Lecture 12 CIS 341: COMPILERS

Announcements

- Reminder: HW3 LLVM backend
 - Due: TONIGHT!
- Midterm Exam: March 2nd in class!
 - Coverage: x86 / calling conventions / IRs / LLVM / Lexing / Parsing
 - Note: example exams covered more topics
 - * Dr. Zdancewic will be out of town on the exam day
- HW4: Parsing & basic code generation
 - Available soon
 - Due: After break

Searching for derivations.

LL & LR PARSING

Zdancewic CIS 341: Compilers

CFGs Mathematically

- A Context-free Grammar (CFG) consists of
 - A set of *terminals* (e.g., a token or ε)
 - A set of *nonterminals* (e.g., S and other syntactic variables)
 - A designated nonterminal called the *start symbol*
 - A set of productions: $LHS \mapsto RHS$
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals
- Example: The balanced parentheses language:

$$S \longmapsto (S)S$$
$$S \longmapsto \epsilon$$

• How many terminals? How many nonterminals? Productions?

Consider finding left-most derivations

• Look at only one input symbol at a time.

 $S \mapsto E + S \mid E$ E \low number | (S)

Partly-derived String	Look-ahead	Parsed/Unparsed Input
<u>S</u>	((1 + 2 + (3 + 4)) + 5
$\mapsto \underline{\mathbf{E}} + \mathbf{S}$	((1 + 2 + (3 + 4)) + 5
$\mapsto (\underline{\mathbf{S}}) + \mathbf{S}$	1	(1 + 2 + (3 + 4)) + 5
$\longmapsto (\underline{\mathbf{E}} + S) + S$	1	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + \underline{\mathbf{S}}) + \mathbf{S}$	2	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + \underline{\mathbf{E}} + S) + S$	2	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + \underline{\mathbf{S}}) + \mathbf{S}$	((1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + \underline{\mathbf{E}}) + S$	((1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + (\underline{\mathbf{S}})) + \mathbf{S}$	3	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + (\underline{\mathbf{E}} + S)) + $	S 3	(1 + 2 + (3 + 4)) + 5
$\mapsto \dots$		

There is a problem

 $S \mapsto E + S \mid E$

 $E \mapsto number \mid (S)$

- We want to decide which production to apply based on the look-ahead symbol.
- But, there is a choice:

(1)
$$S \mapsto E \mapsto (S) \mapsto (E) \mapsto (1)$$

VS.

$$(1) + 2 \xrightarrow{\mathsf{S} \mapsto \mathsf{E} + \mathsf{S}} \mapsto (\mathsf{S}) + \mathsf{S} \mapsto (\mathsf{E}) + \mathsf{S} \mapsto (1) + \mathsf{S} \mapsto (1) + \mathsf{E}$$
$$\mapsto (1) + 2$$

• Given the look-ahead symbol: '(' it isn't clear whether to pick $S \mapsto E$ or $S \mapsto E + S$ first.

LL(1) GRAMMARS

Zdancewic CIS 341: Compilers

Grammar is the problem

- Not all grammars can be parsed "top-down" with only a single lookahead symbol.
- *Top-down*: starting from the start symbol (root of the parse tree) and going down
- LL(1) means
 - Left-to-right scanning
 - Left-most derivation,
 - <u>1</u> lookahead symbol
- This language isn't "LL(1)"
- Is it LL(k) for some k?

$$S \mapsto E + S \mid E$$
$$E \mapsto number \mid (S)$$

• What can we do?

Making a grammar LL(1)

- *Problem:* We can't decide which S production to apply until we see the symbol after the first expression.
- *Solution: "*Left-factor" the grammar. There is a common S prefix for each choice, so add a new non-terminal S' at the decision point:



- Also need to eliminate left-recursion somehow. Why?
- Consider:

$$S \mapsto S + E \mid E$$

E \low number \| (S)

LL(1) Parse of the input string

- Look at only one input symbol at a time.
- $S \mapsto ES'$ $S' \mapsto \varepsilon$ $S' \mapsto + S$ $E \mapsto number \mid (S)$

Partly-derived String	Look-ahead	Parsed/Unparsed Input
<u>S</u>	((1 + 2 + (3 + 4)) + 5
⊷ <u>E</u> S′	((1 + 2 + (3 + 4)) + 5
$\mapsto (\underline{\mathbf{S}}) S'$	1	(1 + 2 + (3 + 4)) + 5
$\longmapsto (\underline{\mathbf{E}} S') S'$	1	(1 + 2 + (3 + 4)) + 5
→ (1 <u>S'</u>) S'	+	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + \underline{\mathbf{S}}) \mathbf{S'}$	2	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + \underline{\mathbf{E}} S') S'$	2	(1 + 2 + (3 + 4)) + 5
→ (1 + 2 <u>S'</u>) S'	+	(1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + \underline{\mathbf{S}}) \mathbf{S'}$	((1 + 2 + (3 + 4)) + 5
$\mapsto (1 + 2 + \underline{\mathbf{E}} S') S'$	((1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + (\underline{\mathbf{S}})S') S'$	3	(1 + 2 + (3 + 4)) + 5

Predictive Parsing

- Given an LL(1) grammar:
 - For a given nonterminal, the lookahead symbol uniquely determines the production to apply.
 - Top-down parsing = predictive parsing
 - Driven by a predictive parsing table: nonterminal * input token \rightarrow production

$$T \mapsto S\$$$

$$S \mapsto ES'$$

$$S' \mapsto \varepsilon$$

$$S' \mapsto + S$$

$$E \mapsto number \mid (S)$$

	number	+	()	\$ (EOF)
Т	\mapsto S\$		⊢→S\$		
S	$\mapsto E S'$		⊷E S′		
S'		\mapsto + S		$\mapsto \epsilon$	$\mapsto \epsilon$
E	⊢ num.		$\mapsto (S)$		

• Note: it is convenient to add a special *end-of-file* token \$ and a start symbol T (top-level) that requires \$.

How do we construct the parse table?

- Consider a given production: $A \rightarrow \gamma$
- Construct the set of all input tokens that may appear *first* in strings that can be derived from γ
 - Add the production $\rightarrow \gamma$ to the entry (A,token) for each such token.
- If γ can derive ε (the empty string), then we construct the set of all input tokens that may *follow* the nonterminal A in the grammar.
 - Add the production $\rightarrow \gamma$ to the entry (A, token) for each such token.

• Note: if there are two different productions for a given entry, the grammar is not LL(1)

Example

First(T) = First(S)۲ $T \mapsto S$ First(S) = First(E)٠ $S \mapsto ES'$ $First(S') = \{ + \}$ ٠ $S' \mapsto \varepsilon$ First(E) = { number, '(' } ٠ $S' \mapsto + S$ $E \mapsto number \mid (S)$ Follow(S') = Follow(S)٠ **Note:** we want the *least* Follow(S) = { \$, ')' } U Follow(S') solution to this system of set ٠ equations... a fixpoint computation. More on these later in the course. \$ (EOF) number Τ \mapsto S\$ →S\$ $\mapsto E S'$ $\mapsto E S'$ S **S'** \mapsto + S $\mapsto \epsilon$ $\mapsto \epsilon$ \mapsto (S) E \mapsto num.

Converting the table to code

- Define n mutually recursive functions
 - one for each nonterminal A: parse_A
 - The type of parse_A is unit -> ast if A is not an auxiliary nonterminal
 - Parse functions for auxiliary nonterminals (e.g. S') take extra ast's as inputs, one for each nonterminal in the "factored" prefix.
- Each function "peeks" at the lookahead token and then follows the production rule in the corresponding entry.
 - Consume terminal tokens from the input stream
 - Call parse_X to create sub-tree for nonterminal X
 - If the rule ends in an auxiliary nonterminal, call it with appropriate ast's. (The auxiliary rule is responsible for creating the ast after looking at more input.)
 - Otherwise, this function builds the ast tree itself and returns it.

	number	+	()	\$ (EOF)
Т	\mapsto S\$		⊢→S\$		
S	$\mapsto E S'$		⊷E S′		
S'		\mapsto + S		$\mapsto \epsilon$	$\mapsto \epsilon$
E	⊢ num.		$\mapsto (S)$		

Hand-generated LL(1) code for the table above.

DEMO: PARSER.ML

LL(1) Summary

- Top-down parsing that finds the leftmost derivation.
- Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursivedescent parser
- Problems:
 - Grammar must be LL(1)
 - Can extend to LL(k) (it just makes the table bigger)
 - Grammar cannot be left recursive (parser functions will loop!)
- Is there a better way?

LR GRAMMARS

Zdancewic CIS 341: Compilers

Bottom-up Parsing (LR Parsers)

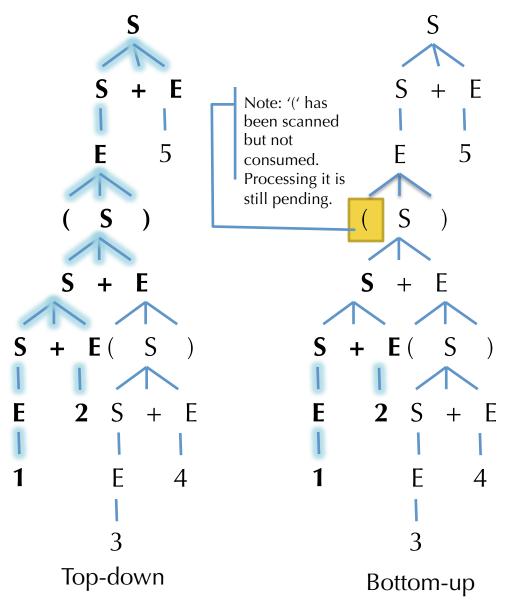
- LR(k) parser:
 - Left-to-right scanning
 - <u>R</u>ightmost derivation
 - k lookahead symbols
- LR grammars are more expressive than LL
 - Can handle left-recursive (and right recursive) grammars; virtually all programming languages
 - Easier to express programming language syntax (no left factoring)
- Technique: "Shift-Reduce" parsers
 - Work bottom up instead of top down
 - Construct right-most derivation of a program in the grammar
 - Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
 - Better error detection/recovery

Top-down vs. Bottom up

• Consider the leftrecursive grammar:

> $S \mapsto S + E \mid E$ E \low number | (S)

- (1 + 2 + (3 + 4)) + 5
- What part of the tree must we know after scanning just (1 + 2
- In top-down, must be able to guess which productions to use...



Progress of Bottom-up Parsing

Rightmost derivation

Reductions	Scanned
$(1 + 2 + (3 + 4)) + 5 \longleftarrow$	
$(\underline{\mathbf{E}} + 2 + (3 + 4)) + 5 \longleftarrow$	(
$(\underline{\mathbf{S}} + 2 + (3 + 4)) + 5 \longleftarrow$	(1
$(\mathbf{S} + \mathbf{\underline{E}} + (3 + 4)) + 5 \longleftarrow$	(1 + 2
$(\underline{\mathbf{S}} + (3 + 4)) + 5 \longleftarrow$	(1 + 2
$(S + (\underline{E} + 4)) + 5 \longleftarrow$	(1 + 2 + (3 + (3 + (3 + (3 + (3 + (3 + (3
$(S + (\underline{S} + 4)) + 5 \longleftarrow$	(1 + 2 + (3 + 3))
$(S + (S + \underline{E})) + 5 \longleftarrow$	(1 + 2 + (3 + 4))
$(S + (\underline{S})) + 5 \longleftarrow$	(1 + 2 + (3 + 4))
$(S + \underline{E}) + 5 \longleftarrow$	(1 + 2 + (3 + 4))
$(\underline{\mathbf{S}}) + 5 \longleftarrow$	(1 + 2 + (3 + 4))
<u>E</u> + 5 ↔	(1 + 2 + (3 + 4))
<u>S</u> + 5 ↔	(1 + 2 + (3 + 4))
$S + \underline{E} \longleftarrow$	(1 + 2 + (3 + 4)) + 5
S	

Input Remaining (1 + 2 + (3 + 4)) + 5+2+(3+4))+5+2+(3+4))+5+(3+4))+5+(3+4))+5+ 4)) + 5(1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4))+ 5

> $S \mapsto S + E \mid E$ $E \mapsto number \mid (S)$

CIS 341: Compilers

20

Shift/Reduce Parsing

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Parsing is a sequence of *shift* and *reduce* operations:
- Shift: move look-ahead token to the stack
- Reduce: Replace symbols γ at top of stack with nonterminal X such that $X \mapsto \gamma$ is a production. (pop γ , push X)

Stack	Input	Action
	(1 + 2 + (3 + 4)) + 5	shift (
(1 + 2 + (3 + 4)) + 5	shift 1
(1	+2+(3+4))+5	reduce: $E \mapsto number$
(E	+2+(3+4))+5	reduce: $S \mapsto E$
(S	+2+(3+4))+5	shift +
(S +	2 + (3 + 4)) + 5	shift 2
(S + 2)	+(3+4))+5	reduce: $E \mapsto number$

 $S \mapsto S + E \mid E$ $E \mapsto number \mid (S)$

Simple LR parsing with no look ahead.

LR(0) GRAMMARS

Zdancewic CIS 341: Compilers

LR Parser States

- Goal: know what set of reductions are legal at any given point.
- Idea: Summarize all possible stack prefixes α as a finite parser state.
 - Parser state is computed by a DFA that reads the stack σ .
 - Accept states of the DFA correspond to unique reductions that apply.
- Example: LR(0) parsing
 - <u>L</u>eft-to-right scanning, <u>R</u>ight-most derivation, <u>zero</u> look-ahead tokens
 - Too weak to handle many language grammars (e.g. the "sum" grammar)
 - But, helpful for understanding how the shift-reduce parser works.

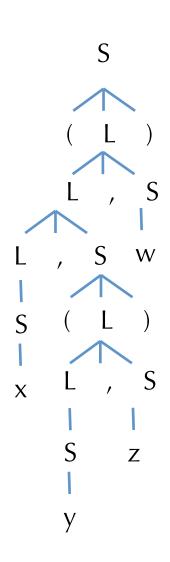
Example LR(0) Grammar: Tuples

• Example grammar for non-empty tuples and identifiers:

 $\begin{array}{c|c} S \longmapsto (L) & | & id \\ L \longmapsto S & | & L, S \end{array}$

- Example strings:
 - x
 - (x,y)
 - ((((x))))
 - (x, (y, z), w)
 - $\ (x, \, (y, \, (z, \, w)))$

Parse tree for: (x, (y, z), w)



Shift/Reduce Parsing

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Parsing is a sequence of *shift* and *reduce* operations:
- Shift: move look-ahead token to the stack: e.g.

Stack	Input	Action
	(x, (y, z), w)	shift (
(x, (y, z), w)	shift x

• Reduce: Replace symbols γ at top of stack with nonterminal X such that X $\mapsto \gamma$ is a production. (pop γ , push X): e.g.

Stack	Input	Action
(x	, (y, z), w)	reduce $S \mapsto id$
(S	, (y, z), w)	reduce $L \mapsto S$

 $S \mapsto (L) \mid id$

 $L \mapsto S \mid L, S$

Example Run

Stack	Input	Action
	(x, (y, z), w)	shift (
(x, (y, z), w)	shift x
(x	, (y, z), w)	reduce S \mapsto id
(S	, (y, z), w)	reduce $L \mapsto S$
(L	, (y, z), w)	shift ,
(L,	(y, z), w)	shift (
(L, (y, z), w)	shift y
(L, (y	, z), w)	reduce S \mapsto id
(L, (S	, z), w)	reduce $L \mapsto S$
(L, (L	, z), w)	shift ,
(L, (L,	z), w)	shift z
(L, (L, z), w)	reduce S \mapsto id
(L, (L, S), w)	reduce $L \mapsto L$, S
(L, (L), w)	shift)
(L, (L)	, w)	reduce $S \mapsto (L)$
(L, S	, w)	reduce $L \mapsto L$, S
34 (Compilers	, w)	shift ,

CIS

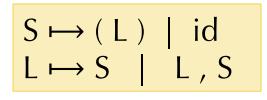
$$\begin{array}{c|c} S \longmapsto (L) & | & id \\ L \longmapsto S & | & L, S \end{array}$$

Action Selection Problem

- Given a stack σ and a look-ahead symbol b, should the parser:
 - Shift b onto the stack (new stack is σ b)
 - Reduce a production $X \mapsto \gamma$, assuming that $\sigma = \alpha \gamma$ (new stack is αX)?
- Sometimes the parser can reduce but shouldn't
 - For example, $X \mapsto \varepsilon$ can *always* be reduced
- Sometimes the stack can be reduced in different ways
- Main idea: decide what to do based on a *prefix* α of the stack plus the look-ahead symbol.
 - The prefix α is different for different possible reductions since in productions $X \mapsto \gamma$ and $Y \mapsto \beta$, γ and β might have different lengths.
- Main goal: know what set of reductions are legal at any point.
 - How do we keep track?

LR(0) States

- An LR(0) *state* is a *set* of *items* keeping track of progress on possible upcoming reductions.
- An LR(0) *item* is a production from the language with an extra separator "." somewhere in the right-hand-side



- Example items: $S \mapsto .(L)$ or $S \mapsto (.L)$ or $L \mapsto S$.
- Intuition:
 - Stuff before the '.' is already on the stack
 - (beginnings of possible γ 's to be reduced)
 - Stuff after the '.' is what might be seen next
 - The prefixes α are represented by the state itself

Constructing the DFA: Start state & Closure

- First step: Add a new production $S' \mapsto S$ to the grammar
- Start state of the DFA = empty stack, so it contains the item:
 - $S' \mapsto .S\$$

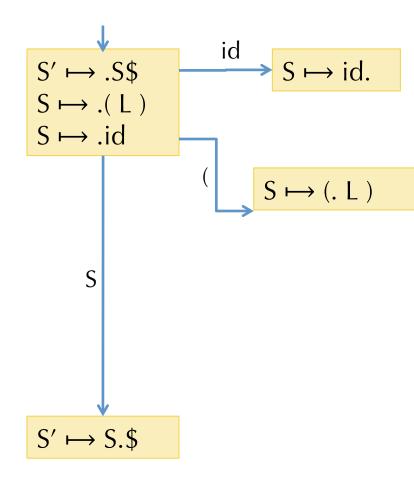
 $S' \mapsto S \\ S \mapsto (L) \mid id \\ L \mapsto S \mid L, S$

- Closure of a state:
 - Adds items for all productions whose LHS nonterminal occurs in an item in the state just after the '.'
 - The added items have the '.' located at the beginning (no symbols for those items have been added to the stack yet)
 - Note that newly added items may cause yet more items to be added to the state... keep iterating until a *fixed point* is reached.
- Example: $CLOSURE({S' \mapsto .S}) = {S' \mapsto .S}, S \mapsto .(L), S \mapsto .id}$
- Resulting "closed state" contains the set of all possible productions that might be reduced next.

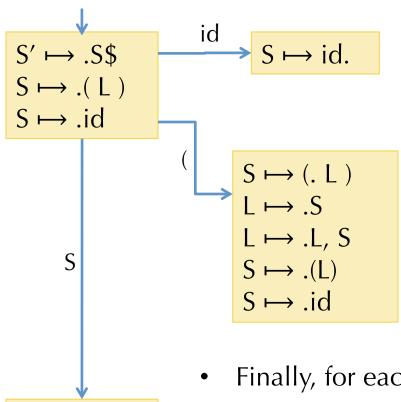
• First, we construct a state with the initial item $S' \mapsto .S$

- Next, we take the closure of that state: $CLOSURE({S' \mapsto .S}) = {S' \mapsto .S}, S \mapsto .(L), S \mapsto .id$
- In the set of items, the nonterminal S appears after the '.'
- So we add items for each S production in the grammar

Example: Constructing the DFA



- Next we add the transitions:
- First, we see what terminals and nonterminals can appear after the '.' in the source state.
 - Outgoing edges have those label.
- The target state (initially) includes all items from the source state that have the edge-label symbol after the '.', but we advance the '.' (to simulate shifting the item onto the stack)

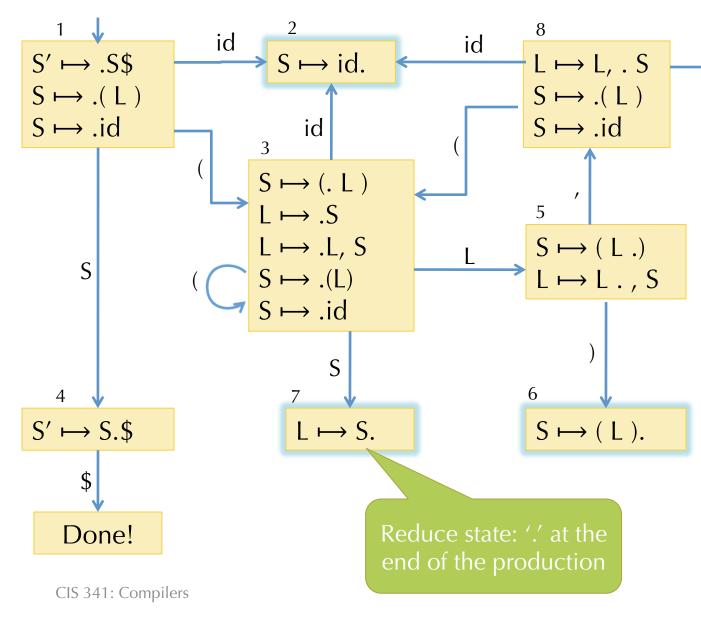


 $\begin{array}{c} \mathsf{S'} \longmapsto \mathsf{S} \mathsf{S} \\ \mathsf{S} \longmapsto (\mathsf{L}) & | \text{ id} \\ \mathsf{L} \longmapsto \mathsf{S} & | \mathsf{L}, \mathsf{S} \end{array}$

- Finally, for each new state, we take the closure.
- Note that we have to perform two iterations to compute $CLOSURE({S \mapsto (. L)})$
 - First iteration adds $L \mapsto .S$ and $L \mapsto .L$, S
 - Second iteration adds $S \mapsto .(L)$ and $S \mapsto .id$

 $S' \mapsto S.$

Full DFA for the Example



$$\xrightarrow{9} \mathsf{L} \mapsto \mathsf{L}, \mathsf{S}.$$

S

- Current state: run the DFA on the stack.
- If a reduce state is reached, reduce
- Otherwise, if the next token matches an outgoing edge, shift.
- If no such transition, it is a parse error.

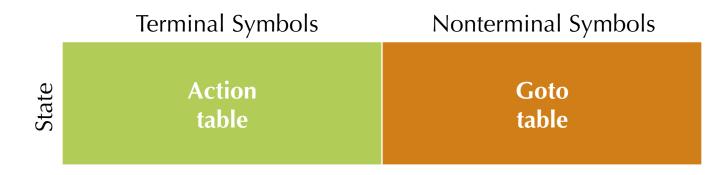
Using the DFA

- Run the parser stack through the DFA.
- The resulting state tells us which productions might be reduced next.
 - If not in a reduce state, then shift the next symbol and transition according to DFA.
 - If in a reduce state, $X \mapsto \gamma$ with stack $\alpha \gamma$, pop γ and push X.
- Optimization: No need to re-run the DFA from beginning every step
 - Store the state with each symbol on the stack: e.g. $_1(_3(_3L_5)_6)$
 - On a reduction $X \mapsto \gamma$, pop stack to reveal the state too: e.g. From stack $_1(_3(_3L_5)_6$ reduce $S \mapsto (L)$ to reach stack $_1(_3$
 - Next, push the reduction symbol: e.g. to reach stack $_1(_3S)$
 - Then take just one step in the DFA to find next state: ${}_{1}({}_{3}S_{7}$

Implementing the Parsing Table

Represent the DFA as a table of shape: state * (terminals + nonterminals)

- Entries for the "action table" specify two kinds of actions:
 - Shift and goto state n
 - Reduce using reduction $X \mapsto \gamma$
 - First pop γ off the stack to reveal the state
 - Look up X in the "goto table" and goto that state



Example Parse Table

	()	id	,	\$	S	L
1	s3		s2			g4	
2	S⊷id	S⊷id	S⊷id	S⊷id	S⊷id		
3	s3		s2			g7	g5
4					DONE		
5		s6		s8			
6	$S \mapsto (L)$						
7	$L \mapsto S$						
8	s3		s2			g9	
9	$L \mapsto L,S$						

sx = shift and goto state x
gx = goto state x

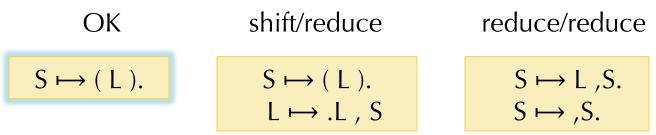
Example

• Parse the token stream: (x, (y, z), w)\$

Stack	Stream	Action (according to table)
ε ₁	(x, (y, z), w)\$	s3
$\epsilon_1(3)$	x, (y, z), w)\$	s2
$\epsilon_1(_3x_2)$, (y, z), w)\$	Reduce: S⊷id
$\epsilon_1(_3S)$, (y, z), w)\$	g7 (from state 3 follow S)
$\epsilon_1({}_3S_7$, (y, z), w)\$	Reduce: L→S
$\epsilon_1(_3L)$, (y, z), w)\$	g5 (from state 3 follow L)
$\epsilon_1(_3L_5$, (y, z), w)\$	s8
$\epsilon_1({}_3L_{5'8}$	(y, z), w)\$	s3
$\epsilon_1({}_3L_{5'8}({}_3$	y, z), w)\$	s2

LR(0) Limitations

- An LR(0) machine only works if states with reduce actions have a *single* reduce action.
 - In such states, the machine *always* reduces (ignoring lookahead)
- With more complex grammars, the DFA construction will yield states with shift/reduce and reduce/reduce conflicts:



• Such conflicts can often be resolved by using a look-ahead symbol: LR(1)

Examples

• Consider the left associative and right associative "sum" grammars:

- One is LR(0) the other isn't... which is which and why?
- What kind of conflict do you get? Shift/reduce or Reduce/reduce?
- Ambiguities in associativity/precedence usually lead to shift/reduce conflicts.

LR(1) Parsing

- Algorithm is similar to LR(0) DFA construction:
 - LR(1) state = set of LR(1) items
 - An LR(1) item is an LR(0) item + a set of look-ahead symbols:
 - $A \longmapsto \, \alpha.\beta$, $\mathcal L$
- LR(1) closure is a little more complex:
- Form the set of items just as for LR(0) algorithm.
- Whenever a new item $C \mapsto .\gamma$ is added because $A \mapsto \beta.C\delta$, \mathcal{L} is already in the set, we need to compute its look-ahead set \mathcal{M} :

1. The look-ahead set \mathcal{M} includes FIRST(δ)

(the set of terminals that may start strings derived from δ)

2. If δ can derive ϵ (it is nullable), then the look-ahead $\mathcal M$ also contains $\mathcal L$

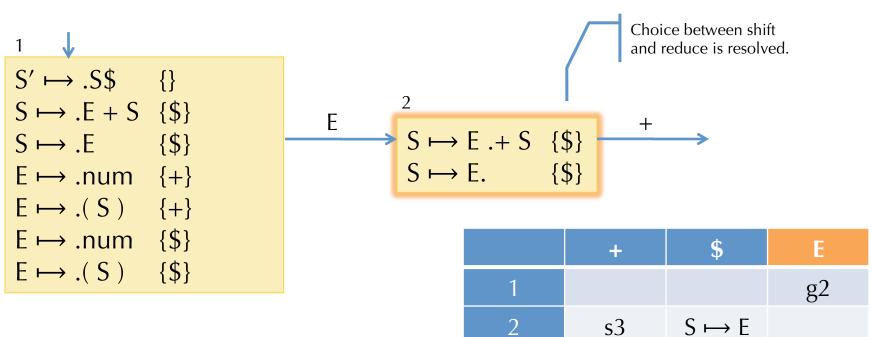
Example Closure

 $S' \mapsto S$ $S \mapsto E + S \mid E$ $E \mapsto number \mid (S)$

- Start item: $S' \mapsto .S$, {}
- Since S is to the right of a '.', add:
- Need to keep closing, since E appears to the right of a '.' in '.E + S':

Note: + added for reason 1

- Because E also appears to the right of '.' in '.E' we get: $E \mapsto .number$, {\$} $E \mapsto .(S)$, {\$} Note: \$ added for reason 2 $E \mapsto .(S)$, {\$}
- All items are distinct, so we're done



- The behavior is determined if:
 - There is no overlap among the look-ahead sets for each reduce item, and
 - None of the look-ahead symbols appear to the right of a '.'

Fragment of the Action & Goto tables

LR variants

- LR(1) gives maximal power out of a 1 look-ahead symbol parsing table
 - DFA + stack is a push-down automaton (recall 262)
- In practice, LR(1) tables are big.
 - Modern implementations (e.g. menhir) directly generate code
- LALR(1) = "Look-ahead LR"
 - Merge any two LR(1) states whose items are identical except for the lookahead sets: $s' \mapsto ss = 0$

- Such merging can lead to nondeterminism (e.g. reduce/reduce conflicts), but
- Results in a much smaller parse table and works well in practice
- This is the usual technology for automatic parser generators: yacc, ocamlyacc
- GLR = "Generalized LR" parsing
 - Efficiently compute the set of *all* parses for a given input
 - Later passes should disambiguate based on other context

Classification of Grammars

