Lecture 27

CIS 341: COMPILERS

Announcements

« HW 7: Optimization & Experiments
— Post your benchmark programs early (i.e. tonight!)
— Due: Tomorrow April 29t

* Final Exam:
— Thursday, May 7t
— 9:00AM
— Moore 216

Zdancewic CIS 341: Compilers

Vellvm

VERIFYING COMPILER
TRANSFORMATIONS

Zdancewic CIS 341: Compilers

LLVM,; Operational Semantics

« Define a transition relation:
f— o = 0,

— fis the program

— o is the program state: pc, locals(6), stack, heap
« Nondeterministic

— © maps local $uids to sets.

— Step relation is nondeterministic
* Mostly straightforward (given the heap model)

— Another wrinkle: phi-nodes executed atomically

Operational Semantics

- Small Step Big Step

Nondeterministic LLVMND

Deterministic

Deterministic Refinement

- Small Step Big Step

Nondeterministic LLVMND
W
Deterministic LLVMD

Instantiate ‘undef’” with default value (0 or null) = deterministic.

Big-step Deterministic Refinements

- Small Step Big Step

Nondeterministic LLVMND
W
Deterministic LLVMInterp = LLVMD

Bisimulation up to “observable events”:
 external function calls

Big-step Deterministic Refinements

- Small Step Big Step

Nondeterministic LLVMND
W
Deterministic | LLVM oy = LLVMp = LLVM pg, = LLVM

Simulation up to “observable events”:
 useful for encapsulating behavior of function calls
 large step evaluation of basic blocks

[Tristan, et al. POPL "08, Tristan, et al. PLDI
‘09]

Strategy for Proving Optimizations

Decompose the program transformation into a sequence of “micro”
transformations

— e.g. code motion =
1. insert “redundant” instruction

2. substitute equivalent definitions
3. remove the “dead” instruction

Use the backward simulations to show each “micro” transformation
correct.

— Often uses a safety property

— Safety: establish an invariant of the execution of the program

Compose the individual proofs of correctness

Safety Properties

* A well-formed program never accesses undefined
variables.

If -f and fF o,—* 0 then o isnot stuck.

- f program f is well formed
0 program state
f- o0 ~—* o evaluation of f

e [nitialization:
If +f then wi(f, o).

* Preservation:

f ~f and f+ o +~— o’ and wif(f, o) then wf(f, o)
* Progress:

If ~f and wif({f, 0) then f- 0 — 0o’

Safety Properties

* A well-formed program never accesses undefined
variables.

If -f and fF o,—* 0 then o isnot stuck.

- f program f is well formed
O program state
f- o0 ~—* o evaluation of f

e [nitialization:
f ~f then

* Preservation:

f ~f and f— 0 — 0’ andthen

* Progress:

If ~f and then f- 0 +— 0’

Well-formed States

/entry: \
r, = ... State o Is:
r. =
= ... pc = program counter
| 0 = local values
A br r, loop exit /
e)
loop: \\
r, = & [0;entry] [r;;1loop]
r, =r, X r,
rs = r; + r,
r, = r, 2 100
br r, loop exit
l N\ J
\,exit: N
r, = ¢ [0;entry] [r;;1loop]
rs = r; X r,
r = r, + rg

. ret r, J

Well-formed States (Roughly)

/entry: \
r, =
r, =
r, =|...
A br r, loop exit J
s 2
loop: \
r, = |9 [0;entry] [r;;loop]
r, =|r;, x r,
rs = ry; + r,
r, = r, 2 100
br r, loop exit
N\ J
\,exit: N
r, = ¢ [0;entry] [r;;1loop]
rg =r, x r,
r = r, + rg
. ret r, J

State o is:
pC = program counter
6 = local values

sdom(f,pc) = variable
defns. that strictly
dominate pc.

Well-formed States (Roughly)

/entry : \

A
[
i u

A br r, loop exit J
Vs 2

loop: \\

r, = |9 [0;entry] [r;;loop]

r, =|r;, x r,

rs = ry; + r,

r, = r, 2 100

br r, loop exit

l i\ Y,
\(exit: N
r, = ¢ [0;entry] [r;;1loop]
rg = r, X r,
r = r, + rg

. ret r, J

State o contains:
pC = program counter
0 = local values

sdom(f,pc) = variable
defns. that strictly
dominate pc.

wi(f, 0) =
vresdom(f,pc). av. 6 (r) = |v]

“All variables in scope
are initialized.”

mem2reg in LLVM (part of SROA)

* Promote stack allocas to
temporaries
* Insert minimal ¢-nodes

Fro/nt—SeSn/Ss The LLVM IR , The LLVM IR in the | Backend
w/0 . w/o @-nodes NSRS minimal SSA form ACKENTS
construction
SSA-based
optimizations

* imperative variables = stack allocas
* N0 P-nodes
e trivially in SSA form

~

int x = 0;
if (y > 0)
x = 1;
return Xx;

\

~

mem2reg Example

1l,: %p = alloca 132
store 0, %p
3b = 3y > 0

br %b, %1,, %1,
1,:

store 1, %p

br %1,
1,:

The LLVM IR in the trivial SSA form

mem2reg Example

1,:
31,
a N
int x = 0;
if (y > 0) 1.
_ 2
X = 1;

return Xxj;

Ls: 0w _ o e $x = O[1,%l,] <«

o [0,%l]
ret 3X

ret %x

The LLVM IR in the trivial SSA form Minimal SSA after mem2reg

mem2reg Algorithm

* Two main operations
— Phi placement (Lengauer-Tarjan algorithm)
— Renaming of the variables

 Intermediate stage breaks SSA invariant
— Defining semantics & well formedness non-trivial

vmem2reg Algorithm

[Find

alloca

|

v

max
bs

|

v

LAS/
LAA

D

v

DSE

v

DAE

v

elim
OXS

J

Incremental algorithm

Pipeline of micro-transformations
— Preserves SSA semantics
— Preserves well-formedness

* Inspired by Aycock & Horspool
2002.

How to Establish Correctness?

Find
alloca
v
max
bs

p v
LAS/ 1:)
LAA
v
DSE
v
DAE

7z
elim
0

-

How to Establish Correctness?

Find 1. Simple aliasing properties
alloca Aliasing (e.g. to determine promotability)
L. P ' 2. Instantiate proof technique
Max roperties : f P 9
b or
v — Substitution
LAS/ ™ — Dead Instruction Elimination
. LAA Por = ...
2 subst Initialize(Pp)
Preservation(Pp,p)
DSE p
L rogress(Pp,p)
— 4. Put it all together to prove
DAE composition of “pipeline”
correct.
¥ DIE }
elim
¢

(&

vmem2reg is Correct

Theorem: The vmem2reg algorithm
preserves the semantics of the source

program.

Proof:

Composition of simulation relations from the “mini”
transformations, each built using instances of the sdom
proof technique.

(See Coq Vellvm development.) [1

Runtime overhead of verified mem2reg

200%
180%
(e}
S 160%
§ 140%

® LLVM's mem2reg M Extracted mem?2reg

ODOWDDQ_LFU“Q_GJEEUNL”_—”—
cC W ¥ 0o g 2 v g X = ao U § ©
ko) O o & > ¢ E ® 2 8 E 5 £ 8 E

Vmem2reg: 77% LLVM’s mem2reg: 81%

(LLVM’s mem2reg promotes allocas used by
iNntringicg)

1ean

SoftBound

SoftBound ° Implemented as an LLVM pass.

 Detect spatial/temporal memory
CETS safety violations in legacy C code.

 Good test case:

— Safety Critical = Proof cost
warranted

— Non-trivial Memory transformation

C Source LLVM LLVM Other
Target
Code SoftBound Optimizations ;

SoftBound

p = call malloc [10 x i8] p = call malloc [10 x i8]
%p _base = gep %p, 132 0
Maintain base and bound for all pointers F%p_bound = gep %p, i32 0, i32 10

o©

q = gep %p, i32 0, i32 255 %q = gep %p, 132 0, 132 255
3g base = ¥p base
Propagate metadata on assignment %q_bound = %p bound
Check that a pointer is within its assert %gq base <= %q
bounds when being accessed > /\ %g+l < %g bound
store 18 0, %g store 18 0, %g

CISource LDVN4 LDVN4
Code SoﬂBound

Other
()pﬂnﬂzaﬂons

Disjoint Metadata

* Maintain pointer bounds in a separate memory space.

 Key Invariant: Metadata cannot be corrupted by bounds
violation.

User memory Disjoint metadata
'r || | ®Prese || *Poouna
* i, L. _
'r 59 || | 3Gbese | *dvouna
%ig
%i,

Proving SoftBound Correct
1. Define SoftBound(f, 0) = (f,, 0)

— Transformation pass implemented in Coq.
2. Define predicate: MemoryViolation(f, o)
3. Construct a non-standard operational semantics:
fr o¥s o’
— Builds in safety invariants “by construction”
fr o3¥s* 0/ = -=MemoryViolation(f, 0 ')

4. Show that the instrumented code simulates the “correct”
code:

SoftBound(f, 0)=(f,0) = [fE o0 ~—*0d’] = [f{ o,
—* 0]

Memory Simulation Relation

o —— — e e - ————————————— ——— —

E(MM, A I Tt T A o0]b 6 [pr]
- M) mi 2l D1
BN AN N N Sre— '} LPalibsies; i€ |
i M, i : : : :i Vg V2, |
| C L. —— | P3|
0 ’ "1 Where Vi =° vy 22|
; Globals Allocated o e T ey
= i Wl

Memory simulation Frame simulation

Lessons About SoftBound

* Found several bugs in our C++ implementation
— Interaction of undef, ‘null’, and metadata initialization.

 Simulation proofs suggested a redesign of SoftBound’s handling of
stack pointers.

— Use a “shadow stack”
— Simplify the design/implementation
— Significantly more robust (e.g. varargs)

Competitive Runtime Overhead

The performance of extracted SoftBound is competitive

250% e . with the non-verified original
xtracte

200%

150%

100%
- . I I .
0% I

@ et AN o \\\’Q

Runtime overhead

FINAL EXAM

Zdancewic CIS 341: Compilers

Final Exam

« Will cover material since the midterm almost exclusively
— Starting from Lecture 14
— Objects, inheritance, types, implementation of dynamic dispatch
— Basic optimizations
— Dataflow analysis (forward vs. backward, fixpoint computations, etc.)
* Liveness

— Control flow analysis
* Loops, dominator trees

— SSA
— Graph-coloring Register Allocation

« Will focus more on the theory side of things

 Format will be similar to the midterm

— Simple answer, computation, multiple choice, etc.
— Sample exam from last time is on the web

CIS 341: Compilers

32

What have we learned?
Where else is it applicable?
What next?

COURSE WRAP-UP

Zdancewic CIS 341: Compilers 33

Why CIS 3412

* You will learn:
— Practical applications of theory
— Parsing
— How high-level languages are implemented in machine language
— (A subset of) Intel x86 architecture
— A deeper understanding of code
— A little about programming language semantics
— Functional programming in OCaml
— How to manipulate complex data structures
— How to be a better programmer

« Did we meet these goals?

CIS 341: Compilers

34

Stuff we didn’t Cover

We skipped stuff at every level...
Concrete syntax/parsing:
— Much more to the theory of parsing...
— Good syntax is art not science!
Source language features:

— Exceptions, recursive data types (easy!), advanced type systems, type
inference, concurrency

Intermediate languages:

— Intermediate language design, bytecode, bytecode interpreters, just-in-
time compilation (JIT)

Compilation:
— Continuation-passing transformation, efficient representations, scalability
Optimization:
— Scientific computing, cache optimization, instruction selection/
optimization

CIS 341: Compilers 35

Course Work

* 72% Projects: The Quaker OAT Compiler

e 12% Midterm
* 16% Final exam

 Expect this to be a challenging, implementation-oriented course.

| think we met this goal...

CIS 341: Compilers

36

Related Courses: Fall 2013

CIS 500: Software Foundations
— Dr. Pierce

— Theoretical course about functional programming, proving program
properties, type systems, lambda calculus. Uses the theorem prover Coq.

CIS 501: Computer Architecture
— Dr. Devietti
— 3714+: pipelining, caches, VM, superscalar, multicore, ...

CIS 552: Advanced Programming
— Dr. Weirich

— Advanced functional programming in Haskell, including generic
programming, metaprogramming, embedded languages, cool tricks with
fancy type systems

CIS 670: Special topics in programming languages
— TBA

CIS 341: Compilers 37

Where to go from here?

« Conferences (proceedings available on the web):

Programming Language Design and Implementation (PLDI)
Principles of Programming Langugaes (POPL)

Object Oriented Programming Systems, Languages & Applications
(OOPSLA)

International Conference on Functional Programming (ICFP)
European Symposium on Programming (ESOP)

« Technologies / Open Source Projects

Yacg, lex, bison, flex, ...
LLVM — low level virtual machine

Java virtual machine JVM), Microsoft’'s Common Language Runtime (CLR)

Languages: OCaml, F#, Haskell, Scala, Go, Rust, ...?

CIS 341: Compilers

38

Where else is this stuff applicable?

« General programming
— In C/C++, better understanding of how the compiler works can help you
generate better code.

— Ability to read assembly output from compiler
— Experience with functional programming can give you different ways to
think about how to solve a problem
« Writing domain specific languages
— lex/yacc very useful for little utilities
— understanding abstract syntax and interpretation

« Understanding hardware/software interface
— Different devices have different instruction sets, programming models

CIS 341: Compilers

39

Thanks!

* To the TAs: Dmitri, Rohan, and Mitchell

— for doing an amazing job putting together the projects for the course.

 To you for taking the class!

« How can | improve the course?
— Feedback survey posted to Piazza

CIS 341: Compilers

40

