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1. Representing Structured Data (14 points)

This problem is about the representation of various source language data structures (from a C or OCaml)
as they might be translated to the LLVM-lite IR we are using for the course projects.

a. Consider the following LLVM IR types:

(a) { i64 , i64 }

(b) { i64 , i64 }*

(c) { i64*, i64* }*

(d) [ 4 x { i64 , i64 } ]*

(e) { i64 , [ 0 x i64 ] }*

(f) [ 14 x i8 ]

For each of the following source language constructs, indicate which one of the above LLVM IR
types could best be used as its translation type, or write “none” if none of the types will work. Each
answer is one of (a)–(f).

i. The C string global constant data "hello, world!\00".

ii. The variable p in the C program below

struct point {int64_t x; int64_t y}

void foo() {

struct point p;

}

iii. The variable p in the C program below

struct point {int64_t x; int64_t y}

void foo() {

struct point p[] = {{1,2}, {3,4}, {5,5}, {6 ,7}};

}

iv. An OCaml-style length-indexed array x declared as:

let x : int64 array = mkarray (4)

v. The argument x in the polymorphic (a.k.a. generic) OCaml function:

fun (x:’a*’b) -> fst x

(Hint: Clients of this function might need to use Bitcast.)
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b. Suppose that the LLVM local %ptr has type %T* where %T = { i64, i64*, %T* }

i. What is the type of %q in the following program? (Write “ill typed” if it does not typecheck.)

%q = getelementptr %T* %ptr , i32 0, i32 1

ii. What is the type of %r in the following program? (Write “ill typed” if it does not typecheck.)

%r = getelementptr %T* %ptr , i32 0, i32 2, i32 1
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2. Lexing, Parsing, and Grammars (18 points total)

Consider the following grammar of expressions for a language that has C-style preincrement ++e, postin-
crement e++, and Haskell-style infix string concatenation e1 ++ e2, as well as identifiers and parentheses.
To the right is an OCaml datatype for representing the abstract syntax.

exp ::=
| id
| ++exp
| exp++
| exp ++ exp
| (exp)

type exp =

| Id of string

| Pre of exp (* preincrement *)

| Pst of exp (* postincrement *)

| Cat of exp * exp (* concatenation *)

a. (3 points) This is a highly ambiguous grammar. Demonstrate that this is the case by giving three
distinct parses of the token sequence ++ a ++ ++ b. Write your answer using the OCaml notation
for the abstract syntax. (You can abbreviate identifiers: write a for Id("a"), etc.)
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b. (4 points) This grammar cannot be disambiguated simply by assigning one associativity and prece-
dence level to the ++ token (because it is used in multiple incompatible ways). One way to dis-
ambiguate it by hand is observe that any sequence of ++ tokens and “atomic” expressions (such as
identifiers or parenthesized subexpressions) can be written “right associatively”:

• Any initial prefix of ++ tokens is considered to be applications of the Pre operator.
• The remaining token sequence is broken into a non-zero number of “segments”, each of which

consists of an atomic expression followed by ++ tokens, which are uses of the Pst operator.
• If there are multiple segments, they are separated by exactly one ++ token, which is considered

as a right-associative use of Cat.

For example, the top sequence below would be uniquely parsed as shown by the parenthesized bot-
tom version, where a, b, c, and d are atomic:

++ ++ ++ a ++ b ++ ++ ++ c ++ ++ d ++ ++

++ ++ ++ ( a ++ ((b ++ ++) ++ ((c ++) ++ (d ++ ++ ))))

It turns out that sequences of the form described above can be recognized using a regular expression
over the alphabet {++, E} (where E stands for an “atomic” expression). For your reference, Appendix
A includes a description of the form of regular expressions for use in this question.
Write down a regular expression that matches exactly these sequences.

c. (3 points) According to the description in part (b) above, what are the relative precedence levels of
the three different operators in the disambiguated grammar? Write one of High, Medium, or Low next
to each as appropriate:
preincrement ++e:

postincrement e++:

concatenation e ++ e:
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d. (8 points) Because regular languages are included in LR(1) languages, we know that it is possible to
write down an unambiguous context-free grammar that parses the exp grammar. Write down such a
grammar below, where the initial symbol is e0. Use the four terminal tokens ++, (, ), ID and feel
free to add as many nonterminals as necessary.

e0:
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3. LLVM IR (15 points)

This problem refers to the C source function m and its corresponding (unoptimized) LLVM code, which
are found in Appendix B. You may carefully tear off that page to use as a reference.

a. (3 points) LLVM IR semantics. Consider the call to m in the following instruction:
%ans = call i64 @m(i64 -3, i64 5)

i. Circle the value of %6 during this execution of @m

-3 1 3 5 a pointer to 3 a pointer to -3 a pointer to 5

ii. Circle the value of %9 during this execution of @m

-3 1 3 5 a pointer to 3 a pointer to -3 a pointer to 5

iii. Circle the value of %2 at line 18 during this execution of @m

-3 1 3 5 a pointer to 3 a pointer to -3 a pointer to 5

b. (5 points) Observe that in the source definition of m, the argument b is unmodified, and its address is
never taken. These facts suggest that we can optimize the LLVM code to avoid using alloca for b
and instead work with the temporary %b directly.
Perform that optimization by hand, and complete the template below to show the resulting code,
which should be semantically equivalent to the original program. There are no changes necessary in
the block with label 5, and we have given you the last parts of each of the remaining blocks:

define i64 @m(i64 %a, i64 %b) {

%4 = icmp slt i64 %3, 0 ; ’slt’ is signed less than

br i1 %4, label %5, label %8

5:

%6 = load i64* %1

%7 = sub i64 0, %6

store i64 %7, i64* %1

br label %8

8:

ret i64 %11

}
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c. (3 points) If we naı̈vely try to perform the optimization described in part (b) to the other argument a
of m (leaving b alone) , we might end up with the following incorrect LLVM IR program:

define i64 @m(i64 %a, i64 %b) {

%2 = alloca i64

store i64 %b, i64* %2

%4 = icmp slt i64 %a, 0

br i1 %4, label %5, label %8

5:

%a = sub i64 0, %a ; <-- flaw

br label %8

8:

%10 = load i64* %2

%11 = mul i64 %a, %10

ret i64 %11

}

In one sentence, describe the flaw indicated in the program above.

d. (4 points) Suppose we extend the LLVM IR with a conditional move command that sets %id to one
of op2, if op1 is true, or op3, if op1 is false:

%id = select i1 op1 , i64 op2 , i64 op3

Use this instruction to implement an optimized version of @m that needs only four instructions (other
than the terminating ret):

define i64 @m(i64 %a, i64 %b) {

ret i64 %4

}
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4. Compilation and Calling Conventions (15 points)

Recall that according to the x86-64 calling conventions that we have been using, the first two quad-
sized arguments to a function are passed in registers %rdi and %rsi, respectively, and the return value is
returned in %rax. %rbp is a callee-save register and %rsp is caller-save. In X86lite syntax, the source
operand comes before the destination, as in movq %src, %dest.

Consider the following LLVM IR program, in which bar calls foo.

define i64 @foo(i64 %x, i64 %y) {

%ans = add i64 %x, %y

ret i64 %ans

}

define i64 @bar() {

%1 = call i64 @foo(i64 12, i64 34)

ret i64 %1

}

a. (6 points) For each of the following possible X86lite implementations of bar, indicate whether it is
“correct” (i.e. that it correctly implements the calling conventions), or write “incorrect” and briefly
explain (in the margins) why it is wrong.

(A)

bar:

pushq %rbp

movq %rsp , %rbp

subq $8, %rsp

movq $12, %rax

movq %rax , %rdi

movq $34, %rax

movq %rax , %rsi

callq foo

movq %rax , -8(%rbp)

movq -8(%rbp), %rax

movq %rbp , %rsp

popq %rbp

retq

(B)

bar:

pushq %rbp

movq %rsp , %rbp

movq $12, %rdi

movq $34, %rsi

callq foo

movq %rbp , %rsp

popq %rbp

retq

(C)

bar:

movq $12, %rdi

movq $34, %rsi

callq foo

retq
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b. (6 points) A tailcall at the LLVM IR level is a use of a call instruction followed immediately by a
return of the result of the call (or a void return if the called function has void return type). For ex-
ample, the function bar from part (a) of this problem makes a tailcall to foo, since bar immediately
returns %1, which is foo’s result.
A tailcall in which all of the function arguments fit in registers can be optimized to just a jmp—there
is no need to use the x86 callq or retq instructions at all. Tailcall optimization effectively turns
a recursive function into a loop! It reduces the need for O(n) stack space to O(1), where n is the
recursion depth. However, some care must still be taken to follow the calling conventions. For each
of the following possible x86-lite tailcall-optimized implementations of bar, indicate whether it is
“correct” (i.e. that it correctly implements the calling conventions), or write “incorrect” and briefly
explain (in the margins) why it is wrong.

(A)

bar:

pushq %rbp

movq %rsp , %rbp

movq $12, %rdi

movq $34, %rsi

jmp foo

(B)

bar:

movq $12, %rdi

movq $34, %rsi

jmp foo

(C)

bar:

movq $12, %rdi

movq $34, %rsi

popq %rbp

jmp foo

c. (3 points) According to the x86 calling conventions we’ve been following, function arguments seven
and higher are pushed to the stack, which is cleaned up by the caller after the callee returns. Briefly
explain how this interacts with tailcall optimization.
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5. Scope Checking (18 points)

In this problem we will consider scope checking (a simple subset of) OCaml programs. The grammar for
this subset of OCaml is given by the syntactic categories below:

exp ::= Expressions
| x | f variables and function names
| int integer constants
| exp1 + exp2 arithmetic
| exp1 exp2 function application
| let x = exp1 in exp2 local lets
| (exp) parentheses (used only for the concrete syntax)

prog ::= Programs
| ;;exp answer expression
| let x = exp prog top-level declarations
| let f x = exp prog top-level, one-argument function declarations

Scoping contexts for this language consist of comma-separated lists of variable and function names:

G ::= Scoping Contexts
| · empty context
| x, G add x to the context
| f, G add f to the context

Scope checking for expressions is defined by the following inference rules, which use judgments of the
form G ` exp . Recall that the notation x ∈ G means that x occurs in the context list G.

x ∈ G

G ` x
[VARX]

f ∈ G

G ` f
[VARF]

G ` int
[INT]

G ` exp1 G ` exp2

G ` exp1 + exp2
[ADD]

G ` exp1 G ` exp2

G ` exp1 exp2
[APP]

G ` exp1 x , G ` exp2

G ` let x = exp1 in exp2
[LET]

Scope checking for programs is defined by these three inference rules, which use judgments of the form
G ` prog .

G ` exp

G ` ;; exp
[EXP]

G ` exp x , G ` prog

G ` let x = exp prog
[LETX]

x , G ` exp f , G ` prog

G ` let f x = exp prog
[LETF]

A program prog is considered to be well-scoped exactly when it is possible to derive the judgment in the
empty context: · ` prog
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a. Consider the following program:

let f x = 341

let g y = (let z = f y in z) + y

;; g 3

It is well-scoped, as shown by the following (partial) derivation that has some missing sub-derivations
as marked by names D1? , D2? , and D3? .

D1?

D3?
D2?

g, f, · ` ;; g 3 [EXP]

f, · ` let g y = (let z = f y in z) + y

;; g 3

[LETF]

· ` let f x = 341

let g y = (let z = f y in z) + y

;; g 3

[LETF]

i. (3 points) Which of the following derivation trees belongs in the spot marked D1?

a.
x ∈ x, ·
x, · ` x [VARX]

b. · ` 341 [INT]
c. x, · ` 341 [INT]

d. f, · ` 341 [INT]

ii. (3 points) Which of the following derivation trees belongs in the spot marked D2?

a.
g ∈ g, f, ·
g, f, · ` g [VARF]

g, f, · ` 3 [INT]

g, f, · ` g 3 [APP]

b.
g ∈ g, ·
g, · ` g [VARF]

g, · ` 3 [INT]

g, · ` g 3 [APP]

c.
g ∈ f, g, ·
f, g, · ` g [VARF]

f, g, · ` 3 [INT]

f, g, · ` g 3 [APP]

d.

g ∈ y, g, f, ·
y, g, f, · ` g [VARF]

y, g, f, · ` 3 [INT]

y, g, f, · ` g 3 [APP]
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iii. (12 points) In the space below, draw the missing derivation tree marked by D3? . Be sure to
label the uses of each inference rule as in the tree above.
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1 Appendix A: Regular Expressions
Regular expressions over an alphabet A are defined by the following grammar:

rexp ::=
| ε empty string
| a a ∈ A alphabet symbol
| rexp rexp sequential concatenation
| rexp∗ Kleene-star (zero or more repetitions)
| rexp|rexp alternative choice
| (rexp)
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2 Appendix B: LLVM
A C program that computes the a’s absolute value times b.

int64_t m(int64_t a, int64_t b) {

if (a < 0) {

a = -a;

}

return a * b;

}

Corresponding LLVM IR coded, created using clang with no optimizations turned on:

1 define i64 @m(i64 %a, i64 %b) {

2 %1 = alloca i64

3 %2 = alloca i64

4 store i64 %a, i64* %1

5 store i64 %b, i64* %2

6 %3 = load i64* %1

7 %4 = icmp slt i64 %3, 0 ; ’slt ’ is signed less than

8 br i1 %4, label %5, label %8

9

10 5:

11 %6 = load i64* %1

12 %7 = sub i64 0, %6

13 store i64 %7, i64* %1

14 br label %8

15

16 8:

17 %9 = load i64* %1

18 %10 = load i64* %2

19 %11 = mul i64 %9, %10

20 ret i64 %11

21 }
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