
CIS 341: COMPILERS 
Lecture 23 



Announcements 

•  HW6: Dataflow Analysis 
–  Due:  Weds. April 26th 

–  START EARLY! 

•  FINAL EXAM: Thursday, May 4th noon – 2:00p.m. 
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CODE ANALYSIS 
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Dataflow Analysis 
•  Idea:  compute liveness information for all variables simultaneously. 

–  Keep track of sets of information about each node 

•  Approach: define equations that must be satisfied by any liveness 
determination. 
–  Equations based on “obvious” constraints. 

•  Solve the equations by iteratively converging on a solution. 
–  Start with a “rough” approximation to the answer 
–  Refine the answer at each iteration 
–  Keep going until no more refinement is possible: a fixpoint has been 

reached 

•  This is an instance of a general framework for computing program 
properties: dataflow analysis 
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Dataflow Value Sets for Liveness 
•  Nodes are program statements, so:  
•  use[n] : set of variables used by n 
•  def[n] : set of variables defined by n 
•  in[n] : set of variables live on entry to n 
•  out[n] : set of variables live on exit from n 

•  Associate in[n] and out[n] with the “collected”�
information about incoming/outgoing edges  

•  For Liveness: what constraints are there �
among these sets? 

•  Clearly:�
       in[n] ⊇ use[n] 

•  What other constraints? 
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Other Dataflow Constraints 
•  We have:  in[n] ⊇ use[n] 

–  “A variable must be live on entry to n if it is used by n” 

•  Also:  in[n] ⊇ out[n] - def[n] 
–  “If a variable is live on exit from n, and n doesn’t�

define it, it is live on entry to n” 
–  Note: here ‘-’ means “set difference” 

•  And:  out[n] ⊇ in[n’] if n’ ∈ succ[n] 
–  “If a variable is live on entry to a successor �

node of n, it must be live  on exit from n.” 
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Iterative Dataflow Analysis 
•  Find a solution to those constraints by starting from a rough guess. 
•  Start with:  in[n] = Ø  and out[n] = Ø 
•  They don’t satisfy the constraints: 

–  in[n] ⊇ use[n] 
–  in[n] ⊇ out[n] - def[n] 
–  out[n] ⊇ in[n’] if n’ ∈ succ[n] 

•  Idea: iteratively re-compute in[n] and out[n] where forced to by the 
constraints. 
–  Each iteration will add variables to the sets in[n] and out[n] �

(i.e. the live variable sets will increase monotonically) 

•  We stop when in[n] and out[n] satisfy these equations:�
 (which are derived from the constraints above) 
–  in[n] = use[n] ∪ (out[n] - def[n]) 

–  out[n] = ∪n’∈succ[n]in[n’] 
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Complete Liveness Analysis Algorithm 
for all n, in[n] := Ø, out[n] := Ø 
repeat until no change in ‘in’ and ‘out’ 

 for all n 

   out[n] := ∪n’∈succ[n]in[n’] 

   in[n] := use[n] ∪ (out[n] - def[n]) 
 end 

end 
 
•  Finds a fixpoint of the in and out equations. 

–  The algorithm is guaranteed to terminate… Why? 

•  Why do we start with Ø? 
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Example Liveness Analysis 
•  Example flow graph: 
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Example Liveness Analysis 
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n]) 

•  Iteration 1: 
in[2] = x�
in[3] = e�
in[4] = x 
in[5] = e,x�
in[6] = x�
in[7] = x 
in[8] = z 
in[9] = y 
 
(showing only updates�
that make a change) 
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Example Liveness Analysis 
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n]) 

•  Iteration 2: 
out[1]= x 
in[1] = x 
out[2] = e,x�
in[2] = e,x�
out[3] = e,x�
in[3] = e,x�
out[5] = x�
out[6] = x�
out[7] = z,y�
in[7] = x,z,y 
out[8] = x 
in[8] = x,z 
out[9] = x 
in[9] = x,y 
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Example Liveness Analysis 
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n]) 

•  Iteration 3: 
out[1]= e,x 
out[6]= x,y,z�
in[6]= x,y,z 
out[7]= x,y,z 
out[8]= e,x 
out[9]= e,x 
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Example Liveness Analysis 
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n]) 

•  Iteration 4: 
out[5]= x,y,z�
in[5]= e,x,z 
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Example Liveness Analysis 
Each iteration update:�
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n]) 

•  Iteration 5: 
out[3]= e,x,z 
 
 
 
Done! 
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Improving the Algorithm 
•  Can we do better? 

•  Observe: the only way information propagates from one node to 

another is using: out[n] := ∪n’∈succ[n]in[n’] 
–  This is the only rule that involves more than one node 

•  If a node’s successors haven’t changed, then the node itself won’t 
change. 

•  Idea for an improved version of the algorithm: 
–  Keep track of which node’s successors have changed 
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A Worklist Algorithm 
•  Use a FIFO queue of nodes that might need to be updated. 

for all n, in[n] := Ø, out[n] := Ø 
w = new queue with all nodes 
repeat until w is empty 

 let n = w.pop()      // pull a node off the queue 
   old_in = in[n]      // remember old in[n] 

   out[n] := ∪n’∈succ[n]in[n’] 

     in[n] := use[n] ∪ (out[n] - def[n]) 
   if (old_in != in[n]),     // if in[n] has changed  
      for all m in pred[n], w.push(m) // add to worklist 

end  
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REGISTER ALLOCATION 
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Register Allocation Problem 
•  Given: an IR program that uses an unbounded number of temporaries 

–  e.g. the uids of our LLVM programs 

•  Find: a mapping from temporaries to machine registers such that 
–  program semantics is preserved (i.e. the behavior is the same) 
–  register usage is maximized 
–  moves between registers are minimized 
–  calling conventions / architecture requirements are obeyed 

•  Stack Spilling 
–  If there are k registers available and m > k temporaries are live at the same 

time, then not all of them will fit into registers. 
–  So: "spill" the excess temporaries to the stack. 
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Linear-Scan Register Allocation 
Simple, greedy register-allocation strategy: 

1.  Compute liveness information:  live(x)
–  recall: live(x)is the set of uids that are live on entry to x's definition 

2.  Let pal be the set of usable registers 
–  usually reserve a couple for spill code [our implementation uses rax,rcx] 

3.  Maintain "layout" uid_loc that maps uids to locations 
–  locations include registers and stack slots n, starting at n=0 

4.  Scan through the program.  For each instruction that defines a uid x
–  used = {r | reg r = uid_loc(y) s.t. y ∈  live(x)}  
–  available = pal - used
–  If available is empty:     // no registers available, spill�

    uid_loc(x) := slot n    ;  n = n + 1 
–  Otherwise, pick r in available:       // choose an available register�

    uid_loc(x) := reg r
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For HW6 
•  HW 6 implements two naive register allocation strategies: 
•  no_reg_layout: spill all registers 

•  simple_layout: use registers but without taking liveness into 
account 

•  Your job:  do "better" than these. 
•  Quality Metric:    

–  registers other than rbp count positively 
–  rbp counts negatively  (it is used for spilling) 
–  shorter code is better (each line counts as 2 registers) 

•  Linear scan register allocation should suffice 
–  but… can we do better? 
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GRAPH COLORING 
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Register Allocation 

•  Basic process: 
1.  Compute liveness information for each temporary. 
2.  Create an interference graph: 

–  Nodes are temporary variables. 
–  There is an edge between node n and m if n is live at the same time as m 

3.  Try to color the graph 
–  Each color corresponds to a register 

4.  In case step 3. fails, “spill” a register to the stack and repeat the 
whole process. 

5.  Rewrite the program to use registers 
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Interference Graphs 
•  Nodes of the graph are %uids
•  Edges connect variables that interfere with each other 

–  Two variables interfere if their live ranges intersect (i.e. there is an edge in 
the control-flow graph across which they are both live). 

•  Register assignment is a graph coloring. 
–  A graph coloring assigns each node in the graph a color (register) 
–  Any two nodes connected by an edge must have different colors. 

•  Example: 
�
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�
%b1 = add i32 %a, 2  
 
%c = mult i32 %b1, %b1  
 
%b2 = add i32 %c, 1  
 
%ans = mult i32 %b2, %a
 
return %ans;

// live = {%a}�
%b1 = add i32 %a, 2  
// live = {%a,%b1}  
%c = mult i32 %b1, %b1  
// live = {%a,%c} 
%b2 = add i32 %c, 1  
// live = {%a,%b2} 
%ans = mult i32 %b2, %a
// live = {%ans} 
return %ans;
 

Interference Graph 

%a

%b1 %b2 %c

%ans

2-Coloring of the graph�
red = r8 
yellow = r9 

%a

%b1 %b2 %c

%ans



Register Allocation Questions 
•  Can we efficiently find a k-coloring of the graph whenever possible? 

–  Answer: in general the problem is NP-complete (it requires search) 
–  But, we can do an efficient approximation using heuristics. 

•  How do we assign registers to colors? 
–  If we do this in a smart way, we can eliminate redundant MOV 

instructions. 
 

•  What do we do when there aren’t enough colors/registers? 
–  We have to use stack space, but how do we do this effectively? 
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Coloring a Graph: Kempe’s Algorithm 
•  Kempe [1879] provides this algorithm for K-coloring a graph. 
•  It’s a recursive algorithm that works in three steps: 
•  Step 1:  Find a node with degree < K and cut it out of the graph. 

–  Remove the nodes and edges. 
–  This is called simplifying the graph 

•  Step 2: Recursively K-color the remaining subgraph 
•  Step 3: When remaining graph is colored, there must be at least one 

free color available for the deleted node (since its degree was < K).  
Pick such a color. 
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Example: 3-color this Graph 
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Recursing Down the Simplified Graphs 



Example: 3-color this Graph 
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Failure of the Algorithm 
•  If the graph cannot be colored, it will simplify to a graph where every 

node has at least K neighbors. 
–  This can happen even when the graph is K-colorable! 
–  This is a symptom of NP-hardness (it requires search) 

•  Example: When trying to 3-color this graph: 
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Spilling 
•  Idea: If we can’t K-color the graph, we need to store one temporary 

variable on the stack. 
•  Which variable to spill? 

–  Pick one that isn’t used very frequently 
–  Pick one that isn’t used in a (deeply nested) loop 
–  Pick one that has high interference (since removing it will make the graph 

easier to color) 

•  In practice: some weighted combination of these criteria 

•  When coloring:  
–  Mark the node as spilled 
–  Remove it from the graph 
–  Keep recursively coloring 
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Spilling, Pictorially 
•  Select a node to spill 
•  Mark it and remove it from the graph 
•  Continue coloring 
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Optimistic Coloring 
•  Sometimes it is possible to color a node marked for spilling. 

–  If we get “lucky” with the choices of colors made earlier. 

•  Example:  When 2-coloring this graph: 

•  Even though the node was marked for spilling, we can color it. 
•  So: on the way down, mark for spilling, but don’t actually spill… 
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Accessing Spilled Registers 
•  If optimistic coloring fails, we need to generate code to move the 

spilled temporary to & from memory. 
•  Option 1: Reserve registers specifically for moving to/from memory. 

–  Con: Need at least two registers (one for each source operand of an 
instruction), so decreases total # of available registers by 2.   

–  Pro: Only need to color the graph once. 
–  Not good on X86 (especially 32bit) because there are too few registers & 

too many constraints on how they can be used. 

•  Option 2: Rewrite the program to use a new temporary variable, with 
explicit moves to/from memory. 
–  Pro: Need to reserve fewer registers. 
–  Con: Introducing temporaries changes live ranges, so must recompute 

liveness & recolor graph 
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Example Spill Code 
•  Suppose temporary t is marked for spilling to stack slot �

[rbp+offs]

•  Rewrite the program like this:�
t = a op b; t = a op b // defn. of t 
… Mov [rbp+offs], t  

…  
x = t op c Mov t37, [rbp+offs] // use 1 of t 
… x = t37 op c  

   …  
y = d op t Mov t38, [rbp+offs] // use  2 of t 

y = d op t38

•  Here, t37 and t38 are freshly generated temporaries that 
replace t for different uses of t. 

•  Rewriting the code in this way breaks t’s live range up: 
    t, t37, t38 are only live across one edge 
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Precolored Nodes 
•  Some variables must be pre-assigned to registers. 

–  E.g. on X86 the multiplication instruction: IMul must define %rax 
–  The “Call” instruction should kill the caller-save registers %rax, %rcx, 

%rdx.   
–  Any temporary variable live across a call interferes with the caller-save 

registers. 

•  To properly allocate temporaries, we treat registers as nodes in the 
interference graph with pre-assigned colors. 
–  Pre-colored nodes can’t be removed during simplification. 
–  Trick: Treat pre-colored nodes as having “infinite” degree in the 

interference graph – this guarantees they won’t be simplified. 
–  When the graph is empty except the pre-colored nodes, we have reached 

the point where we start coloring the rest of the nodes. 
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Picking Good Colors 
•  When choosing colors during the coloring phase, any choice is 

semantically correct, but some choices are better for performance. 
•  Example:�

movq t1, t2
–  If t1 and t2 can be assigned the same register (color) then this move is 

redundant and can be eliminated. 

•  A simple color choosing strategy that helps eliminate such moves: 
–  Add a new kind of “move related” edge between the nodes for t1 and t2 

in the interference graph. 
–  When choosing a color for t1 (or t2), if possible pick a color of an already 

colored node reachable by a move-related edge. 
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Example Color Choice 
•  Consider 3-coloring this graph, where the dashed edge indicates that 

there is a Mov from one temporary to another. 

 

•  After coloring the rest, we have a choice: 
–  Picking yellow is better than red because it will eliminate a move. 
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Coalescing Interference Graphs 
•  A more aggressive strategy is to coalesce nodes of the interference 

graph if they are connected by move-related edges. 
–  Coalescing the nodes forces the two temporaries to be assigned the same 

register. 

•  Idea: interleave simplification and coalescing to maximize the 
number of moves that can be eliminated. 

•  Problem: coalescing can sometimes increase the degree of a 
node. 
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Conservative Coalescing 
•  Two strategies are guaranteed to preserve the k-colorability of the 

interference graph. 

•  Brigg’s strategy: It's safe to coalesce x & y if the resulting node will 
have fewer than k neighbors (with degree ≥ k). 

•  George’s strategy: We can safely coalesce x & y if for every neighbor t 
of x, either t already interferes with y or t has degree < k. 
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Complete Register Allocation Algorithm 
1.  Build interference graph (precolor nodes as necessary). 

–  Add move related edges 
2.  Reduce the graph (building a stack of nodes to color). 

1.  Simplify the graph as much as possible without removing nodes that are 
move related (i.e. have a move-related neighbor). Remaining nodes are 
high degree or move-related. 

2.  Coalesce move-related nodes using Brigg’s or George’s strategy. 
3.  Coalescing can reveal more nodes that can be simplified, so repeat 2.1 

and 2.2 until no node can be simplified or coalesced. 
4.  If no nodes can be coalesced freeze (remove) a move-related edge and 

keep trying to simplify/coalesce. 
3.  If there are non-precolored nodes left, mark one for spilling, remove 

it from the graph and continue doing step 2. 
4.  When only pre-colored node remain, start coloring (popping 

simplified nodes off the top of the stack). 
1.  If a node must be spilled, insert spill code as on slide 14 and rerun the 

whole register allocation algorithm starting at step 1. 
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Last details 
•  After register allocation, the compiler should do a peephole 

optimization pass to remove redundant moves. 
•  Some architectures specify calling conventions that use registers to 

pass function arguments.   
–  It’s helpful to move such arguments into temporaries in the function 

prelude so that the compiler has as much freedom as possible during 
register allocation.  (Not an issue on X86, though.)   
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