Lecture 17
CIS 341: COMPILERS

Announcements / Plan

- HW5: OAT typechecking, structs, function pointers
 - Available soon
 - Due: Thursday, April 13
- HW6: LLVM Optimization: analysis and register allocation
 Due: Wednesday, April 26
- FINAL EXAM: Thursday, May 4th noon 2:00p.m.

Type Safety For General Languages

Theorem: (Type Safety)

(b)

- If $\vdash P$: t is a well-typed program, then either:
 - (a) the program terminates in a well-defined way, or
 - the program continues computing forever
- Well-defined termination could include:
 - halting with a return value
 - raising an exception
- Type safety rules out undefined behaviors:
 - abusing "unsafe" casts: converting pointers to integers, etc.
 - treating non-code values as code (and vice-versa)
 - breaking the type abstractions of the language
- What is "defined" depends on the language semantics...

Beyond describing "structure"... describing "properties" Types as sets Subsumption

TYPES, MORE GENERALLY

Tuples

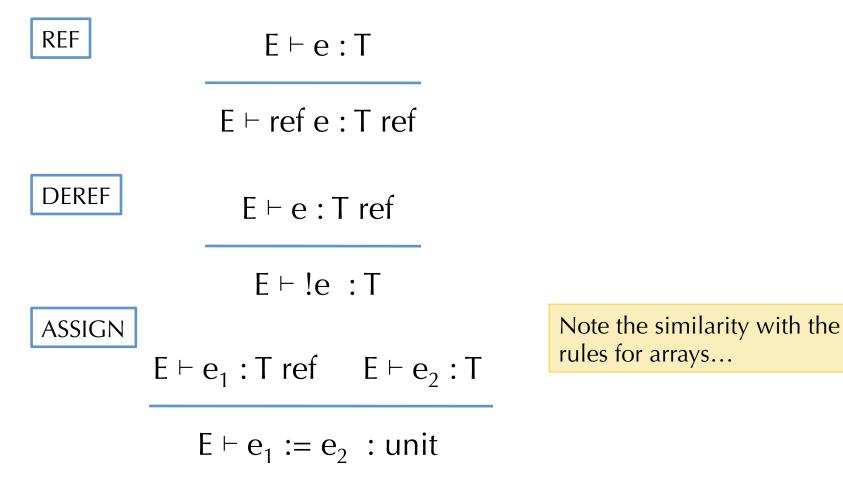
- ML-style tuples with statically known number of products:
- First: add a new type constructor: $T_1 * ... * T_n$

TUPLE

$$E \vdash e_1 : T_1 \quad \dots \quad E \vdash e_n : T_n$$
 $E \vdash (e_1, \dots, e_n) : T_1 * \dots * T_n$
 $E \vdash e : T_1 * \dots * T_n \quad 1 \le i \le n$
 $E \vdash \# i \ e : T_i$

References

- ML-style references (note that ML uses only expressions)
- First, add a new type constructor: T ref



Arrays

- Array constructs are not hard either, here is one possibility
- First: add a new type constructor: T[]

$$\begin{array}{c} \mathsf{NEW} & \mathsf{E} \vdash \mathsf{e}_{1}: \mathsf{int} \\ & \mathsf{E} \vdash \mathsf{new} \,\mathsf{T}[\mathsf{e}_{1}]:\mathsf{T}[] \\ \hline \mathsf{E} \vdash \mathsf{new} \,\mathsf{T}[\mathsf{e}_{1}]:\mathsf{T}[] \\ \hline \mathsf{INDEX} & \mathsf{E} \vdash \mathsf{e}_{1}:\mathsf{T}[] & \mathsf{E} \vdash \mathsf{e}_{2}: \mathsf{int} \\ & \mathsf{E} \vdash \mathsf{e}_{1}[\mathsf{e}_{2}]:\mathsf{T} \\ \hline \mathsf{UPDATE} \\ & \mathsf{E} \vdash \mathsf{e}_{1}:\mathsf{T}[] & \mathsf{E} \vdash \mathsf{e}_{2}: \mathsf{int} & \mathsf{E} \vdash \mathsf{e}_{3}:\mathsf{T} \\ & \mathsf{E} \vdash \mathsf{e}_{1}:\mathsf{T}[] & \mathsf{E} \vdash \mathsf{e}_{2}: \mathsf{int} & \mathsf{E} \vdash \mathsf{e}_{3}:\mathsf{T} \\ & \mathsf{E} \vdash \mathsf{e}_{1}[\mathsf{e}_{2}] = \mathsf{e}_{3} \, \mathsf{ok} \end{array}$$

NULL

- What is the type of null?
- Consider:

<pre>int[] a = null;</pre>	// OK?
<pre>int x = null;</pre>	// not OK?
<pre>string s = null;</pre>	// OK?
NULL E⊢nul	• r

- Null has any *reference type*
 - Null is generic
- What about type safety?
 - Requires defined behavior when dereferencing null e.g. Java's NullPointerException
 - Requires a safety check for every dereference operation (typically implemented using low-level hardware "trap" mechanisms.)

Recursive Definitions

- Consider the ML factorial function:
 let rec fact (x:int) : int =
 if (x == 0) 1 else x * fact(x-1)
- Note that the function name fact appears inside the body of fact's definition!
- To typecheck the body of fact, we must assume that the type of fact is already known.

E, fact : int -> int, x : int $\vdash e_{body}$: int

 $E \vdash int fact(int x) (e_{body}) : int \rightarrow int$

- In general: Collect the names and types of all mutually recursive definitions, add them all to the context E before checking any of the definition bodies.
- Often useful to separate the "global context" from the "local context"

What are types, anyway?

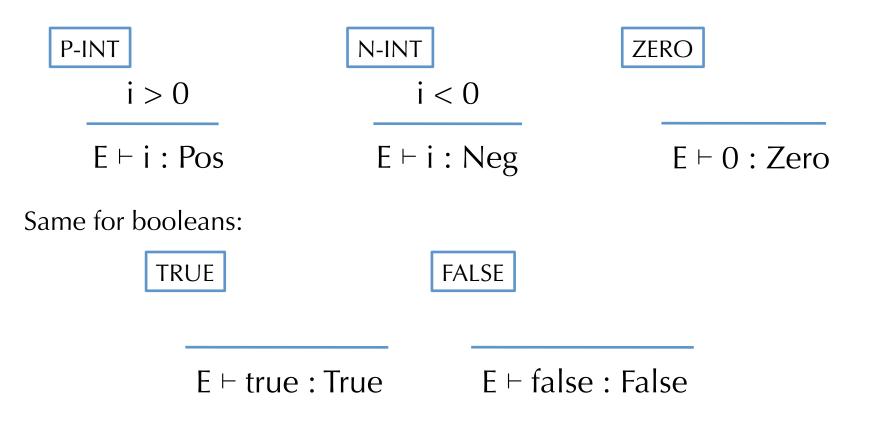
- A *type* is just a predicate on the set of values in a system.
 - For example, the type "int" can be thought of as a boolean function that returns "true" on integers and "false" otherwise.
 - Equivalently, we can think of a type as just a *subset* of all values.
- For efficiency and tractability, the predicates are usually taken to be very simple.
 - Types are an *abstraction* mechanism
- We can easily add new types that distinguish different subsets of values:

```
type tp =
```

```
IntT(* type of integers *)PosTNegTZeroT(* refinements of ints *)BoolT(* type of booleans *)TrueTFalseT(* subsets of booleans *)AnyT(* any value *)
```

Modifying the typing rules

- We need to refine the typing rules too...
- Some easy cases:
 - Just split up the integers into their more refined cases:



٠

What about "if"?

• Two cases are easy:

IF-T
$$E \vdash e_1$$
: True $E \vdash e_2$: T $IF-F$ $E \vdash e_1$: False $E \vdash e_3$: T

 $E \vdash if(e_1) e_2 else e_3 : T$

 $E \vdash if(e_1) e_2 else e_3 : T$

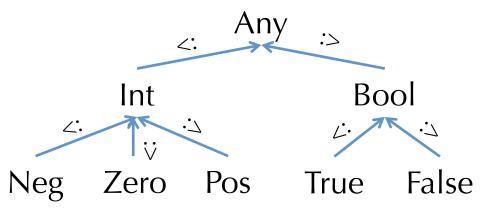
- What happens when we don't know statically which branch will be taken?
- Consider the typechecking problem:

```
x:bool \vdash if (x) 3 else -1 : ?
```

- The true branch has type Pos and the false branch has type Neg.
 - What should be the result type of the whole if?

Subtyping and Upper Bounds

- If we think of types as sets of values, we have a natural inclusion relation: Pos ⊆ Int
- This subset relation gives rise to a *subtype* relation: Pos <: Int
- Such inclusions give rise to a *subtyping hierarchy*:



- Given any two types T₁ and T₂, we can calculate their *least upper bound* (LUB) according to the hierarchy.
 - Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any
 - Note: might want to add types for "NonZero", "NonNegative", and "NonPositive" so that set union on values corresponds to taking LUBs on types.

"If" Typing Rule Revisited

• For statically unknown conditionals, we want the return value to be the LUB of the types of the branches:

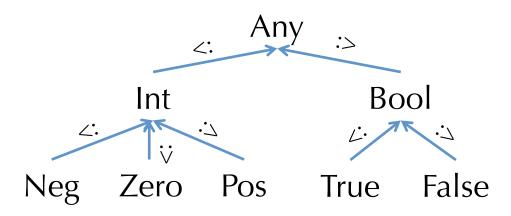
$$\begin{array}{c} \text{IF-BOOL} \\ \mathsf{E} \vdash \mathbf{e}_1 : \text{bool} \quad \mathsf{E} \vdash \mathbf{e}_2 : \mathsf{T}_1 \quad \mathsf{E} \vdash \mathbf{e}_3 : \mathsf{T}_2 \end{array}$$

 $\mathsf{E} \vdash \mathsf{if} (e_1) e_2 \mathsf{ else } e_3 : \mathsf{LUB}(\mathsf{T}_1, \mathsf{T}_2)$

- Note that LUB(T₁, T₂) is the most precise type (according to the hierarchy) that is able to describe any value that has either type T₁ or type T₂.
- In math notation, LUB(T1, T2) is sometimes written $T_1 \lor T_2$
- LUB is also called the *join* operation.

Subtyping Hierarchy

• A subtyping hierarchy:



- The subtyping relation is a *partial order*:
 - Reflexive: T <: T for any type T
 - Transitive: $T_1 <: T_2$ and $T_2 <: T_3$ then $T_1 <: T_3$
 - Antisymmetric: It $T_1 <: T_2$ and $T_2 <: T_1$ then $T_1 = T_2$

Soundness of Subtyping Relations

- We don't have to treat *every* subset of the integers as a type.
 - e.g., we left out the type NonNeg
- A subtyping relation $T_1 <: T_2$ is *sound* if it approximates the underlying semantic subset relation.
- Formally: write [[T]] for the subset of (closed) values of type T
 - i.e. $[T] = \{v \mid \vdash v : T\}$
 - e.g. $[Zero] = \{0\}, [Pos] = \{1, 2, 3, ...\}$
- If $T_1 <: T_2$ implies $[T_1] \subseteq [T_2]$, then $T_1 <: T_2$ is sound.
 - e.g. Pos <: Int is sound, since $\{1,2,3,...\} \subseteq \{...,-3,-2,-1,0,1,2,3,...\}$
 - e.g. Int <: Pos is not sound, since it is *not* the case that $\{...,-3,-2,-1,0,1,2,3,...\} \subseteq \{1,2,3,...\}$

Soundness of LUBs

- Whenever you have a sound subtyping relation, it follows that: $[LUB(T_1, T_2)] \supseteq [T_1] \cup [T_2]$
 - Note that the LUB is an over approximation of the "semantic union"
 - Example: $[LUB(Zero, Pos)] = [Int]] = \{..., -3, -2, -1, 0, 1, 2, 3, ...\} \supseteq \{0, 1, 2, 3, ...\} = \{0\} \cup \{1, 2, 3, ...\} = [Zero]] \cup [Pos]]$
- Using LUBs in the typing rules yields sound approximations of the program behavior (as if the IF-B rule).
- It just so happens that LUBs on types <: Int correspond to +

ADD $E \vdash e_1 : T_1 \quad E \vdash e_2 : T_2 \quad T_1 <: Int \quad T_2 <: Int$ $E \vdash e_1 + e_2 : T_1 \lor T_2$

Subsumption Rule

• When we add subtyping judgments of the form T <: S we can uniformly integrate it into the type system generically:

SUBSUMPTION
$$E \vdash e:T$$
 $T <: S$ $E \vdash e:S$

- Subsumption allows any value of type T to be treated as an S whenever T <: S.
- Adding this rule makes the search for typing derivations more difficult

 this rule can be applied anywhere, since T <: T.
 - But careful engineering of the typing system can incorporate the subsumption rule into a deterministic algorithm.

Downcasting

- What happens if we have an Int but need something of type Pos?
 - At compile time, we don't know whether the Int is greater than zero.
 - At run time, we do.
- Add a "checked downcast"

 $E \vdash e_1$: Int $E, x : Pos \vdash e_2 : T_2$ $E \vdash e_3 : T_3$

 $E \vdash ifPos (x = e_1) e_2 else e_3 : T_2 \lor T_3$

- At runtime, if Pos checks whether e_1 is > 0. If so, branches to e_2 and otherwise branches to e_3 .
- Inside the expression e_2 , x is the name for e_1 's value, which is known to be strictly positive because of the dynamic check.
- Note that such rules force the programmer to add the appropriate checks
 - We could give integer division the type: Int -> NonZero -> Int