
CIS 341: COMPILERS 
Lecture 22 



Announcements / Plan 
 

•  HW5: OAT – typechecking, structs, function pointers 
–  Due: TONIGHT! 
 
 

•  HW6:  LLVM Optimization: analysis and register allocation  
–  Available soon 
–  Due: Wednesday, April 26 

•  FINAL EXAM: Thursday, May 4th noon – 2:00p.m. 
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When to apply optimization 
•  Inlining 
•  Function specialization 
•  Constant folding 
•  Constant propagation 
•  Value numbering 
•  Dead code elimination 
•  Loop-invariant code motion 
•  Common sub-expression elimination 
•  Strength Reduction 
•  Constant folding & propagation 
•  Branch prediction / optimization 
•  Register allocation 
•  Loop unrolling 
•  Cache optimization 
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Constant Propagation 
•  If the value is known to be a constant, replace the use of the variable 

by the constant 
•  Value of the variable must be propagated forward from the point of 

assignment 
–  This is a substitution operation 

•  Example: 
int x = 5;
int y = x * 2; è int y = 5 * 2; è int y = 10;  è 
int z = a[y];    int z = a[y];   int z = a[y];  int z = a[10];

•  To be most effective, constant propagation should be interleaved with 
constant folding 
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Copy Propagation 
•  If one variable is assigned to another, replace uses of the assigned 

variable with the copied variable. 
•  Need to know where copies of the variable propagate. 
•  Interacts with the scoping rules of the language. 

•  Example: 
x = y; x = y;
if (x > 1) { è if (y > 1) {
  x = x * f(x – 1);   x = y * f(y – 1);
} }

•  Can make the first assignment to x dead code (that can be eliminated). 
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Dead Code Elimination 
•  If a side-effect free statement can never be observed, it is safe to 

eliminate the statement. 

x  = y * y  // x is dead!
…    // x never used  è … 
x = z * z x = z * z

•  A variable is dead if it is never used after it is defined. 
–  Computing such definition and use information is an important 

component of compiler 

•  Dead variables can be created by other optimizations… 
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Unreachable/Dead Code 
•  Basic blocks not reachable by any trace leading from the starting basic 

block are unreachable and can be deleted. 
–  Performed at the IR or assembly level 
–  Improves cache, TLB performance 

•  Dead code: similar to unreachable blocks. 
–  A value might be computed but never subsequently used. 

•  Code for computing the value can be dropped 
•  But only if it’s pure, i.e. it has no externally visible side effects 

–  Externally visible effects: raising an exception, modifying a global 
variable, going into an infinite loop, printing to standard output, sending a 
network packet, launching a rocket 

–  Note: Pure functional languages (e.g. Haskell) make reasoning about the 
safety of optimizations (and code transformations in general) easier! 
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Inlining 
•  Replace a call to a function with the body of the function itself with 

arguments rewritten to be local variables: 
•  Example in OAT code: 
int g(int x) { return x + pow(x); }
int pow(int a) { var b = 1; var n = 0; 
   while (n < a) {b = 2 * b}; return b; }

è 
 
int g(int x) { var a = x; var b = 1; var n = 0;  

 while (n < a) {b = 2 * b}; var tmp = b;  
 return x + tmp;

}  
•  May need to rename variable names to avoid name capture  

–  Example of what can go wrong?   
•  Best done at the AST or relatively high-level IR. 
•  When is it profitable? 

–  Eliminates the stack manipulation, jump, etc. 
–  Can increase code size. 
–  Enables further optimizations 
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Code Specialization 
•  Idea: create specialized versions of a function that is called from 

different places with different arguments. 
•  Example: specialize function f in: 
class A implements I { int m() {…} }
class B implements I { int m() {…} }
int f(I x) { x.m(); } // don’t know which m
A a = new A(); f(a); // know it’s A.m
B b = new B(); f(b); // know it’s B.m
 
•  f_A would have code specialized to dispatch to A.m
•  f_B would have code specialized to dispatch to B.m
•  You can also inline methods when the run-time type is known 

statically 
–  Often just one class implements a method. 
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Common Subexpression Elimination 
•  In some sense it’s the opposite of inlining: fold redundant 

computations together 
•  Example:  

a[i] = a[i] + 1  compiles to:    
[a + i*4] = [a + i*4] + 1
Common subexpression elimination removes the redundant add and 

multiply: 
t = a + i*4; [t] = [t] + 1

•  For safety, you must be sure that the shared expression always has the 
same value in both places! 
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Unsafe Common Subexpression Elimination 
•  Example: consider this OAT function: 
unit f(int[] a, int[] b, int[] c) {

var j = …; var i = …; var k = …;
b[j] = a[i] + 1; c[k] = a[i]; return; 

}

•  The following optimization that shares the expression a[i] is 
unsafe… why? 

unit f(int[] a, int[] b, int[] c) {
var j = …; var i = …; var k = …;

  t = a[i];
b[j] = t + 1; c[k] = t; return; 

}
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LOOP OPTIMIZATIONS 
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Loop Optimizations 
•  Program hot spots often occur in loops. 

–  Especially inner loops  
–  Not always: consider operating systems code or compilers vs. a computer 

game or word processor 

•  Most program execution time occurs in loops. 
–  The 90/10 rule of thumb holds here too. (90% of the execution time is 

spent in 10% of the code) 

•  Loop optimizations are very important, effective, and numerous 
–  Also, concentrating effort to improve loop body code is usually a win 
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Loop Invariant Code Motion 
•  Another form of redundancy elimination. 
•  If the result of a statement or expression does not change during the 

loop and it’s pure, it can be hoisted outside the loop body. 
•  Often useful for array element addressing code 

–  Invariant code not visible at the source level 

for (i = 0; i < a.length; i++) { 
   /* a not modified in the body */ 
}

t = a.length;
for (i =0; i < t; i++) { 
  /* same body as above */  
}
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Strength Reduction (revisited) 
•  Strength reduction can work for loops too 
•  Idea: replace expensive operations (multiplies, divides) by cheap ones 

(adds and subtracts) 
•  For loops, create a dependent induction variable: 

•  Example: 
for (int i = 0; i<n; i++) { a[i*3] = 1; }  �

// stride by 3 
 
int j = 0;
for (int i = 0; i<n; i++) {
  a[j] = 1;
  j = j + 3; // replace multiply by add 
}
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Loop Unrolling (revisited) 
•  Branches can be expensive, unroll loops to avoid them. 
for (int i=0; i<n; i++) { S }

for (int i=0; i<n-3; i+=4) {S;S;S;S};
for (       ; i<n; i++) { S }  // left over iterations 
 
•  With k unrollings, eliminates (k-1)/k conditional branches 

–  So for the above program, it eliminates ¾ of the branches 

•  Space-time tradeoff:  
–  Not a good idea for large S or small n 

•  Interacts with instruction caching, branch prediction 
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EFFECTIVENESS? 
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Optimization Effectiveness? 
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Graph taken from: 
Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.�
Formal Verification of SSA-Based Optimizations for LLVM.  
In Proc. 2013 ACM SIGPLAN Conference on Programming Languages Design and Implementation (PLDI), 2013 

%speedup = 
base time 

optimized time 
- 1 x 100% 

Example:     
 base time = 1.2s     
 optimized time = 0.87s          ⇒          38% speedup 

Example:     
 base time = 2s     
 optimized time = 1s               ⇒          100% speedup 



Optimization Effectiveness? 

•  mem2reg: promotes alloca’ed stack slots to temporaries to enable register 
allocation 

•  Analysis: 
–  mem2reg alone  (+ back-end optimizations like register allocation) yields 

~78% speedup on average 
–  -O1 yields ~100% speedup   �

 (so all the rest of the optimizations combined account for ~22%) 
–  -O3 yields ~120% speedup 

•  Hypothetical program that takes 10 sec. (base time): 
–  Mem2reg alone:  expect ~5.6 sec 
–  -O1: expect ~5 sec 
–  -O3: expect ~4.5 sec 
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CODE ANALYSIS 
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Motivating Code Analyses 
•  There are lots of things that might influence the safety/applicability of 

an optimization 
–  What algorithms and data structures can help? 

 
•  How do you know what is a loop? 
•  How do you know an expression is invariant? 
•  How do you know if an expression has no side effects? 
•  How do you keep track of where a variable is defined? 
•  How do you know where a variable is used? 
•  How do you know if two reference values may be aliases of one 

another? 
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Moving Towards Register Allocation 
•  The OAT compiler currently generates as many temporary variables as 

it needs  
–  These are the %uids you should be very familiar with by now. 

•  Current compilation strategy: 
–  Each %uid maps to a stack location. 
–  This yields programs with many loads/stores to memory. 
–  Very inefficient. 

•  Ideally, we’d like to map as many %uid’s as possible into registers. 
–  Eliminate the use of the alloca instruction? 
–  Only 16 max registers available on 64-bit X86 
–  %rsp and %rbp are reserved and some have special semantics, so really 

only 10 or 12 available 
–  This means that a register must hold more than one slot 

•  When is this safe? 
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Liveness 
•  Observation: %uid1 and %uid2 can be assigned to the same register 

if their values will not be needed at the same time. 
–  What does it mean for an %uid to be “needed”?   
–  Ans: its contents will be used as a source operand in a later instruction. 

•  Such a variable is called “live” 
•  Two variables can share the same register if they are not live at the 

same time. 
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Scope vs. Liveness 
•  We can already get some coarse liveness information from variable 

scoping. 
•  Consider the following OAT program: 

int f(int x) {
    var a = 0; 
    if (x > 0) {
    var b = x * x;
    a = b + b;
    }
    var c = a * x; 
    return c;

}
 
•  Note that due to OAT’s scoping rules, variables b and c can never be live 

at the same time. 
–  c’s scope is disjoint from b’s scope 

•  So, we could assign b and c to the same alloca’ed slot and potentially to 
the same register. 
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But Scope is too Coarse  
•  Consider this program: 
int f(int x) {
  int a = x + 2;
  int b = a * a;
  int c = b + x;
  return c;
}
 
•  The scopes of a,b,c,x all overlap – they’re all in scope at the end of the 

block. 
•  But, a, b, c are never live at the same time. 

–  So they can share the same stack slot / register 
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Live Variable Analysis 
•  A variable v is live at a program point if v is defined before the 

program point and used after it. 
•  Liveness is defined in terms of where variables are defined and where 

variables are used 

•  Liveness analysis: Compute the live variables between each statement. 
–  May be conservative (i.e. it may claim a variable is live when it isn’t) so 

because that’s a safe approximation 
–  To be useful, it should be more precise than simple scoping rules. 

•  Liveness analysis is one example of dataflow analysis 
–  Other examples: Available Expressions, Reaching Definitions, Constant-

Propagation Analysis, … 
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Control-flow Graphs Revisited 
•  For the purposes of dataflow analysis, we use the control-flow graph (CFG) 

intermediate form. 
•  Recall that a basic block is a sequence of instructions such that: 

–  There is a distinguished, labeled entry point (no jumps into the middle of a basic block) 
–  There is a (possibly empty) sequence of non-control-flow instructions 
–  The block ends with a single control-flow instruction (jump, conditional branch, return, 

etc.) 

•  A control flow graph  
–  Nodes are blocks 
–  There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the 

entry label of B2 
–  There are no “dangling” edges – there is a block for every jump target.  

•  Note: the following slides are intentionally a bit ambiguous about the exact nature 
of the code in the control flow graphs: 
–  at the x86 assembly level 
–  an “imperative” C-like source level 
–  at the LLVM IR level 
–  Same general idea, but the exact details will differ 

•  e.g. LLVM IR doesn’t have “imperative” update of %uid temporaries. 
•  In fact, the SSA structure of the LLVM IR makes some of these analyses simpler. 
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Dataflow over CFGs 
•  For precision, it is helpful to think of the “fall through” between 

sequential instructions as an edge of the control-flow graph too. 
–  Different implementation tradeoffs in practice… 
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Liveness is Associated with Edges 

 
•  This is useful so that the same register can be used for different 

temporaries in the same statement. 
•  Example:   a = b + 1

•  Compiles to:  �
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Uses and Definitions 
•  Every instruction/statement uses some set of variables 

–  i.e. reads from them 

•  Every instruction/statement defines some set of variables 
–  i.e. writes to them 

•  For a node/statement s define: 
–  use[s] : set of variables used by s 
–  def[s] : set of variables defined by s 

•  Examples: 
–  a = b + c   use[s] = {b,c}  def[s] = {a} 
–  a = a + 1   use[s] = {a}   def[s] = {a} 
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Liveness, Formally 
•  A variable v is live on edge e if:�

There is 
–  a node n in the CFG such that use[n] contains v, and  
–  a directed path from e to n such that for every statement s’ on the path, 

def[s’] does not contain v  

•  The first clause says that v will be used on some path starting from 
edge e. 

•  The second clause says that v won’t be redefined on that path before 
the use. 

•  Questions: 
–  How to compute this efficiently? 
–  How to use this information (e.g. for register allocation)? 
–  How does the choice of  IR affect this?  (e.g. LLVM IR uses SSA, so it 

doesn’t allow redefinition ⇒ simplify liveness analysis) 
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Simple, inefficient algorithm 
•  “A variable v is live on an edge e  if there is a node n in the CFG using 

it  and a directed path from e to n pasing through no def of v.” 

•  Backtracking Algorithm: 
–  For each variable v… 
–  Try all paths from each use of v, tracing backwards through the control-

flow graph until either v is defined or a previously visited node has been 
reached. 

–  Mark the variable v live across each edge traversed. 

•  Inefficient because it explores the same paths many times �
(for different uses and different variables) 
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Dataflow Analysis 
•  Idea:  compute liveness information for all variables simultaneously. 

–  Keep track of sets of information about each node 

•  Approach: define equations that must be satisfied by any liveness 
determination. 
–  Equations based on “obvious” constraints. 

•  Solve the equations by iteratively converging on a solution. 
–  Start with a “rough” approximation to the answer 
–  Refine the answer at each iteration 
–  Keep going until no more refinement is possible: a fixpoint has been 

reached 

•  This is an instance of a general framework for computing program 
properties: dataflow analysis 
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Dataflow Value Sets for Liveness 
•  Nodes are program statements, so:  
•  use[n] : set of variables used by n 
•  def[n] : set of variables defined by n 
•  in[n] : set of variables live on entry to n 
•  out[n] : set of variables live on exit from n 

•  Associate in[n] and out[n] with the “collected”�
information about incoming/outgoing edges  

•  For Liveness: what constraints are there �
among these sets? 

•  Clearly:�
       in[n] ⊇ use[n] 

•  What other constraints? 
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Other Dataflow Constraints 
•  We have:  in[n] ⊇ use[n] 

–  “A variable must be live on entry to n if it is used by n” 

•  Also:  in[n] ⊇ out[n] - def[n] 
–  “If a variable is live on exit from n, and n doesn’t�

define it, it is live on entry to n” 
–  Note: here ‘-’ means “set difference” 

•  And:  out[n] ⊇ in[n’] if n’ ∈ succ[n] 
–  “If a variable is live on entry to a successor �

node of n, it must be live  on exit from n.” 
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Iterative Dataflow Analysis 
•  Find a solution to those constraints by starting from a rough guess. 
•  Start with:  in[n] = Ø  and out[n] = Ø 
•  They don’t satisfy the constraints: 

–  in[n] ⊇ use[n] 
–  in[n] ⊇ out[n] - def[n] 
–  out[n] ⊇ in[n’] if n’ ∈ succ[n] 

•  Idea: iteratively re-compute in[n] and out[n] where forced to by the 
constraints. 
–  Each iteration will add variables to the sets in[n] and out[n] �

(i.e. the live variable sets will increase monotonically) 

•  We stop when in[n] and out[n] satisfy these equations:�
 (which are derived from the constraints above) 
–  in[n] = use[n] ∪ (out[n] - def[n]) 

–  out[n] = ∪n’∈succ[n]in[n’] 
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Complete Liveness Analysis Algorithm 
for all n, in[n] := Ø, out[n] := Ø 
repeat until no change in ‘in’ and ‘out’ 

 for all n 

   out[n] := ∪n’∈succ[n]in[n’] 

   in[n] := use[n] ∪ (out[n] - def[n]) 
 end 

end 
 
•  Finds a fixpoint of the in and out equations. 

–  The algorithm is guaranteed to terminate… Why? 

•  Why do we start with Ø? 
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Example Liveness Analysis 
•  Example flow graph: 
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Example Liveness Analysis 
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n]) 

•  Iteration 1: 
in[2] = x�
in[3] = e�
in[4] = x 
in[5] = e,x�
in[6] = x�
in[7] = x 
in[8] = z 
in[9] = y 
 
(showing only updates�
that make a change) 
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Example Liveness Analysis 
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n]) 

•  Iteration 2: 
out[1]= x 
in[1] = x 
out[2] = e,x�
in[2] = e,x�
out[3] = e,x�
in[3] = e,x�
out[5] = x�
out[6] = x�
out[7] = z,y�
in[7] = x,z,y 
out[8] = x 
in[8] = x,z 
out[9] = x 
in[9] = x,y 
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Example Liveness Analysis 
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n]) 

•  Iteration 3: 
out[1]= e,x 
out[6]= x,y,z�
in[6]= x,y,z 
out[7]= x,y,z 
out[8]= e,x 
out[9]= e,x 

CIS 341: Compilers 

e = 1 

if x > 0 

ret x z = e * e 

y = e * x 

if (x & 1) 

e = z e = y 

1 

2 

3 

5 

7 

8 

def: e�
use:  

x = x - 1 

def: �
use: x 

6 

def: �
use: x 

def: z �
use: e 

def: y�
use: e,x 

def: x �
use: x 

def: �
use: x 

def: e �
use: z 

def: e �
use: y 

9 

4 

in: x 

in: e,x 

in: x 

in: e,x 

in: x,y,z 

in: x,y,z 

in: x,y in: x,z 

in: e,x 

out: e,x 

out: e,x 

out: e,x 

out: x 

out: x,y,z 

out: e,x out: e,x 

out: x,y,z 



Example Liveness Analysis 
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n]) 

•  Iteration 4: 
out[5]= x,y,z�
in[5]= e,x,z 
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Example Liveness Analysis 
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n]) 

•  Iteration 5: 
out[3]= e,x,z 
 
 
 
Done! 
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Improving the Algorithm 
•  Can we do better? 

•  Observe: the only way information propagates from one node to 

another is using: out[n] := ∪n’∈succ[n]in[n’] 
–  This is the only rule that involves more than one node 

•  If a node’s successors haven’t changed, then the node itself won’t 
change. 

•  Idea for an improved version of the algorithm: 
–  Keep track of which node’s successors have changed 
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A Worklist Algorithm 
•  Use a FIFO queue of nodes that might need to be updated. 

for all n, in[n] := Ø, out[n] := Ø 
w = new queue with all nodes 
repeat until w is empty 

 let n = w.pop()      // pull a node off the queue 
   old_in = in[n]      // remember old in[n] 

   out[n] := ∪n’∈succ[n]in[n’] 

     in[n] := use[n] ∪ (out[n] - def[n]) 
   if (old_in != in[n]),     // if in[n] has changed  
      for all m in pred[n], w.push(m) // add to worklist 

end  
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