
CIS 341: COMPILERS 
Lecture 27 



Announcements 
 

•  HW 7: Optimization & Experiments 
–  Post your benchmark programs early (i.e. tonight!) 
–  Due: Tomorrow April 29th 

 
•  Final Exam: 

–  Thursday, May 7th  
–  9:00AM 
–  Moore 216 
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VERIFYING COMPILER 
TRANSFORMATIONS 

Vellvm 
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LLVMND Operational Semantics 
•  Define a transition relation:  

f ⊢ σ1 ⟼ σ2 

–  f is the program 
–  σ is the program state: pc, locals(δ), stack, heap 

•  Nondeterministic 
–  δ maps local %uids to sets. 
–  Step relation is nondeterministic 

•  Mostly straightforward (given the heap model) 
–  Another wrinkle: phi-nodes executed atomically 



Operational Semantics 

Small Step Big Step 

Nondeterministic 

Deterministic 

LLVMND 



Deterministic Refinement 

Small Step Big Step 

Nondeterministic 

Deterministic 

LLVMND 

LLVMD 
∋
︎

Instantiate ‘undef’ with default value (0 or null) ⇒ deterministic. 



Big-step Deterministic Refinements 

Small Step Big Step 

Nondeterministic 

Deterministic 

LLVMND 

LLVMD LLVMInterp ≈︎
∋
︎

Bisimulation up to “observable events”: 
•     external function calls 



Big-step Deterministic Refinements 

[Tristan, et al. POPL ’08, Tristan, et al. PLDI 
’09] 

Small Step Big Step 

Nondeterministic 

Deterministic 

LLVMND 

LLVMD LLVM*
DFn LLVM*

DB LLVMInterp ≈︎ ≿︎ ≿︎
∋
︎

Simulation up to “observable events”: 
•     useful for encapsulating behavior of function calls 
•     large step evaluation of basic blocks 



Strategy for Proving Optimizations 
•  Decompose the program transformation into a sequence of “micro” 

transformations 
–  e.g. code motion =���

   1.  insert “redundant”  instruction���
   2.  substitute equivalent definitions���
   3.  remove the “dead” instruction 

•  Use the backward simulations to show each “micro” transformation 
correct. 
–  Often uses a safety property 
–  Safety: establish an invariant of the execution of the program 

•  Compose the individual proofs of correctness  



Safety Properties 
•  A well-formed program never accesses undefined 

variables. 

 

•  Initialization:  ���
      

•  Preservation:  

•  Progress:   ���
   

If   ⊢ f    and   f ⊢ σ0 ⟼* σ   then   σ   is not stuck.  
⊢ f     program f is well formed 
σ     program state 
f ⊢ σ ⟼* σ  evaluation of f 

If    ⊢ f   then   wf(f, σ0). 

If   ⊢ f    and   f ⊢ σ ⟼ σ’  and   wf(f, σ)   then   wf(f, σ’) 

If   ⊢ f    and   wf(f, σ)   then   f ⊢ σ ⟼ σ’   



Safety Properties 
•  A well-formed program never accesses undefined 

variables. 
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Well-formed States 

entry:  
  r0 = ... 
  r1 = ... 
  r2 = ... 
 
  br r0 loop exit 

exit:  
  r7 = φ[0;entry][r5;loop] 
  r8 = r1 x r2 
  r9 = r7 + r8 
  ret r9 

loop: 
  r3 = φ[0;entry][r5;loop] 
  r4 = r1 x r2 
  r5 = r3 + r4 
  r6 = r5 ≥ 100 
  br r6 loop exit 

pc 

State  σ  is:  
 pc = program counter���
 δ   = local values  

 
  



Well-formed States (Roughly) 

entry:  
  r0 = ... 
  r1 = ... 
  r2 = ... 
 
  br r0 loop exit 

exit:  
  r7 = φ[0;entry][r5;loop] 
  r8 = r1 x r2 
  r9 = r7 + r8 
  ret r9 

loop: 
  r3 = φ[0;entry][r5;loop] 
  r4 = r1 x r2 
  r5 = r3 + r4 
  r6 = r5 ≥ 100 
  br r6 loop exit 

pc 

State  σ  is:  
 pc = program counter���
 δ   = local values  

 
  sdom(f,pc) = variable 

defns. that strictly 
dominate pc. 



Well-formed States (Roughly) 

entry:  
  r0 = ... 
  r1 = ... 
  r2 = ... 
 
  br r0 loop exit 

exit:  
  r7 = φ[0;entry][r5;loop] 
  r8 = r1 x r2 
  r9 = r7 + r8 
  ret r9 

loop: 
  r3 = φ[0;entry][r5;loop] 
  r4 = r1 x r2 
  r5 = r3 + r4 
  r6 = r5 ≥ 100 
  br r6 loop exit 

pc 

State  σ  contains:  
 pc = program counter���
 δ   = local values  

 
  sdom(f,pc) = variable 

defns. that strictly 
dominate pc. 

wf(f,σ) =  
∀r∊sdom(f,pc). ∃v. δ(r) = ⎣v⎦ 

“All variables in scope ���
are initialized.” 



mem2reg in LLVM (part of SROA) 

Front-ends 
w/o SSA 

construction  

The LLVM IR 
w/o φ-nodes mem2reg 

•  Promote stack allocas to 
temporaries 
•  Insert minimal φ-nodes  

•  imperative variables ⇒ stack allocas 
•  no φ-nodes  
•  trivially in SSA form 

Backends 

SSA-based 
optimizations 

The LLVM IR in the 
minimal SSA form 



mem2reg Example 

int x = 0;
if (y > 0)  
  x = 1;
return x;

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0
    br %b, %l2, %l3      

l2:
    store 1, %p
    br %l3      

l3:
    %x = load %p
    ret %x     

The LLVM IR in the trivial SSA form 



mem2reg Example 

int x = 0;
if (y > 0)  
  x = 1;
return x;

l1: %p = alloca i32
    store 0, %p
    %b = %y > 0
    br %b, %l2, %l3      

l2:
    store 1, %p
    br %l3      

l3:
    %x = load %p
    ret %x     

The LLVM IR in the trivial SSA form 

l1: 

    %b = %y > 0
    br %b, %l2, %l3      

l2:
    
    br %l3      

l3:
    %x = φ[ 1,%l2] 
[ 0,%l1]
    ret %x     

Minimal SSA after mem2reg 

mem2reg 



mem2reg Algorithm  
•  Two main operations 

–  Phi placement (Lengauer-Tarjan algorithm) 
–  Renaming of the variables 

•  Intermediate stage breaks SSA invariant 
–  Defining semantics & well formedness non-trivial 



vmem2reg Algorithm 

•  Incremental algorithm 
•  Pipeline  of micro-transformations 

–  Preserves SSA semantics 
–  Preserves well-formedness 

•  Inspired by Aycock & Horspool 
2002. 

max 
φs 

LAS/
LAA 

DSE 

DAE 

elim 
φs 

Find 
alloca 



How to Establish Correctness? 

max 
φs 

LAS/
LAA 

DSE 

DAE 

elim 
φ 

Find 
alloca 



How to Establish Correctness? 

max 
φs 

LAS/
LAA 

DSE 

DAE 

elim 
φ 

Find 
alloca 

1.  Simple aliasing properties���
(e.g. to determine promotability) 

2.  Instantiate proof technique 
for 
–  Substitution 
–  Dead Instruction Elimination 
 PDIE = …���
Initialize(PDIE)���
Preservation(PDIE)���

Progress(PDIE)  
4.   Put it all together to prove 

composition of “pipeline” 
correct. 

 

Aliasing���
Properties 

subst 

DIE 



vmem2reg is Correct 

Theorem: The vmem2reg algorithm 
preserves the semantics of the source 
program. 

Proof:    
 Composition of simulation relations from the “mini” 

transformations, each built using instances of the sdom 
proof technique.  

(See Coq Vellvm development.) □ 
 



Runtime overhead of verified mem2reg 
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LLVM's	  mem2reg	   Extracted	  mem2reg	  

Vmem2reg: 77%  LLVM’s mem2reg: 81% 
(LLVM’s mem2reg promotes allocas used by 

intrinsics) 



SoftBound 

SoftBound 
C Source 

Code 
Other 

Optimizations 
LLVM 

IR 
LLVM 

IR Target 

•  Implemented as an LLVM pass. 
•  Detect spatial/temporal memory 

safety violations in legacy C code. 
•  Good test case: 

–  Safety Critical ⇒ Proof  cost 
warranted 

–  Non-trivial Memory transformation 



SoftBound 

SoftBound 
C Source 

Code 
Other 

Optimizations 
LLVM 

IR 
LLVM 

IR Target 

%p = call malloc [10 x i8]

%q = gep %p, i32 0, i32 255

store i8 0, %q

%p = call malloc [10 x i8]
%p_base  = gep %p, i32 0
%p_bound = gep %p, i32 0, i32 10

%q = gep %p, i32 0, i32 255
%q_base  = %p_base
%q_bound = %p_bound

assert %q_base <= %q 
    /\ %q+1 < %q_bound
store i8 0, %q

Maintain base and bound for all pointers 

Propagate metadata on assignment 

Check that a pointer is within its 
bounds when being accessed 



Disjoint Metadata 

•  Maintain pointer bounds in a separate memory space. 
•  Key Invariant: Metadata cannot be corrupted by bounds 

violation. 
User memory 

 
 
 
 
 

 
 
 
 

Disjoint metadata 

%p %pbase %pbound 
%i1 
%q %qbase %qbound 
%i6 

%i3 



Proving SoftBound Correct 
1.  Define        SoftBound(f,σ) =  (fs,σs) 

–  Transformation pass implemented in Coq. 

2.  Define  predicate:  MemoryViolation(f,σ) 
3.  Construct a non-standard operational semantics: 

–  Builds in safety invariants “by construction”  

4.  Show that the instrumented code simulates the “correct” 
code:     

SB f ⊢ σ ⟼ σ’ 

SB f ⊢ σ ⟼* σ’  ⇒   ¬MemoryViolation(f,σ’) 

SoftBound(f,σ) = (fs,σs)    ⇒   [f ⊢ σ ⟼* σ’]  ≿  [fs ⊢ σs 
⟼* σ’s] 

S
B 



Memory Simulation Relation 



Lessons About SoftBound 
•  Found several bugs in our C++ implementation 

–  Interaction of undef, ‘null’, and metadata initialization. 

•  Simulation proofs suggested a redesign of SoftBound’s handling of 
stack pointers. 
–  Use a “shadow stack” 
–  Simplify the design/implementation 
–  Significantly more robust (e.g. varargs) 
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Extracted	  

Competitive Runtime Overhead 

The performance of extracted SoftBound is competitive 
with the non-verified original 



FINAL EXAM 
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Final Exam 
•  Will cover material since the midterm almost exclusively 

–  Starting from Lecture 14  
–  Objects, inheritance, types, implementation of dynamic dispatch 
–  Basic optimizations 
–  Dataflow analysis (forward vs. backward, fixpoint computations, etc.) 

•  Liveness 

–  Control flow analysis 
•  Loops, dominator trees 

–  SSA 
–  Graph-coloring Register Allocation 

•  Will focus more on the theory side of things 
•  Format will be similar to the midterm 

–  Simple answer, computation, multiple choice, etc. 
–  Sample exam from last time is on the web 
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COURSE WRAP-UP 
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What have we learned? 
Where else is it applicable? 
What next? 
 
���
 
 



Why CIS 341? 
•  You will learn: 

–  Practical applications of theory  
–  Parsing 
–  How high-level languages are implemented in machine language 
–  (A subset of) Intel x86 architecture 
–  A deeper understanding of code 
–  A little about programming language semantics 
–  Functional programming in OCaml 
–  How to manipulate complex data structures 
–  How to be a better programmer 

•  Did we meet these goals? 
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Stuff we didn’t Cover 
•  We skipped stuff at every level… 
•  Concrete syntax/parsing:   

–  Much more to the theory of parsing… 
–  Good syntax is art not science! 

•  Source language features: 
–  Exceptions, recursive data types (easy!), advanced type systems, type 

inference, concurrency 

•  Intermediate languages: 
–  Intermediate language design, bytecode, bytecode interpreters, just-in-

time compilation (JIT) 

•  Compilation: 
–  Continuation-passing transformation, efficient representations, scalability 

•  Optimization: 
–  Scientific computing, cache optimization, instruction selection/

optimization 
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Course Work 
•  72% Projects:  The Quaker OAT Compiler 

•  12% Midterm 
•  16% Final exam 

•  Expect this to be a challenging, implementation-oriented course. 
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I think we met this goal… 



Related Courses: Fall 2013 
•  CIS 500: Software Foundations 

–  Dr. Pierce 
–  Theoretical course about functional programming, proving program 

properties, type systems, lambda calculus.  Uses the theorem prover Coq. 

•  CIS 501: Computer Architecture 
–  Dr. Devietti 
–  371++: pipelining, caches, VM, superscalar, multicore,… 

•  CIS 552: Advanced Programming 
–  Dr. Weirich  
–  Advanced functional programming in Haskell, including generic 

programming, metaprogramming, embedded languages, cool tricks with 
fancy type systems 

•  CIS 670: Special topics in programming languages 
–  TBA 
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Where to go from here? 
•  Conferences  (proceedings available on the web):  

–  Programming Language Design and Implementation (PLDI) 
–  Principles of Programming Langugaes (POPL) 
–  Object Oriented Programming Systems, Languages & Applications 

(OOPSLA) 
–  International Conference on Functional Programming  (ICFP) 
–  European Symposium on Programming (ESOP) 
–  … 

•  Technologies / Open Source Projects 
–  Yacc, lex, bison, flex, … 
–  LLVM – low level virtual machine 
–  Java virtual machine (JVM), Microsoft’s Common Language Runtime (CLR) 
–  Languages: OCaml, F#, Haskell, Scala, Go, Rust, …? 

CIS 341: Compilers 38 



Where else is this stuff applicable? 
•  General programming 

–  In C/C++, better understanding of how the compiler works can help you 
generate better code. 

–  Ability to read assembly output from compiler 
–  Experience with functional programming can give you different ways to 

think about how to solve a problem 

•  Writing domain specific languages 
–  lex/yacc very useful for little utilities 
–  understanding abstract syntax and interpretation 

•  Understanding hardware/software interface 
–  Different devices have different instruction sets, programming models 
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Thanks! 
•  To the TAs: Dmitri, Rohan, and Mitchell 

–  for doing an amazing job putting together the projects for the course. 

•  To you for taking the class!  

•  How can I improve the course? 
–  Feedback survey posted to Piazza 
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