
CIS 341: COMPILERS
Lecture 5

Announcements

•  HW2: X86lite
–  Available on the course web pages.
–  Due: Thursday, February 2nd at 11:59:59pm
–  Pair-programming:

•  Register the group on the submission page
•  Submission by any group member counts for the group

Zdancewic CIS 341: Compilers 2

Directly Translating AST to Assembly
•  For simple languages, no need for intermediate representation.

–  e.g. the arithmetic expression language from

•  Main Idea: Maintain invariants
–  e.g. Code emitted for a given expression computes the answer into rax

•  Key Challenges:
–  storing intermediate values needed to compute complex expressions
–  some instructions use specific registers (e.g. shift)

CIS 341: Compilers 3

One Simple Strategy
•  Compilation is the process of “emitting” instructions into an

instruction stream.
•  To compile an expression, we recursively compile sub expressions

and then process the results.
•  Invariants:

–  Compilation of an expression yields its result in rax
–  Argument (Xi) is stored in a dedicated operand
–  Intermediate values are pushed onto the stack
–  Stack slot is popped after use (so the space is reclaimed)

•  Resulting code is wrapped to comply with cdecl calling conventions:

•  See the compile.ml compile2.

CIS 341: Compilers 4

INTERMEDIATE
REPRESENTATIONS

Zdancewic CIS 341: Compilers 5

Why do something else?
•  This is a simple syntax-directed translation

–  Input syntax uniquely determines the output, no complex analysis or code
transformation is done.

–  It works fine for simple languages.

But…
•  The resulting code quality is poor.
•  Richer source language features are hard to encode

–  Structured data types, objects, first-class functions, etc.
•  It’s hard to optimize the resulting assembly code.

–  The representation is too concrete – e.g. it has committed to using certain registers
and the stack

–  Only a fixed number of registers
–  Some instructions have restrictions on where the operands are located

•  Control-flow is not structured:
–  Arbitrary jumps from one code block to another
–  Implicit fall-through makes sequences of code non-modular�

(i.e. you can’t rearrange sequences of code easily)
•  Retargeting the compiler to a new architecture is hard.

–  Target assembly code is hard-wired into the translation

CIS 341: Compilers 6

Intermediate Representations (IR’s)
•  Abstract machine code: hides details of the target architecture
•  Allows machine independent code generation and optimization.

CIS 341: Compilers 7

AST	 IR	

x86	

Java	
Byte-
code	

Arm	Op9miza9on	

Multiple IR’s
•  Goal: get program closer to machine code without losing the

information needed to do analysis and optimizations
•  In practice, multiple intermediate representations�

might be used (for different purposes)

CIS 341: Compilers 8

AST	 MIR	

x86	

Java	
Byte-
code	

Arm	

Op9miza9on	

HIR	

Op9miza9on	 Op9miza9on	

What makes a good IR?
•  Easy translation target (from the level above)
•  Easy to translate (to the level below)
•  Narrow interface

–  Fewer constructs means simpler phases/optimizations

•  Example: Source language might have “while”, “for”, and “foreach”
loops (and maybe more variants)
–  IR might have only “while” loops and sequencing
–  Translation eliminates “for” and “foreach”

–  Here the notation ⟦cmd⟧ denotes the “translation” or “compilation” of the
command cmd.

CIS 341: Compilers 9

⟦for(pre; cond; post) {body}⟧	
	=		

			⟦pre; while(cond) {body;post}⟧	

IR’s at the extreme
•  High-level IR’s

–  Abstract syntax + new node types not generated by the parser
•  e.g. Type checking information or disambiguated syntax nodes

–  Typically preserves the high-level language constructs
•  Structured control flow, variable names, methods, functions, etc.
•  May do some simplification (e.g. convert for to while)

–  Allows high-level optimizations based on program structure
•  e.g. inlining “small” functions, reuse of constants, etc.

–  Useful for semantic analyses like type checking

•  Low-level IR’s
–  Machine dependent assembly code + extra pseudo-instructions

•  e.g. a pseudo instruction for interfacing with garbage collector or memory allocator
(parts of the language runtime system)

•  e.g. (on x86) a imulq instruction that doesn’t restrict register usage
–  Source structure of the program is lost:

•  Translation to assembly code is straightforward
–  Allows low-level optimizations based on target architecture

•  e.g. register allocation, instruction selection, memory layout, etc.

•  What’s in between?

CIS 341: Compilers 10

Mid-level IR’s: Many Varieties
•  Intermediate between AST (abstract syntax) and assembly
•  May have unstructured jumps, abstract registers or memory locations
•  Convenient for translation to high-quality machine code

–  Example: all intermediate values might be named to facilitate
optimizations that attempt to minimize stack/register usage

•  Many examples:
–  Triples: OP a b

•  Useful for instruction selection on X86 via “tiling”

–  Quadruples: a = b OP c (“three address form”)
–  SSA: variant of quadruples where each variable is assigned exactly once

•  Easy dataflow analysis for optimization
•  e.g. LLVM: industrial-strength IR, based on SSA

–  Stack-based:
•  Easy to generate
•  e.g. Java Bytecode, UCODE

CIS 341: Compilers 11

Growing an IR
•  Develop an IR in detail… starting from the very basic.

•  Start: a (very) simple intermediate representation for the arithmetic
language
–  Very high level
–  No control flow

•  Goal: A simple subset of the LLVM IR
–  LLVM = “Low-level Virtual Machine”
–  Used in HW3+

•  Add features needed to compile rich source languages

CIS 341: Compilers 12

SIMPLE LET-BASED IR

Zdancewic CIS 341: Compilers 13

Eliminating Nested Expressions
•  Fundamental problem:

–  Compiling complex & nested expression forms to simple operations.

 IR

•  Idea: name intermediate values, make order of evaluation explicit.
–  No nested operations.

CIS 341: Compilers 14

((1 + X4) + (3 + (X1 * 5)))

Add(Add(Const 1, Var X4),  
 Add(Const 3, Mul(Var X1,  
 Const 5)))

Source

AST

?

Translation to SLL
•  Given this:

•  Translate to this desired SLL form:
let tmp0 = add 1L varX4 in
let tmp1 = mul varX1 5L in
let tmp2 = add 3L tmp1 in
let tmp3 = add tmp0 tmp2 in
 tmp3

•  Translation makes the order of evaluation explicit.
•  Names intermediate values
•  Note: introduced temporaries are never modified

CIS 341: Compilers 15

Add(Add(Const 1, Var X4),  
 Add(Const 3, Mul(Var X1,  
 Const 5)))

