead of verified mem2reg

0%	
20%	
40%	
60%	
80%	
100%	
120%	
140%	
160%	
180%	
200%	

sje
ng
	

go
	

co
m
pr
es
s	

ijp
eg
	

gz
ip
	

vp
r	

m
es
a	

ar
t	

am
m
p	

eq
ua
ke
	

lib
qu

an
tu
m
	

lb
m
	

m
ilc
	

bz
ip
2	

pa
rs
er
	

tw
ol
f	

m
cf
	

h2
64
	

Ge
o.
m
ea
n	

Sp
ee

du
p

O
ve

r
LL

V
M

-O
0

LLVM's	 mem2reg	 Extracted	 mem2reg	

Vmem2reg: 77% LLVM’s mem2reg: 81%
(LLVM’s mem2reg promotes allocas used by

intrinsics)

SoftBound

SoftBound
C Source

Code
Other

Optimizations
LLVM

IR
LLVM

IR Target

•  Implemented as an LLVM pass.
•  Detect spatial/temporal memory

safety violations in legacy C code.
•  Good test case:

–  Safety Critical ⇒ Proof cost
warranted

–  Non-trivial Memory transformation

SoftBound

SoftBound
C Source

Code
Other

Optimizations
LLVM

IR
LLVM

IR Target

%p = call malloc [10 x i8]

%q = gep %p, i32 0, i32 255

store i8 0, %q

%p = call malloc [10 x i8]
%p_base = gep %p, i32 0
%p_bound = gep %p, i32 0, i32 10

%q = gep %p, i32 0, i32 255
%q_base = %p_base
%q_bound = %p_bound

assert %q_base <= %q
 /\ %q+1 < %q_bound
store i8 0, %q

Maintain base and bound for all pointers

Propagate metadata on assignment

Check that a pointer is within its
bounds when being accessed

Disjoint Metadata

•  Maintain pointer bounds in a separate memory space.
•  Key Invariant: Metadata cannot be corrupted by bounds

violation.
User memory

Disjoint metadata

%p %pbase %pbound
%i1
%q %qbase %qbound
%i6

%i3

Proving SoftBound Correct
1.  Define SoftBound(f,σ) = (fs,σs)

–  Transformation pass implemented in Coq.

2.  Define predicate: MemoryViolation(f,σ)
3.  Construct a non-standard operational semantics:

–  Builds in safety invariants “by construction”

4.  Show that the instrumented code simulates the “correct”
code:

SB f ⊢ σ ⟼ σ’

SB f ⊢ σ ⟼* σ’ ⇒ ¬MemoryViolation(f,σ’)

SoftBound(f,σ) = (fs,σs) ⇒ [f ⊢ σ ⟼* σ’] ≿ [fs ⊢ σs
⟼* σ’s]

S
B

Memory Simulation Relation

Lessons About SoftBound
•  Found several bugs in our C++ implementation

–  Interaction of undef, ‘null’, and metadata initialization.

•  Simulation proofs suggested a redesign of SoftBound’s handling of
stack pointers.
–  Use a “shadow stack”
–  Simplify the design/implementation
–  Significantly more robust (e.g. varargs)

0%	

50%	

100%	

150%	

200%	

250%	

R
un

ti
m

e
ov

er
he

ad

Extracted	

Competitive Runtime Overhead

The performance of extracted SoftBound is competitive
with the non-verified original

FINAL EXAM

Zdancewic CIS 341: Compilers 31

���

Final Exam
•  Will cover material since the midterm almost exclusively

–  Starting from Lecture 14
–  Objects, inheritance, types, implementation of dynamic dispatch
–  Basic optimizations
–  Dataflow analysis (forward vs. backward, fixpoint computations, etc.)

•  Liveness

–  Control flow analysis
•  Loops, dominator trees

–  SSA
–  Graph-coloring Register Allocation

•  Will focus more on the theory side of things
•  Format will be similar to the midterm

–  Simple answer, computation, multiple choice, etc.
–  Sample exam from last time is on the web

CIS 341: Compilers 32

COURSE WRAP-UP

Zdancewic CIS 341: Compilers 33

What have we learned?
Where else is it applicable?
What next?

���

Why CIS 341?
•  You will learn:

–  Practical applications of theory
–  Parsing
–  How high-level languages are implemented in machine language
–  (A subset of) Intel x86 architecture
–  A deeper understanding of code
–  A little about programming language semantics
–  Functional programming in OCaml
–  How to manipulate complex data structures
–  How to be a better programmer

•  Did we meet these goals?

CIS 341: Compilers 34

Stuff we didn’t Cover
•  We skipped stuff at every level…
•  Concrete syntax/parsing:

–  Much more to the theory of parsing…
–  Good syntax is art not science!

•  Source language features:
–  Exceptions, recursive data types (easy!), advanced type systems, type

inference, concurrency

•  Intermediate languages:
–  Intermediate language design, bytecode, bytecode interpreters, just-in-

time compilation (JIT)

•  Compilation:
–  Continuation-passing transformation, efficient representations, scalability

•  Optimization:
–  Scientific computing, cache optimization, instruction selection/

optimization

CIS 341: Compilers 35

Course Work
•  72% Projects: The Quaker OAT Compiler

•  12% Midterm
•  16% Final exam

•  Expect this to be a challenging, implementation-oriented course.

CIS 341: Compilers 36

I think we met this goal…

Related Courses: Fall 2013
•  CIS 500: Software Foundations

–  Dr. Pierce
–  Theoretical course about functional programming, proving program

properties, type systems, lambda calculus. Uses the theorem prover Coq.

•  CIS 501: Computer Architecture
–  Dr. Devietti
–  371++: pipelining, caches, VM, superscalar, multicore,…

•  CIS 552: Advanced Programming
–  Dr. Weirich
–  Advanced functional programming in Haskell, including generic

programming, metaprogramming, embedded languages, cool tricks with
fancy type systems

•  CIS 670: Special topics in programming languages
–  TBA

CIS 341: Compilers 37

Where to go from here?
•  Conferences (proceedings available on the web):

–  Programming Language Design and Implementation (PLDI)
–  Principles of Programming Langugaes (POPL)
–  Object Oriented Programming Systems, Languages & Applications

(OOPSLA)
–  International Conference on Functional Programming (ICFP)
–  European Symposium on Programming (ESOP)
–  …

•  Technologies / Open Source Projects
–  Yacc, lex, bison, flex, …
–  LLVM – low level virtual machine
–  Java virtual machine (JVM), Microsoft’s Common Language Runtime (CLR)
–  Languages: OCaml, F#, Haskell, Scala, Go, Rust, …?

CIS 341: Compilers 38

Where else is this stuff applicable?
•  General programming

–  In C/C++, better understanding of how the compiler works can help you
generate better code.

–  Ability to read assembly output from compiler
–  Experience with functional programming can give you different ways to

think about how to solve a problem

•  Writing domain specific languages
–  lex/yacc very useful for little utilities
–  understanding abstract syntax and interpretation

•  Understanding hardware/software interface
–  Different devices have different instruction sets, programming models

CIS 341: Compilers 39

Thanks!
•  To the TAs: Dmitri, Rohan, and Mitchell

–  for doing an amazing job putting together the projects for the course.

•  To you for taking the class!

•  How can I improve the course?
–  Feedback survey posted to Piazza

CIS 341: Compilers 40

