
CIS 341: COMPILERS
Lecture 19

Announcements / Plan

•  HW5: OAT – typechecking, structs, function pointers
–  Due: Thursday, April 13

•  HW6: LLVM Optimization: analysis and register allocation
–  Due: Wednesday, April 26

•  FINAL EXAM: Thursday, May 4th noon – 2:00p.m.

Zdancewic CIS 341: Compilers 2

As always, start early!

SUBTYPING OTHER TYPES

Zdancewic CIS 341: Compilers 3

�

Subtyping and Upper Bounds
•  If we think of types as sets of values, we have a natural inclusion

relation: Pos ⊆ Int
•  This subset relation gives rise to a subtype relation: Pos <: Int
•  Such inclusions give rise to a subtyping hierarchy:

•  Given any two types T1 and T2, we can calculate their least upper
bound (LUB) according to the hierarchy.
–  Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any
–  Note: might want to add types for “NonZero”, “NonNegative”, and

“NonPositive” so that set union on values corresponds to taking LUBs on
types.

CIS 341: Compilers 4

Any

Int

Neg Zero Pos

Bool

True False

<: :>

:>

“If” Typing Rule Revisited
•  For statically unknown conditionals, we want the return value to be

the LUB of the types of the branches:

•  Note that LUB(T1, T2) is the most precise type (according to the
hierarchy) that is able to describe any value that has either type T1 or
type T2.

•  In math notation, LUB(T1, T2) is sometimes written T1 ⋁ T2
•  LUB is also called the join operation.

CIS 341: Compilers 5

E ⊢ e1 : bool E ⊢ e2 : T1 E ⊢ e3 : T2

E ⊢ if (e1) e2 else e3 : LUB(T1,T2)

IF-BOOL

Subtyping Hierarchy
•  A subtyping hierarchy:

•  The subtyping relation is a partial order:
–  Reflexive: T <: T for any type T
–  Transitive: T1 <: T2 and T2 <: T3 then T1 <: T3

–  Antisymmetric: It T1 <: T2 and T2 <: T1 then T1 = T2

CIS 341: Compilers 6

Any

Int

Neg Zero Pos

Bool

True False

<: :>

:>

Downcasting
•  What happens if we have an Int but need something of type Pos?

–  At compile time, we don’t know whether the Int is greater than zero.
–  At run time, we do.

•  Add a “checked downcast”

•  At runtime, ifPos checks whether e1 is > 0. If so, branches to e2 and
otherwise branches to e3.

•  Inside the expression e2, x is the name for e1’s value, which is known
to be strictly positive because of the dynamic check.

•  Note that such rules force the programmer to add the appropriate
checks
–  We could give integer division the type: Int -> NonZero -> Int

CIS 341: Compilers 7

E ⊢ e1 : Int E, x : Pos ⊢ e2 : T2 E ⊢ e3 : T3
�

E ⊢ ifPos (x = e1) e2 else e3 : T2 ⋁ T3

Extending Subtyping to Other Types
•  What about subtyping for tuples?

–  Intuition: whenever a program expects�
something of type S1 * S2, it is sound �
to give it a T1 * T2.

–  Example: (Pos * Neg) <: (Int * Int)

•  What about functions?

•  When is T1 -> T2 <: S1 -> S2 ?

CIS 341: Compilers 8

T1 <: S1 T2 <: S2

(T1 * T2) <: (S1 * S2)

Subtyping for Function Types
•  One way to see it:

•  Need to convert an S1 to a T1 and T2 to S2, so the argument type is
contravariant and the output type is covariant.

CIS 341: Compilers 9

Expected function

Actual function S1 S2 T1 T2

S1 <: T1 T2 <: S2

(T1 -> T2) <: (S1 -> S2)

Immutable Records
•  Record type: {lab1:T1; lab2:T2; … ; labn:Tn}

–  Each labi is a label drawn from a set of identifiers.

CIS 341: Compilers 10

E ⊢ e1 : T1 E ⊢ e2 : T2 … E ⊢ en : Tn

E ⊢ {lab1 = e1; lab2 = e2; … ; labn = en} : {lab1:T1; lab2:T2; … ; labn:Tn}

RECORD

E ⊢ e : {lab1:T1; lab2:T2; … ; labn:Tn}

E ⊢ e.labi : Ti

PROJECTION

Immutable Record Subtyping
•  Depth subtyping:

–  Corresponding fields may be subtypes

•  Width subtyping:
–  Subtype record may have more fields:

CIS 341: Compilers 11

T1 <: U1 T2 <: U2 … Tn <: Un

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:U1; lab2:U2; … ; labn:Un}

DEPTH

m ≤ n

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:T1; lab2:T2; … ; labm:Tm}

WIDTH

Depth & Width Subtyping vs. Layout
•  Width subtyping (without depth) is compatible with "inlined" record

representation as with C structs:�
�
{x:int; y:int; z:int} <: {x:int; y:int}
[Width Subtyping]

–  The layout and underlying field indices for 'x' and 'y' are identical.
–  The 'z' field is just ignored

•  Depth subtyping (without width) is similarly compatible, assuming
that the space used by A is the same as the space used by B whenever
A <: B

•  But… they don't mix without

Zdancewic CIS 341: Compilers 12

x y z x y

Immutable Record Subtyping (cont’d)
•  Width subtyping assumes an implementation in which order of fields

in a record matters:�
 {x:int; y:int} ≠ {y:int; x:int}

•  But: {x:int; y:int; z:int} <: {x:int; y:int}
–  Implementation: a record is a struct, subtypes just add fields at the end of

the struct.

•  Alternative: allow permutation of record fields:�
 {x:int; y:int} = {y:int; x:int}
–  Implementation: compiler sorts the fields before code generation.
–  Need to know all of the fields to generate the code

•  Permutation is not directly compatible with width subtyping:
 {x:int; z:int; y:int} = �
 {x:int; y:int; z:int} </: {y:int; z:int}

CIS 341: Compilers 13

If you want both:
•  If you want permutability & dropping, you need to either copy (to

rearrange the fields) or use a dictionary like this:

p = {x=42; y=55; z=66}  
 : {x:int; y:int; z:int}

q : {y:int; z:int}

x y z

42 55 66

y z

dictionary

dictionary

Subtyping and References
•  What is the proper subtyping relationship for references and arrays?

•  Suppose we have NonZero as a type and the division operation has
type: Int -> NonZero -> Int
–  Recall that NonZero <: Int

•  Should (NonZero ref) <: (Int ref) ?
•  Consider this program:

Int bad(NonZero ref r) {
 Int ref a = r; (* OK because (NonZero ref <: Int ref*)
 a := 0; (* OK because 0 : Zero <: Int *)
 return (42 / !r) (* OK because !r has type NonZero *)
}

CIS 341: Compilers 15

Mutable Structures are Invariant
•  Covariant reference types are unsound

–  As demonstrated in the previous example

•  Contravariant reference types are also unsound
–  i.e. If T1 <: T2 then ref T2 <: ref T1 is also unsound
–  Exercise: construct a program that breaks contravariant references.

•  Moral: Mutable structures are invariant: �
 T1 ref <: T2 ref implies T1 = T2

•  Same holds for arrays, OCaml-style mutable records, object fields, etc.
–  Java generics are invariant for this reason too: �

Queue<String> </: Queue<Object>�

–  Note: Java and C# get subtyping of arrays wrong. They allows covariant
array subtyping, but then compensate by adding a dynamic check on
every array update!

CIS 341: Compilers 16

Another Way to See It
•  We can think of a reference cell as an immutable record (object) with

two functions (methods) and some hidden state:�
 T ref ≃ {get: unit -> T; set: T -> unit}
–  get returns the value hidden in the state.
–  set updates the value hidden in the state.

•  When is T ref <: S ref?
•  Consider depth subtyping of these records…
 {get: unit -> T; set: T -> unit} <: �
 {get: unit -> S; set: S -> unit}

–  get components are subtypes: unit -> T <: unit -> S�
 set components are subtypes: T -> unit <: S -> unit

•  From get, we must have T <: S (covariant return)
•  From set, we must have S <: T (contravariant arg.)
•  From T <: S and S <: T we conclude T = S.

CIS 341: Compilers 17

STRUCTURAL VS. NOMINAL
TYPES

Zdancewic CIS 341: Compilers 18

�

Structural vs. Nominal Typing
•  Is type equality / subsumption defined by the structure of the data or the

name of the data?
•  Example 1: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

•  Type abbreviations are treated “structurally”�
Newtypes are treated “by name”

Zdancewic CIS 341: Compilers 19

(* OCaml: *)
type cents = int (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + y

(* Haskell: *)
newtype Cents = Cents Integer (* Integer and Cents arr  
 isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo x y = x + y (* Ill typed! *)

Nominal Subtyping in Java
•  In Java, Classes and Interfaces must be named and their relationships

explicitly declared:

•  Similarly for inheritance: programmers must declare the subclass
relation via the “extends” keyword.
–  Typechecker still checks that the classes are structurally compatible

Zdancewic CIS 341: Compilers 20

(* Java: *)
interface Foo {
 int foo();
}

class C { /* Does not implement the Foo interface */
 int foo() {return 2;}
}

class D implements Foo {
 int foo() {return 341;}
}

COMPILING CLASSES AND
OBJECTS

Zdancewic CIS 341: Compilers 21

�

Code Generation for Objects
•  Classes:

–  Generate data structure types
•  For objects that are instances of the class and for the class tables

–  Generate the class tables for dynamic dispatch

•  Methods:
–  Method body code is similar to functions/closures
–  Method calls require dispatch

•  Fields:
–  Issues are the same as for records
–  Generating access code

•  Constructors:
–  Object initialization

•  Dynamic Types:
–  Checked downcasts
–  “instanceof” and similar type dispatch

CIS 341: Compilers 22

Multiple Implementations
•  The same interface can be implemented by multiple classes:

CIS 341: Compilers 23

interface IntSet {
 public IntSet insert(int i);
 public boolean has(int i);
 public int size();
}

class IntSet1 implements IntSet {
 private List<Integer> rep;
 public IntSet1() {
 rep = new LinkedList<Integer>();}

 public IntSet1 insert(int i) {
rep.add(new Integer(i));

 return this;}

 public boolean has(int i) {
 return rep.contains(new Integer(i));}

 public int size() {return rep.size();}
}

class IntSet2 implements IntSet {
 private Tree rep;
 private int size;
 public IntSet2() {
 rep = new Leaf(); size = 0;}

 public IntSet2 insert(int i) {
Tree nrep = rep.insert(i);

 if (nrep != rep) {
 rep = nrep; size += 1;
 }

return this;}

 public boolean has(int i) {
return rep.find(i);}

 public int size() {return size;}
}

The Dispatch Problem
•  Consider a client program that uses the IntSet interface:

IntSet set = …;
int x = set.size();

•  Which code to call?
–  IntSet1.size ?
–  IntSet2.size ?

•  Client code doesn’t know the answer.
–  So objects must “know” which code to call.
–  Invocation of a method must indirect through the object.

CIS 341: Compilers 24

Compiling Objects
•  Objects contain a pointer to a

dispatch vector (also called a
virtual table or vtable) with
pointers to method code.

•  Code receiving set:IntSet
only knows that set has an
initial dispatch vector pointer
and the layout of that vector.

CIS 341: Compilers 25

rep:List

IntSet1.insert

IntSet1.has

IntSet1.size

rep:Tree

size:int

IntSet2.insert

IntSet2.has

IntSet2.size

IntSet1
Dispatch Vector

IntSet2
Dispatch Vector

set

IntSet

?

?.insert

?.has

?.size

Dispatch Vector

Method Dispatch (Single Inheritance)
•  Idea: every method has its own small integer index.
•  Index is used to look up the method in the dispatch vector.

CIS 341: Compilers 26

interface A {
 void foo();
}

interface B extends A {
 void bar(int x);
 void baz();
}

class C implements B {
 void foo() {…}
 void bar(int x) {…}
 void baz() {…}
 void quux() {…}
}

Index

0

1
2

0
1
2
3

Inheritance / Subtyping:
C <: B <: A

Dispatch Vector Layouts
•  Each interface and class gives rise to a dispatch vector layout.
•  Note that inherited methods have identical dispatch indices in the

subclass. (Width subtyping)

CIS 341: Compilers 27

A

A fields

foo
Dispatch Vector

B

B fields

foo

bar

baz

Dispatch Vector

C

C fields

foo

bar

baz

quux

Dispatch Vector

Representing Classes in the LLVM
•  During typechecking, create a class hierarchy

–  Maps each class to its interface:
•  Superclass
•  Constructor type
•  Fields

•  Method types (plus whether they inherit & which class they inherit from)

•  Compile the class hierarchy to produce:
–  An LLVM IR struct type for each object instance
–  An LLVM IR struct type for each vtable (a.k.a. class table)
–  Global definitions that implement the class tables

Zdancewic CIS 341: Compilers 28

Example OO Code

Zdancewic CIS 341: Compilers 29

class A {
 new (int x)() // constructor
 { int x = x; }

 void print() { return; } // method1
 int blah(A a) { return 0; } // method2

}

class B <: A {
 new (int x, int y, int z)(x){
 int y = y;
 int z = z;
 }

 void print() { return; } // overrides A
}

class C <: B {
 new (int x, int y, int z, int w)(x,y,z){
 int w = w;
 }

 void foo(int a, int b) {return;}
 void print() {return;} // overrides B
}

Example OO Hierarchy in LLVM

Zdancewic CIS 341: Compilers 30

%Object = type { %_class_Object* }
%_class_Object = type { }

%A = type { %_class_A*, i64 }
%_class_A = type { %_class_Object*, void (%A*)*, i64 (%A*, %A*)* }

%B = type { %_class_B*, i64, i64, i64 }
%_class_B = type { %_class_A*, void (%B*)*, i64 (%A*, %A*)* }

%C = type { %_class_C*, i64, i64, i64, i64 }
%_class_C = type { %_class_B*, void (%C*)*, i64 (%A*, %A*)*, void (%C*, i64, i64)* }

@_vtbl_Object = global %_class_Object { }

@_vtbl_A = global %_class_A { %_class_Object* @_vtbl_Object,
 void (%A*)* @print_A,
 i64 (%A*, %A*)* @blah_A }

@_vtbl_B = global %_class_B { %_class_A* @_vtbl_A,
 void (%B*)* @print_B,
 i64 (%A*, %A*)* @blah_A }

@_vtbl_C = global %_class_C { %_class_B* @_vtbl_B,
 void (%C*)* @print_C,
 i64 (%A*, %A*)* @blah_A,
 void (%C*, i64, i64)* @foo_C }

