
CIS 341: COMPILERS
Lecture 22

Announcements / Plan

•  HW5: OAT – typechecking, structs, function pointers
–  Due: TONIGHT!

•  HW6: LLVM Optimization: analysis and register allocation
–  Available soon
–  Due: Wednesday, April 26

•  FINAL EXAM: Thursday, May 4th noon – 2:00p.m.

Zdancewic CIS 341: Compilers 2

When to apply optimization
•  Inlining
•  Function specialization
•  Constant folding
•  Constant propagation
•  Value numbering
•  Dead code elimination
•  Loop-invariant code motion
•  Common sub-expression elimination
•  Strength Reduction
•  Constant folding & propagation
•  Branch prediction / optimization
•  Register allocation
•  Loop unrolling
•  Cache optimization

CIS 341: Compilers 3

Assembly

Abstract assembly

Canonical IR

IR

AST

H
ig

h
le

ve
l

M
id

 le
ve

l
Lo

w
 le

ve
l

Constant Propagation
•  If the value is known to be a constant, replace the use of the variable

by the constant
•  Value of the variable must be propagated forward from the point of

assignment
–  This is a substitution operation

•  Example:
int x = 5;
int y = x * 2; è int y = 5 * 2; è int y = 10; è
int z = a[y]; int z = a[y]; int z = a[y]; int z = a[10];

•  To be most effective, constant propagation should be interleaved with
constant folding

CIS 341: Compilers 4

Copy Propagation
•  If one variable is assigned to another, replace uses of the assigned

variable with the copied variable.
•  Need to know where copies of the variable propagate.
•  Interacts with the scoping rules of the language.

•  Example:
x = y; x = y;
if (x > 1) { è if (y > 1) {
 x = x * f(x – 1); x = y * f(y – 1);
} }

•  Can make the first assignment to x dead code (that can be eliminated).

CIS 341: Compilers 5

Dead Code Elimination
•  If a side-effect free statement can never be observed, it is safe to

eliminate the statement.

x = y * y // x is dead!
… // x never used è …
x = z * z x = z * z

•  A variable is dead if it is never used after it is defined.
–  Computing such definition and use information is an important

component of compiler

•  Dead variables can be created by other optimizations…

CIS 341: Compilers 6

Unreachable/Dead Code
•  Basic blocks not reachable by any trace leading from the starting basic

block are unreachable and can be deleted.
–  Performed at the IR or assembly level
–  Improves cache, TLB performance

•  Dead code: similar to unreachable blocks.
–  A value might be computed but never subsequently used.

•  Code for computing the value can be dropped
•  But only if it’s pure, i.e. it has no externally visible side effects

–  Externally visible effects: raising an exception, modifying a global
variable, going into an infinite loop, printing to standard output, sending a
network packet, launching a rocket

–  Note: Pure functional languages (e.g. Haskell) make reasoning about the
safety of optimizations (and code transformations in general) easier!

CIS 341: Compilers 7

Inlining
•  Replace a call to a function with the body of the function itself with

arguments rewritten to be local variables:
•  Example in OAT code:
int g(int x) { return x + pow(x); }
int pow(int a) { var b = 1; var n = 0;
 while (n < a) {b = 2 * b}; return b; }

è

int g(int x) { var a = x; var b = 1; var n = 0;  

 while (n < a) {b = 2 * b}; var tmp = b;  
 return x + tmp;

}
•  May need to rename variable names to avoid name capture

–  Example of what can go wrong?
•  Best done at the AST or relatively high-level IR.
•  When is it profitable?

–  Eliminates the stack manipulation, jump, etc.
–  Can increase code size.
–  Enables further optimizations

CIS 341: Compilers 8

Code Specialization
•  Idea: create specialized versions of a function that is called from

different places with different arguments.
•  Example: specialize function f in:
class A implements I { int m() {…} }
class B implements I { int m() {…} }
int f(I x) { x.m(); } // don’t know which m
A a = new A(); f(a); // know it’s A.m
B b = new B(); f(b); // know it’s B.m

•  f_A would have code specialized to dispatch to A.m
•  f_B would have code specialized to dispatch to B.m
•  You can also inline methods when the run-time type is known

statically
–  Often just one class implements a method.

CIS 341: Compilers 9

Common Subexpression Elimination
•  In some sense it’s the opposite of inlining: fold redundant

computations together
•  Example:

a[i] = a[i] + 1 compiles to:
[a + i*4] = [a + i*4] + 1
Common subexpression elimination removes the redundant add and

multiply:
t = a + i*4; [t] = [t] + 1

•  For safety, you must be sure that the shared expression always has the
same value in both places!

CIS 341: Compilers 10

Unsafe Common Subexpression Elimination
•  Example: consider this OAT function:
unit f(int[] a, int[] b, int[] c) {

var j = …; var i = …; var k = …;
b[j] = a[i] + 1; c[k] = a[i]; return;

}

•  The following optimization that shares the expression a[i] is
unsafe… why?

unit f(int[] a, int[] b, int[] c) {
var j = …; var i = …; var k = …;

 t = a[i];
b[j] = t + 1; c[k] = t; return;

}

CIS 341: Compilers 11

LOOP OPTIMIZATIONS

Zdancewic CIS 341: Compilers 12

�

Loop Optimizations
•  Program hot spots often occur in loops.

–  Especially inner loops
–  Not always: consider operating systems code or compilers vs. a computer

game or word processor

•  Most program execution time occurs in loops.
–  The 90/10 rule of thumb holds here too. (90% of the execution time is

spent in 10% of the code)

•  Loop optimizations are very important, effective, and numerous
–  Also, concentrating effort to improve loop body code is usually a win

CIS 341: Compilers 13

Loop Invariant Code Motion
•  Another form of redundancy elimination.
•  If the result of a statement or expression does not change during the

loop and it’s pure, it can be hoisted outside the loop body.
•  Often useful for array element addressing code

–  Invariant code not visible at the source level

for (i = 0; i < a.length; i++) {
 /* a not modified in the body */
}

t = a.length;
for (i =0; i < t; i++) {
 /* same body as above */
}

CIS 341: Compilers 14

Hoisted loop-
invariant

expression

Strength Reduction (revisited)
•  Strength reduction can work for loops too
•  Idea: replace expensive operations (multiplies, divides) by cheap ones

(adds and subtracts)
•  For loops, create a dependent induction variable:

•  Example:
for (int i = 0; i<n; i++) { a[i*3] = 1; } �

// stride by 3

int j = 0;
for (int i = 0; i<n; i++) {
 a[j] = 1;
 j = j + 3; // replace multiply by add
}

CIS 341: Compilers 15

Loop Unrolling (revisited)
•  Branches can be expensive, unroll loops to avoid them.
for (int i=0; i<n; i++) { S }

for (int i=0; i<n-3; i+=4) {S;S;S;S};
for (; i<n; i++) { S } // left over iterations

•  With k unrollings, eliminates (k-1)/k conditional branches

–  So for the above program, it eliminates ¾ of the branches

•  Space-time tradeoff:
–  Not a good idea for large S or small n

•  Interacts with instruction caching, branch prediction

CIS 341: Compilers 16

EFFECTIVENESS?

Zdancewic CIS 341: Compilers 17

�

Optimization Effectiveness?

Zdancewic CIS 341: Compilers 18

0%
50%

100%
150%
200%
250%
300%

sp
ee

du
p

ov
er

 L
LV

M
-O

0

LLVM-mem2reg LLVM-O1
LLVM-O3 GCC-O3

go
compress ijpeg gzip vpr

mesa art
ammp

equake
parser

twolf bzip2 mcf
hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

Graph taken from:
Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.�
Formal Verification of SSA-Based Optimizations for LLVM.
In Proc. 2013 ACM SIGPLAN Conference on Programming Languages Design and Implementation (PLDI), 2013

%speedup =
base time

optimized time
- 1 x 100%

Example:
 base time = 1.2s
 optimized time = 0.87s ⇒ 38% speedup

Example:
 base time = 2s
 optimized time = 1s ⇒ 100% speedup

Optimization Effectiveness?

•  mem2reg: promotes alloca’ed stack slots to temporaries to enable register
allocation

•  Analysis:
–  mem2reg alone (+ back-end optimizations like register allocation) yields

~78% speedup on average
–  -O1 yields ~100% speedup �

 (so all the rest of the optimizations combined account for ~22%)
–  -O3 yields ~120% speedup

•  Hypothetical program that takes 10 sec. (base time):
–  Mem2reg alone: expect ~5.6 sec
–  -O1: expect ~5 sec
–  -O3: expect ~4.5 sec

Zdancewic CIS 341: Compilers 19

0%
50%

100%
150%
200%
250%
300%

sp
ee

du
p

ov
er

 L
LV

M
-O

0

LLVM-mem2reg LLVM-O1
LLVM-O3 GCC-O3

go
compress ijpeg gzip vpr

mesa art
ammp

equake
parser

twolf bzip2 mcf
hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

CODE ANALYSIS

Zdancewic CIS 341: Compilers 20

�

Motivating Code Analyses
•  There are lots of things that might influence the safety/applicability of

an optimization
–  What algorithms and data structures can help?

•  How do you know what is a loop?
•  How do you know an expression is invariant?
•  How do you know if an expression has no side effects?
•  How do you keep track of where a variable is defined?
•  How do you know where a variable is used?
•  How do you know if two reference values may be aliases of one

another?

CIS 341: Compilers 21

Moving Towards Register Allocation
•  The OAT compiler currently generates as many temporary variables as

it needs
–  These are the %uids you should be very familiar with by now.

•  Current compilation strategy:
–  Each %uid maps to a stack location.
–  This yields programs with many loads/stores to memory.
–  Very inefficient.

•  Ideally, we’d like to map as many %uid’s as possible into registers.
–  Eliminate the use of the alloca instruction?
–  Only 16 max registers available on 64-bit X86
–  %rsp and %rbp are reserved and some have special semantics, so really

only 10 or 12 available
–  This means that a register must hold more than one slot

•  When is this safe?

CIS 341: Compilers 22

Liveness
•  Observation: %uid1 and %uid2 can be assigned to the same register

if their values will not be needed at the same time.
–  What does it mean for an %uid to be “needed”?
–  Ans: its contents will be used as a source operand in a later instruction.

•  Such a variable is called “live”
•  Two variables can share the same register if they are not live at the

same time.

CIS 341: Compilers 23

Scope vs. Liveness
•  We can already get some coarse liveness information from variable

scoping.
•  Consider the following OAT program:

int f(int x) {
 var a = 0;
 if (x > 0) {
 var b = x * x;
 a = b + b;
 }
 var c = a * x;
 return c;

}

•  Note that due to OAT’s scoping rules, variables b and c can never be live

at the same time.
–  c’s scope is disjoint from b’s scope

•  So, we could assign b and c to the same alloca’ed slot and potentially to
the same register.

CIS 341: Compilers 24

But Scope is too Coarse
•  Consider this program:
int f(int x) {
 int a = x + 2;
 int b = a * a;
 int c = b + x;
 return c;
}

•  The scopes of a,b,c,x all overlap – they’re all in scope at the end of the

block.
•  But, a, b, c are never live at the same time.

–  So they can share the same stack slot / register

CIS 341: Compilers 25

x is live

a and x are live

b and x are live

c is live

Live Variable Analysis
•  A variable v is live at a program point if v is defined before the

program point and used after it.
•  Liveness is defined in terms of where variables are defined and where

variables are used

•  Liveness analysis: Compute the live variables between each statement.
–  May be conservative (i.e. it may claim a variable is live when it isn’t) so

because that’s a safe approximation
–  To be useful, it should be more precise than simple scoping rules.

•  Liveness analysis is one example of dataflow analysis
–  Other examples: Available Expressions, Reaching Definitions, Constant-

Propagation Analysis, …

CIS 341: Compilers 26

Control-flow Graphs Revisited
•  For the purposes of dataflow analysis, we use the control-flow graph (CFG)

intermediate form.
•  Recall that a basic block is a sequence of instructions such that:

–  There is a distinguished, labeled entry point (no jumps into the middle of a basic block)
–  There is a (possibly empty) sequence of non-control-flow instructions
–  The block ends with a single control-flow instruction (jump, conditional branch, return,

etc.)

•  A control flow graph
–  Nodes are blocks
–  There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the

entry label of B2
–  There are no “dangling” edges – there is a block for every jump target.

•  Note: the following slides are intentionally a bit ambiguous about the exact nature
of the code in the control flow graphs:
–  at the x86 assembly level
–  an “imperative” C-like source level
–  at the LLVM IR level
–  Same general idea, but the exact details will differ

•  e.g. LLVM IR doesn’t have “imperative” update of %uid temporaries.
•  In fact, the SSA structure of the LLVM IR makes some of these analyses simpler.

CIS 341: Compilers 27

Dataflow over CFGs
•  For precision, it is helpful to think of the “fall through” between

sequential instructions as an edge of the control-flow graph too.
–  Different implementation tradeoffs in practice…

CIS 341: Compilers 28

Move

Binop

If

Unop

Jump

Move

Binop

If

Unop

Jump

Basic block CFG

“Exploded” CFG

Fall-through edges

in-edges

out-edges

Instr

Liveness is Associated with Edges

•  This is useful so that the same register can be used for different

temporaries in the same statement.
•  Example: a = b + 1

•  Compiles to: �

CIS 341: Compilers 29

Instr

Live: a, b

Live: b, d, e

Mov a, b

Add a, 1

Live: b

Live: a

Live: a (maybe)

Mov eax, eax

Add eax, 1

Register Allocate:
a à eax, b à eax

Uses and Definitions
•  Every instruction/statement uses some set of variables

–  i.e. reads from them

•  Every instruction/statement defines some set of variables
–  i.e. writes to them

•  For a node/statement s define:
–  use[s] : set of variables used by s
–  def[s] : set of variables defined by s

•  Examples:
–  a = b + c use[s] = {b,c} def[s] = {a}
–  a = a + 1 use[s] = {a} def[s] = {a}

CIS 341: Compilers 30

Liveness, Formally
•  A variable v is live on edge e if:�

There is
–  a node n in the CFG such that use[n] contains v, and
–  a directed path from e to n such that for every statement s’ on the path,

def[s’] does not contain v

•  The first clause says that v will be used on some path starting from
edge e.

•  The second clause says that v won’t be redefined on that path before
the use.

•  Questions:
–  How to compute this efficiently?
–  How to use this information (e.g. for register allocation)?
–  How does the choice of IR affect this? (e.g. LLVM IR uses SSA, so it

doesn’t allow redefinition ⇒ simplify liveness analysis)

CIS 341: Compilers 31

Simple, inefficient algorithm
•  “A variable v is live on an edge e if there is a node n in the CFG using

it and a directed path from e to n pasing through no def of v.”

•  Backtracking Algorithm:
–  For each variable v…
–  Try all paths from each use of v, tracing backwards through the control-

flow graph until either v is defined or a previously visited node has been
reached.

–  Mark the variable v live across each edge traversed.

•  Inefficient because it explores the same paths many times �
(for different uses and different variables)

CIS 341: Compilers 32

Dataflow Analysis
•  Idea: compute liveness information for all variables simultaneously.

–  Keep track of sets of information about each node

•  Approach: define equations that must be satisfied by any liveness
determination.
–  Equations based on “obvious” constraints.

•  Solve the equations by iteratively converging on a solution.
–  Start with a “rough” approximation to the answer
–  Refine the answer at each iteration
–  Keep going until no more refinement is possible: a fixpoint has been

reached

•  This is an instance of a general framework for computing program
properties: dataflow analysis

CIS 341: Compilers 33

Dataflow Value Sets for Liveness
•  Nodes are program statements, so:
•  use[n] : set of variables used by n
•  def[n] : set of variables defined by n
•  in[n] : set of variables live on entry to n
•  out[n] : set of variables live on exit from n

•  Associate in[n] and out[n] with the “collected”�
information about incoming/outgoing edges

•  For Liveness: what constraints are there �
among these sets?

•  Clearly:�
 in[n] ⊇ use[n]

•  What other constraints?

CIS 341: Compilers 34

n

n

in[n]

out[n]

Other Dataflow Constraints
•  We have: in[n] ⊇ use[n]

–  “A variable must be live on entry to n if it is used by n”

•  Also: in[n] ⊇ out[n] - def[n]
–  “If a variable is live on exit from n, and n doesn’t�

define it, it is live on entry to n”
–  Note: here ‘-’ means “set difference”

•  And: out[n] ⊇ in[n’] if n’ ∈ succ[n]
–  “If a variable is live on entry to a successor �

node of n, it must be live on exit from n.”

CIS 341: Compilers 35

n

in[n]

out[n]

Iterative Dataflow Analysis
•  Find a solution to those constraints by starting from a rough guess.
•  Start with: in[n] = Ø and out[n] = Ø
•  They don’t satisfy the constraints:

–  in[n] ⊇ use[n]
–  in[n] ⊇ out[n] - def[n]
–  out[n] ⊇ in[n’] if n’ ∈ succ[n]

•  Idea: iteratively re-compute in[n] and out[n] where forced to by the
constraints.
–  Each iteration will add variables to the sets in[n] and out[n] �

(i.e. the live variable sets will increase monotonically)

•  We stop when in[n] and out[n] satisfy these equations:�
 (which are derived from the constraints above)
–  in[n] = use[n] ∪ (out[n] - def[n])

–  out[n] = ∪n’∈succ[n]in[n’]

CIS 341: Compilers 36

Complete Liveness Analysis Algorithm
for all n, in[n] := Ø, out[n] := Ø
repeat until no change in ‘in’ and ‘out’

 for all n

 out[n] := ∪n’∈succ[n]in[n’]

 in[n] := use[n] ∪ (out[n] - def[n])
 end

end

•  Finds a fixpoint of the in and out equations.

–  The algorithm is guaranteed to terminate… Why?

•  Why do we start with Ø?

CIS 341: Compilers 37

Example Liveness Analysis
•  Example flow graph:

CIS 341: Compilers

e = 1

if x > 0

ret x z = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e�
use:

e = 1;
while(x>0) {
 z = e * e;  
 y = e * x;
 x = x – 1;
 if (x & 1) {
 e = z;
 } else {
 e = y;
 }
}
return x;

x = x - 1

def: �
use: x

6

def: �
use: x

def: z �
use: e

def: y�
use: e,x

def: x �
use: x

def: �
use: x

def: e �
use: z

def: e �
use: y

9

4

in:

in:

in:

in:

in:

in:

in: in:

in:

out:

out:

out:

out:

out:

out: out:

out:

Example Liveness Analysis
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

•  Iteration 1:
in[2] = x�
in[3] = e�
in[4] = x
in[5] = e,x�
in[6] = x�
in[7] = x
in[8] = z
in[9] = y

(showing only updates�
that make a change)

CIS 341: Compilers

e = 1

if x > 0

ret x z = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e�
use:

x = x - 1

def: �
use: x

6

def: �
use: x

def: z �
use: e

def: y�
use: e,x

def: x �
use: x

def: �
use: x

def: e �
use: z

def: e �
use: y

9

4

in:

in: x

in: x

in: e,x

in: x

in: x

in: y in: z

in: e

out:

out:

out:

out:

out:

out: out:

out:

Example Liveness Analysis
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

•  Iteration 2:
out[1]= x
in[1] = x
out[2] = e,x�
in[2] = e,x�
out[3] = e,x�
in[3] = e,x�
out[5] = x�
out[6] = x�
out[7] = z,y�
in[7] = x,z,y
out[8] = x
in[8] = x,z
out[9] = x
in[9] = x,y

CIS 341: Compilers

e = 1

if x > 0

ret x z = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e�
use:

x = x - 1

def: �
use: x

6

def: �
use: x

def: z �
use: e

def: y�
use: e,x

def: x �
use: x

def: �
use: x

def: e �
use: z

def: e �
use: y

9

4

in: x

in: e,x

in: x

in: e,x

in: x

in: x,y,z

in: x,y in: x,z

in: e,x

out: x

out: e,x

out: e,x

out: x

out: x

out: x out: x

out: y,z

Example Liveness Analysis
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

•  Iteration 3:
out[1]= e,x
out[6]= x,y,z�
in[6]= x,y,z
out[7]= x,y,z
out[8]= e,x
out[9]= e,x

CIS 341: Compilers

e = 1

if x > 0

ret x z = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e�
use:

x = x - 1

def: �
use: x

6

def: �
use: x

def: z �
use: e

def: y�
use: e,x

def: x �
use: x

def: �
use: x

def: e �
use: z

def: e �
use: y

9

4

in: x

in: e,x

in: x

in: e,x

in: x,y,z

in: x,y,z

in: x,y in: x,z

in: e,x

out: e,x

out: e,x

out: e,x

out: x

out: x,y,z

out: e,x out: e,x

out: x,y,z

Example Liveness Analysis
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

•  Iteration 4:
out[5]= x,y,z�
in[5]= e,x,z

CIS 341: Compilers

e = 1

if x > 0

ret x z = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e�
use:

x = x - 1

def: �
use: x

6

def: �
use: x

def: z �
use: e

def: y�
use: e,x

def: x �
use: x

def: �
use: x

def: e �
use: z

def: e �
use: y

9

4

in: x

in: e,x

in: x

in: e,x,z

in: x,y,z

in: x,y,z

in: x,y in: x,z

in: e,x

out: e,x

out: e,x

out: e,x

out: x,y,z

out: x,y,z

out: e,x out: e,x

out: x,y,z

Example Liveness Analysis
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

•  Iteration 5:
out[3]= e,x,z

Done!

CIS 341: Compilers

e = 1

if x > 0

ret x z = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e�
use:

x = x - 1

def: �
use: x

6

def: �
use: x

def: z �
use: e

def: y�
use: e,x

def: x �
use: x

def: �
use: x

def: e �
use: z

def: e �
use: y

9

4

in: x

in: e,x

in: x

in: e,x,z

in: x,y,z

in: x,y,z

in: x,y in: x,z

in: e,x

out: e,x

out: e,x

out: e,x,z

out: x,y,z

out: x,y,z

out: e,x out: e,x

out: x,y,z

Improving the Algorithm
•  Can we do better?

•  Observe: the only way information propagates from one node to

another is using: out[n] := ∪n’∈succ[n]in[n’]
–  This is the only rule that involves more than one node

•  If a node’s successors haven’t changed, then the node itself won’t
change.

•  Idea for an improved version of the algorithm:
–  Keep track of which node’s successors have changed

CIS 341: Compilers 44

A Worklist Algorithm
•  Use a FIFO queue of nodes that might need to be updated.

for all n, in[n] := Ø, out[n] := Ø
w = new queue with all nodes
repeat until w is empty

 let n = w.pop() // pull a node off the queue
 old_in = in[n] // remember old in[n]

 out[n] := ∪n’∈succ[n]in[n’]

 in[n] := use[n] ∪ (out[n] - def[n])
 if (old_in != in[n]), // if in[n] has changed
 for all m in pred[n], w.push(m) // add to worklist

end

CIS 341: Compilers 45

