
CIS 341: COMPILERS 
Lecture 17 



Announcements / Plan 
 

•  HW5: OAT – typechecking, structs, function pointers 
–  Available soon 
–  Due: Thursday, April 13 
 

•  HW6:  LLVM Optimization: analysis and register allocation  
–  Due: Wednesday, April 26 

•  FINAL EXAM: Thursday, May 4th noon – 2:00p.m. 
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Type Safety For General Languages 

•  Well-defined termination could include: 
–  halting with a return value 
–  raising an exception 

•  Type safety rules out undefined behaviors: 
–  abusing "unsafe" casts:  converting pointers to integers, etc. 
–  treating non-code values as code (and vice-versa) 
–  breaking the type abstractions of the language 

•  What is "defined" depends on the language semantics… 
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Theorem: (Type Safety) 
�
   If   ⊢ P : t  is a well-typed program, then either: 
     (a)       the program terminates in a well-defined way,  or 

 (b)   the program continues computing forever 



TYPES, MORE GENERALLY 
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�
Beyond describing “structure”… describing “properties” 
Types as sets 
Subsumption�
 
 



Tuples 
•  ML-style tuples with statically known number of products: 
•  First: add a new type constructor:  T1 * … * Tn 
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E ⊢ e1 : T1    …    E ⊢ en : Tn 
 

E ⊢ (e1, …, en) : T1 * … * Tn  

TUPLE 

E ⊢ e : T1 * … * Tn    1 ≤ i ≤ n 
 

E ⊢ #i e  :  Ti 

PROJ 



References 
•  ML-style references (note that ML uses only expressions) 
•  First, add a new type constructor: T ref 
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E ⊢ e : T 
 

E ⊢ ref e : T ref  

REF 

E ⊢ e : T ref 
 

E ⊢ !e  : T  

DEREF 

Note the similarity with the 
rules for arrays… E ⊢ e1 : T ref    E ⊢ e2 : T 

 
E ⊢ e1 := e2  : unit  

ASSIGN 



Arrays 
•  Array constructs are not hard either, here is one possibility 
•  First: add a new type constructor:  T[] 
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E ⊢ e1 : int    
 

E ⊢ new T[e1] : T[]  

NEW e1 is the size of the newly 
allocated array. 

E ⊢ e1 : T[]    E ⊢ e2 : int 
 

E ⊢ e1[e2]  : T  

INDEX 

Note:  These rules don’t 
ensure that the array index 
is in bounds – that should 
be checked dynamically. E ⊢ e1 : T[]    E ⊢ e2 : int   E ⊢ e3 : T 

 
E ⊢ e1[e2] = e3 ok  

UPDATE 



NULL 
•  What is the type of null? 
•  Consider:�

  int[] a = null; // OK?  
int x   = null;   // not OK?  

 string s = null; // OK?
  

      E ⊢ null : r 

•  Null has any reference type 
–  Null is generic 

•  What about type safety? 
–  Requires defined behavior when dereferencing null�

e.g.  Java's NullPointerException 
–  Requires a safety check for every dereference operation�

(typically implemented using low-level hardware "trap" mechanisms.) 
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NULL 



Recursive Definitions 
•  Consider the ML factorial function: 

let rec fact (x:int) : int = 
   if (x == 0) 1 else x * fact(x-1)

•  Note that the function name fact appears inside the body of fact’s 
definition! 

•  To typecheck the body of fact, we must assume that the type of fact is 
already known. 

                       
      

•  In general: Collect the names and types of all mutually recursive 
definitions, add them all to the context E before checking any of the 
definition bodies. 

•  Often useful to separate the “global context” from the “local context” 
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E, fact : int -> int, x : int  ⊢ ebody : int 
 

E ⊢ int fact(int x) ( ebody) : int -> int 



What are types, anyway? 
•  A type is just a predicate on the set of values in a system. 

–  For example, the type “int” can be thought of as a boolean function that 
returns “true” on integers and “false” otherwise. 

–  Equivalently, we can think of a type as just a subset of all values. 

•  For efficiency and tractability, the predicates are usually taken to be 
very simple. 
–  Types are an abstraction mechanism 

•  We can easily add new types that distinguish different subsets of 
values: 

type tp =
    | IntT                 (* type of integers *)
    | PosT | NegT | ZeroT  (* refinements of ints *)
    | BoolT                (* type of booleans *)
    | TrueT | FalseT       (* subsets of booleans *)
    | AnyT                 (* any value *)
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Modifying the typing rules 
•  We need to refine the typing rules too… 
•  Some easy cases:    

–  Just split up the integers into their more refined cases: 

 

•  Same for booleans: 
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i > 0 
 

E ⊢ i : Pos 

P-INT 

i < 0 
 

E ⊢ i : Neg 

N-INT ZERO 

E ⊢ 0 : Zero 

TRUE 

E ⊢ true : True 

FALSE 

E ⊢ false : False 



What about “if”? 
•  Two cases are easy: 

•  What happens when we don’t know statically which branch will be 
taken? 

•  Consider the typechecking problem:�
 

                                   x:bool ⊢ if (x) 3 else -1 : ? 
 
•  The true branch has type Pos  and the false branch has type Neg. 

–  What should be the result type of the whole if? 
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E ⊢ e1 : True   E ⊢ e2 : T   
 

E ⊢ if (e1) e2 else e3 : T  

E ⊢ e1 : False   E ⊢ e3 : T   
 

E ⊢ if (e1) e2 else e3 : T  

IF-T IF-F 



Subtyping and Upper Bounds 
•  If we think of types as sets of values, we have a natural inclusion 

relation:   Pos ⊆ Int 
•  This subset relation gives rise to a subtype relation:  Pos <: Int 
•  Such inclusions give rise to a subtyping hierarchy: 

•  Given any two types T1 and T2, we can calculate their least upper 
bound (LUB) according to the hierarchy. 
–  Example:  LUB(True, False) = Bool,  LUB(Int, Bool) = Any 
–  Note: might want to add types for “NonZero”, “NonNegative”, and 

“NonPositive” so that set union on values corresponds to taking LUBs on 
types. 
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Any 

Int 

Neg Zero Pos 

Bool 

True False 

<: :> 

:>
 



“If” Typing Rule Revisited 
•  For statically unknown conditionals, we want the return value to be 

the LUB of the types of the branches: 

•  Note that LUB(T1, T2) is the most precise type (according to the 
hierarchy) that is able to describe any value that has either type T1 or 
type T2. 

•  In math notation, LUB(T1, T2) is sometimes written T1 ⋁  T2 
•  LUB is also called the join operation. 
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E ⊢ e1 : bool   E ⊢ e2 : T1    E ⊢ e3 : T2 
 

E ⊢ if (e1) e2 else e3 : LUB(T1,T2)  

IF-BOOL 



Subtyping Hierarchy 
•  A subtyping hierarchy: 

•  The subtyping relation is a partial order: 
–  Reflexive:  T <: T    for any type T 
–  Transitive:   T1 <: T2  and T2 <: T3 then T1 <: T3 

–  Antisymmetric:  It T1 <: T2 and T2 <: T1 then T1 = T2 
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Any 

Int 

Neg Zero Pos 

Bool 

True False 

<: :> 

:>
 



Soundness of Subtyping Relations 
•  We don’t have to treat every subset of the integers as a type. 

–  e.g., we left out the type NonNeg 

•  A subtyping relation T1 <: T2 is sound if it approximates the underlying 
semantic subset relation. 

•  Formally:  write ⟦T⟧ for the subset of (closed) values of type T 
–  i.e. ⟦T⟧ = {v | ⊢ v : T} 
–  e.g.   ⟦Zero⟧ = {0},  ⟦Pos⟧ = {1, 2, 3, …} 

•  If T1 <: T2 implies ⟦T1⟧ ⊆ ⟦T2⟧, then T1 <: T2 is sound. 
–  e.g.  Pos <: Int is sound, since {1,2,3,…} ⊆ {…,-3,-2,-1,0,1,2,3,...} 
–  e.g.  Int <: Pos is not sound, since it is not the case that 

{…,-3,-2,-1,0,1,2,3,...}⊆ {1,2,3,…} 
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Soundness of LUBs 
•  Whenever you have a sound subtyping relation, it follows that:    

     ⟦LUB(T1, T2)⟧ ⊇ ⟦T1⟧ ∪ ⟦T2⟧ 
–  Note that the LUB is an over approximation of the “semantic union” 
–  Example:   ⟦LUB(Zero, Pos)⟧ = ⟦Int⟧ = {…,-3,-2,-1,0,1,2,3,…} ⊇ 
     {0,1,2,3,…} = {0} ∪ {1,2,3,…} = ⟦Zero⟧ ∪ ⟦Pos⟧ 
 

•  Using LUBs in the typing rules yields sound approximations of the 
program behavior (as if the IF-B rule). 

•  It just so happens that LUBs on types <: Int correspond to +   
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E ⊢ e1 : T1   E ⊢ e2 : T2    T1 <: Int    T2 <: Int 
 

E ⊢ e1 + e2 : T1 ⋁ T2 

ADD 



Subsumption Rule 
•  When we add subtyping judgments of the form  T <: S we can 

uniformly integrate it into the type system generically: 

•  Subsumption allows any value of type T to be treated as an S 
whenever T <: S. 

•  Adding this rule makes the search for typing derivations more difficult 
– this rule can be applied anywhere, since T <: T. 
–  But careful engineering of the typing system can incorporate the 

subsumption rule into a deterministic algorithm.  
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E ⊢ e : T    T <: S 
 

E ⊢ e : S 

SUBSUMPTION 



Downcasting 
•  What happens if we have an Int but need something of type Pos? 

–  At compile time, we don’t know whether the Int is greater than zero. 
–  At run time, we do. 

•  Add a “checked downcast” 

•  At runtime, ifPos checks whether e1 is > 0.  If so, branches to e2 and 
otherwise branches to e3. 

•  Inside the expression e2, x is the name for e1’s value, which is known 
to be strictly positive because of the dynamic check. 

•  Note that such rules force the programmer to add the appropriate 
checks 
–  We could give integer division the type:   Int -> NonZero -> Int 
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E ⊢ e1 : Int      E, x : Pos ⊢ e2 : T2      E ⊢ e3 : T3    
�

E ⊢ ifPos (x = e1) e2 else e3 : T2 ⋁ T3 


