
CIS 341 Midterm February 28, 2013

Name (printed):

Pennkey (login id):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this examination.

Signature: Date:

SOLUTIONS

1



1. True or False (10 points)

a. T F In X86 assembly, the instruction Jmp eax will cause the program counter regiser (eip) to
be set to the contents of the eax register.

b. T F We could remove the Call and Ret instructions from the X86lite subset we’ve been using
for class projects without changing the expressiveness of the language.

c. T F It is possible to write a regular expression that matches that set of strings consisting of
well-balanced parentheses.

d. T F The regular expression (ε + b + bb)(a + ab + abb)* accepts all strings of a’s and b’s
with at most two consecutive occurrences of b. (Here + indicates alternative choice.)

e. T F LR(k) grammars cannot be right recursive.

f. T F There is no such thing as a shift/shift conflict for a LR parser.

g. T F In an LR(0) parser state, the item S 7−→ (.L) indicates that nonterminal L is at the top of
the stack because L is to the right of the dot.

h. T F Choosing integer tags as a representation for OCaml datatype variants or C and Java-style
enums to be sequential and dense (for example just the integers 0 . . . N ) allows match and
switch compilation to use efficient jump tables.

i. T F In C, the compiler lays out a 2D array with statically known dimensions (like int M[3][4])
so that all of the elements are contiguous in memory.

j. T F When compiling C for 32-bit x86 and word aligned fields,

sizeof(struct{char a; char b; int c})

returns 6 (bytes).

2



2. Lexing, Parsing, and Grammars (20 points)

a. Consider the following ambiguous context-free grammar for the language of regular expressions,
where R is the only nonterminal and the terminals are taken from the set {‘c’, *, +, (, ), ε}. Here
‘c’ stands for a collection of character-carrying tokens, where the character is c. (We use + rather
than | for alternation to avoid confusion with the | symbol used on the grammar.)

R ::= ε | ‘c’ | R+R | R* | RR | (R)

We might implement the datatype of abstract syntax trees for this grammar using the following
OCaml code:

type rexp =

| Eps (* ε *)

| Char of char (* ‘c’ *)

| Alt of rexp * rexp (* R+R *)

| Star of rexp (* R* *)

| Seq of rexp * rexp (* RR *)

i. (6 points) Demonstrate that this grammar is ambiguous by giving two different abstract syntax
trees (OCaml values of type rexp) that might be generated by parsing the input sequence:

‘a’+(‘b’‘c’’d’)

Alt(Char ’a’, Seq(Char ’b’, Seq(Char ’c’, Char ’d’)))

or
Alt(Char ’a’, Seq(Seq(Char ’b’, Char ’c’), Char ’d’))

ii. (8 points) Write down the context-free grammar obtained by disambiguating the language above
so that all operators associate to the left and * has higher precedence than sequence, which has
higher precedence than +.

R ::= R+S | S
S ::= ST | T
T ::= ε | ‘c’ | (R) | T*

3



b. (6 points) Recall that a palindrome is a sequence that reads the same forward and backward: A

and ABBA and BABAB are all palindromes but AB is not. Write down a context free grammar that
recognizes all (and only) the palindromes over the two tokens {A, B}. Your grammar is allowed to be
ambiguous. Use the nonterminal S as the start symbol.

S ::=
| ε
| A

| B

| ASA
| BSB

4



3. LLVM IR & Intermediate code generation (25 points)

In this problem we consider the LLVM intermediate representation. For your reference, the Appendix at
the end of the exam defines the grammar for the subset of the LLVM IR we have been using (so far) in the
course.

a. (4 points) A collection of LLVM Lite IR blocks with an entry point entry must satisfy a number of
invariants for it to be well formed (i.e. “make sense”) as a program. For example, each %uid that is
used as an operand in an instruction must be defined before it is used.
What is the static single assignment invariant relative to the LLVM IR subset given in the appendix?
Each %uid must appear on the left hand side of a defining = exactly once in the entire control-flow
graph.

b. (6 points) What value will be returned by running the following LLVM code, starting from the label
entry?

entry:

%t1 = alloca

store 3, %t1

%t2 = load %t1

%t3 = load %t1

%t4 = mul %t2, %t3

store %t4, %t1

%t5 = icmp eq %t2, %t3

br %t5, label %then, label %else

then:

%t6 = alloca

%t7 = load %t1

%t8 = mul %t7, %t7

store %t8, %t6

%t9 = load %t6

store %t9, %t1

br label %else

else:

%t10 = load %t1

ret %t10

81

5



c. (15 points) Some languages have a do { stmt } while(exp) construct that executes stmt once
and then repeats it until the guard expression exp becomes false. In this problem, we investigate how
to compile this statement form to LLVM IR.
Suppose we have (most of the) implementations of compilation judgments:

C ` [[exp]] = (operand ∗ stream)
C ` [[stmt]] = stream

Here, a stream is a sequence of labels, LLVM instructions, and terminators that can be broken up
into basic blocks. (You need not distinguish these cases with constructors.)
How do you translate the do–while construct to LLVM? That is, give (OCaml-like) pseudo code
that says how you would implement the rule below. Indicate which labels and LLVM uids should be
freshly generated.
C ` [[do { stmt } while (exp)]] =

let (op, exp_insns) = C ` [[exp]] in

let stmt_insns = C ` [[stmt]] in

let tmp = mk_uid () in

let lpre = mk_label() in

let lpost = mk_label() in

lpre:

stmt_insns

exp_insns

%tmp = icmp eq op, 0

br %tmp label %lpost, label %lpre

lpost:

6



4. X86 Assembly Programming (20 points)

Consider the following C function:

void foo(int x, int* y) {

int a = x + (*y);

*y = a;

}

Recall that int* y declares y to be an int pointer and that *y accesses the contents pointed to by y. The
gcc compiler (in 32-bit only mode and without optimizations) produces the following X86 assembly code,
which is in our X86lite subset and follows cdecl calling conventions:

_foo:

pushl %ebp

movl %esp, %ebp ; %ebp set here

subl $12, %esp

movl 12(%ebp), %eax

movl 8(%ebp), %ecx

movl %ecx, -4(%ebp)

movl %eax, -8(%ebp)

movl -8(%ebp), %eax

movl (%eax), %eax

movl -4(%ebp), %ecx

addl %ecx, %eax

movl %eax, -12(%ebp)

movl -8(%ebp), %eax

movl -12(%ebp), %ecx

movl %ecx, (%eax)

addl $12, %esp

popl %ebp

ret

a. (4 points) The caller of this function places argument x at which (indirect offset) memory location?
(Relative to the value in %ebp after the line marked above.)

a. -12(%ebp) b. -8(%ebp) c. -4(%ebp) d. 8(%ebp) e. 12(%ebp)

b. (4 points) The local variable a resides at which (indirect offset) memory location? (Relative to the
value in %ebp after the line marked above.)

a. -12(%ebp) b. -8(%ebp) c. -4(%ebp) d. 8(%ebp) e. 12(%ebp)

c. (4 points) How much memory does the stack frame used by _foo in this code take up in bytes?
Include the saved return address and base pointer, and any stack space allocated for local storage, but
not the space allocated by the caller for the function arguments.

a. 8 bytes b. 16 bytes c. 20 bytes d. 24 bytes e. 28 bytes f. 32 bytes

7



d. (8 points) Which of the following optimized versions could replace the body _foo: and still be
correct with respect to the C program and cdecl calling conventions? Mark all that are correct—
there may be more than one.

i. THIS ONE
_foo:

pushl %ebp

movl %esp, %ebp

movl 12(%ebp), %eax

movl 8(%ebp), %ecx

addl %ecx, (%eax)

popl %ebp

ret

ii. _foo:

pushl %ebp

movl %esp, %ebp

movl 12(%ebp), %eax

addl 8(%ebp), %eax

movl %ebp, %esp

popl %ebp

ret

iii. _foo:

movl 4(%esp), %eax

addl 8(%esp), %eax

ret

iv. _foo:

movl 4(%esp), %ebx

movl 8(%esp), %eax

addl %ebx, (%eax)

ret

8



5. Scope Checking (25 points)

In this problem we will consider scope checking (a simple subset of) OCaml programs. The grammar for
this subset of OCaml is given by the syntactic categories below:

exp ::= Expressions
| x | f variables and function names
| int integer constants
| exp1 + exp2 arithmetic
| exp2 exp2 function application
| let x = exp1 in exp2 local lets
| (exp)

prog ::= Programs
| ;;exp answer expression
| let x = exp prog top-level declarations
| let f x = exp prog top-level, one-argument function declarations

Scoping contexts for this language consist of comma-separated lists of variable and function names:

G ::= Scoping Contexts
| · empty context
| x, G add x to the context
| f, G add f to the context

Scope checking for expressions is defined by the following inference rules, which use judgments of the
form G ` exp . Recall that the notation x ∈ G means that x occurs in the context list G.

x ∈ G

G ` x
[VARX]

f ∈ G

G ` f
[VARF]

G ` int
[INT]

G ` exp1 G ` exp2

G ` exp1 + exp2

[ADD]

G ` exp1 G ` exp2

G ` exp1 exp2

[APP]
G ` exp1 x , G ` exp2

G ` let x = exp1 in exp2

[LET]

Scope checking for programs is defined by these three inference rules, which use judgments of the form
G ` prog .

G ` exp

G ` ;; exp
[EXP]

G ` exp x , G ` prog

G ` let x = exp prog
[LETX]

x , G ` exp f , G ` prog

G ` let f x = exp prog
[LETF]

A program prog is considered to be well scoped exactly when it is possible to derive a judgment in the
empty context: · ` prog

9



a. Consider the following program:

let x = 3

let f y = let z = 3 + y in z + x

;; f x

It is well-scoped, as shown by the following (partial) derivation that has some missing pieces as
marked by names G? , D1? , and D2? .

D1?

y, x, · ` 3
[INT]

y ∈ y, x, ·
y, x, · ` y [VARX]

y, x, · ` 3 + y
[ADD]

z ∈ G?

G? ` z
[VARX]

x ∈ G?

G? ` x
[VARX]

G? ` z + x
[ADD]

y, x, · ` let z = 3 + y in z + x
[LET]

D2?

x, · ` let f y = let z = 3 + y in z + x
;; f x

[LETF]

· ` let x = 3
let f y = let z = 3 + y in z + x
;; f x

[LETX]

i. (3 points) Which of the following derivation trees belongs in the spot marked D1?

a.
x ∈ x, ·
x, · ` x [VARX]

b. · ` 3 [INT]
c. x, · ` 3 [INT]

d.
x ∈ ·
· ` x [VARX]

ii. (3 points) What is the missing context G?

a. z, x, · b. y, x, · c. x, y, z, · d. z, y, x, ·

iii. (8 points) In the space below, draw the missing derivation tree marked by D2? . Be sure to
include the names of the rules as in the tree above.

f ∈ f, x, ·
f, x, · ` f [VARF]

x ∈ f, x, ·
f, x, · ` x [VARX]

f, x, · ` f x
[APP]

f, x, · ` ;; f x
[EXP]

10



b. (5 points) The following program is syntactically well-formed but ill-scoped—one of the x ∈ G

checks fails for some variable x and some context G. What are they? (Be careful with the ordering
of variables in the context!)

let a = 3

let f1 b = b + a

let f2 c = (let d = f1 3 in f1 a) + (f1 d)

;; f2 (f1 a)

x = d

G = c, f1 ,a,·

c. (6 points) The LETF rule above does not allow the function to be recursive. Write down the premises
of the rule needed to allow a well-scoped function body to mention the function name itself:

f , x , G ` exp f , G ` prog

G ` let f x = exp prog
[LETRECF]

11



Appendix

LLVM Lite IR
A subset of the LLVM IR that we have used in Project 3:

op ::= %uid | constant

bop ::= add | sub | mul | shl | ...

cmpop ::= eq | ne | slt | sle | ...

insn ::=
| %uid = bop op1 , op2
| %uid = alloca

| %uid = load op1
| store op1 , op2
| %uid = icmp cmpop op1 , op2

terminator ::=
| ret op
| br op label %lbl1, label %lbl2
| br label %lbl

block ::= lbl:

insn1

. . .
insnn

terminator

An LLVM Lite IR program is a collection of blocks such that all labels mentioned in the terminators of those
blocks are included among the labels of the blocks themselves. One label called entry is the designated entry
point of the program. A %uid is an operand identifier and %lbl is a label identifier.

12


