Lecture 24

CIS 341: COMPILERS

Announcements

- HW6: Dataflow Analysis
 - Due: Weds. April 26th

NOTE: See Piazza for an update... TLDR: "simple" regalloc should not suffice.

Change gradedtests.ml >= to >

• FINAL EXAM: Thursday, May 4th noon – 2:00p.m.

OTHER DATAFLOW ANALYSES

Zdancewic CIS 341: Compilers

Generalizing Dataflow Analyses

- The kind of iterative constraint solving used for liveness analysis applies to other kinds of analyses as well.
 - Reaching definitions analysis
 - Available expressions analysis
 - Alias Analysis
 - Constant Propagation
 - These analyses follow the same 3-step approach as for liveness.
- To see these as an instance of the same kind of algorithm, the next few examples to work over a canonical intermediate instruction representation called *quadruples*
 - Allows easy definition of def[n] and use[n]
 - A "looser" variant of LLVM's IR that doesn't require the "static single assignment" i.e. it has mutable local variables

Quadruple Format

• A Quadruple sequence is just a control-flow graph (flowgraph) where each node is a quadruple:

•	Quadruple forms n:	def[n]	use[n]	description
	a = b op c	{a}	{b,c}	arithmetic
	a = load b	{a}	{b}	load
	store a := b	Ø	{b}	store
	$a = f(b_1,, b_n)$	{a}	$\{b_1,, b_n\}$	call w/return
	$f(b_1,\ldots,b_n)$	Ø	$\{b_1,\ldots,b_n\}$	call no return
	br L	Ø	Ø	jump
	br a L1 L2	Ø	{a}	branch
	return a	Ø	{a}	return

REACHING DEFINITIONS

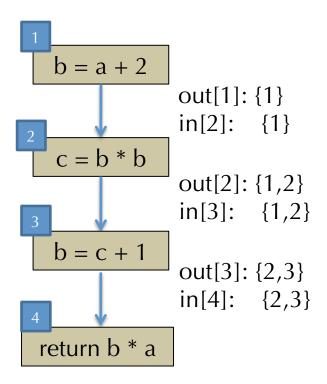
Zdancewic CIS 341: Compilers

Reaching Definition Analysis

- Question: what uses in a program does a given variable definition reach?
- This analysis is used for constant propagation & copy prop.
 - If only one definition reaches a particular use, can replace use by the definition (for constant propagation).
 - Copy propagation additionally requires that the copied value still has its same value – computed using an available expressions analysis (next)
- Input: Quadruple CFG
- Output: in[n] (resp. out[n]) is the set of nodes defining some variable such that the definition may reach the beginning (resp. end) of node n

Example of Reaching Definitions

• Results of computing reaching definitions on this simple CFG:



Note how SSA simplifies this analysis:

- each uid already uniquely names a node
- the "kill" information is unnecessary

Reaching Definitions Step 1

- Define the sets of interest for the analysis
- Let defs[a] be the set of *nodes* that define the variable a
- Define gen[n] and kill[n] as follows:

•	Quadruple forms n:	gen[n]	kill[n]
	a = b op c	{n}	$defs[a] - \{n\}$
	a = load b	{n}	$defs[a] - \{n\}$
	store a := b	Ø	Ø
	$a = f(b_1, \dots, b_n)$	{n}	$defs[a] - {n}$
	$f(b_1,\ldots,b_n)$	Ø	Ø
	br L	Ø	Ø
	br a L1 L2	Ø	Ø
	L:	Ø	Ø
	return a	Ø	Ø

Reaching Definitions Step 2

- Define the constraints that a reaching definitions solution must satisfy.
- out[n] ⊇ gen[n]
 "The definitions that reach the end of a node at least include the definitions generated by the node"
- in[n] ⊇ out[n'] if n' is in pred[n]
 "The definitions that reach the beginning of a node include those that reach the exit of any predecessor"
- out[n] U kill[n] ⊇ in[n]
 "The definitions that come in to a node either reach the end of the node or are killed by it."
 - Equivalently: out[n] \supseteq in[n] kill[n]

Reaching Definitions Step 3

- Convert constraints to iterated update equations:
- $in[n] := \bigcup_{n' \in pred[n]} out[n']$
- out[n] := gen[n] U (in[n] kill[n])
- Algorithm: initialize in[n] and out[n] to Ø
 - Iterate the update equations until a fixed point is reached
- The algorithm terminates because in[n] and out[n] increase only monotonically
 - At most to a maximum set that includes all variables in the program
- The algorithm is precise because it finds the *smallest* sets that satisfy the constraints.

AVAILABLE EXPRESSIONS

Zdancewic CIS 341: Compilers

Available Expressions

Idea: want to perform common subexpression elimination:

$$- a = x + 1$$
 $a = x + 1$... $b = x + 1$ $b = a$

- This transformation is safe if x+1 means computes the same value at both places (i.e. x hasn't been assigned).
 - "x+1" is an available expression
- Dataflow values:
 - in[n] = set of nodes whose values are available on entry to n
 - out[n] = set of nodes whose values are available on exit of n

Available Expressions Step 1

- Define the sets of values
- Define gen[n] and kill[n] as follows:

•	Quadruple forms n:	gen[n]	kill[n]	
	a = b op c	{n} - kill[n]	uses[a]	
	a = load b	{n} - kill[n]	uses[a]	
	store a := b	Ø	uses[[x]]	
			(for all a	x that may equal a)
	br L	Ø	Ø	Note the need for "may
	br a L1 L2	Ø	Ø	alias" information
	L:	Ø	Ø	
	$a = f(b_1, \dots, b_n)$	Ø	uses[a] U uses[[x]]	
			(for all s	x)
	$f(b_1, \ldots, b_n)$	Ø	uses[[x]] (for all x)
	return a	Ø	Ø	

Note that functions are assumed to be impure...

Available Expressions Step 2

- Define the constraints that an available expressions solution must satisfy.
- out[n] ⊇ gen[n]
 "The expressions made available by n that reach the end of the node"
- in[n] ⊆ out[n'] if n' is in pred[n]
 "The expressions available at the beginning of a node include those that reach the exit of every predecessor"
- out[n] ∪ kill[n] ⊇ in[n]
 "The expressions available on entry either reach the end of the node or are killed by it."
 - Equivalently: out[n] \supseteq in[n] kill[n]

Note similarities and differences with constraints for "reaching definitions".

Available Expressions Step 3

- Convert constraints to iterated update equations:
- $in[n] := \bigcap_{n' \in pred[n]} out[n']$
- out[n] := $gen[n] \cup (in[n] kill[n])$
- Algorithm: initialize in[n] and out[n] to {set of all nodes}
 - Iterate the update equations until a fixed point is reached
- The algorithm terminates because in[n] and out[n] decrease only monotonically
 - At most to a minimum of the empty set
- The algorithm is precise because it finds the *largest* sets that satisfy the constraints.

GENERAL DATAFLOW ANALYSIS

Zdancewic CIS 341: Compilers 17

Comparing Dataflow Analyses

- Look at the update equations in the inner loop of the analyses
- Liveness: (backward)
 - Let gen[n] = use[n] and kill[n] = def[n]
 - out[n] := = $\bigcup_{n' \in succ[n]} in[n']$
 - in[n] := gen[n] U (out[n] kill[n])
- Reaching Definitions:
 - Definitions: (forward)
 - $in[n] := \bigcup_{n' \in pred[n]} out[n']$
 - $out[n] := gen[n] \cup (in[n] kill[n])$
- Available Expressions:

(forward)

- $in[n] := \bigcap_{n' \in pred[n]} out[n']$
- $\text{ out}[n] := \text{gen}[n] \cup (\text{in}[n] \text{kill}[n])$

Common Features

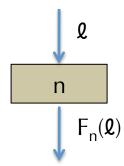
- All of these analyses have a domain over which they solve constraints.
 - Liveness, the domain is sets of variables
 - Reaching defns., Available exprs. the domain is sets of nodes
- Each analysis has a notion of gen[n] and kill[n]
 - Used to explain how information propagates across a node.
- Each analysis is propagates information either forward or backward
 - Forward: in[n] defined in terms of predecessor nodes' out[]
 - Backward: out[n] defined in terms of successor nodes' in[]
- Each analysis has a way of aggregating information
 - Liveness & reaching definitions take union (∪)
 - Available expressions uses intersection (∩)
 - Union expresses a property that holds for some path (existential)
 - Intersection expresses a property that holds for all paths (universal)

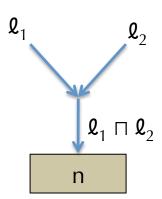
(Forward) Dataflow Analysis Framework

A forward dataflow analysis can be characterized by:

- 1. A domain of dataflow values \mathcal{L}
 - e.g. \mathcal{L} = the powerset of all variables
 - Think of $l \in \mathcal{L}$ as a property, then " $x \in l$ " means "x has the property"

- So far we've seen $F_n(\ell) = gen[n] \cup (\ell kill[n])$
- So: out[n] = $F_n(in[n])$
- "If ℓ is a property that holds before the node n, then $F_n(\ell)$ holds after n"
- 3. A combining operator □
 - "If we know either l_1 or l_2 holds on entry to node n, we know at most $l_1 \sqcap l_2$ "
 - $in[n] := \prod_{n' \in pred[n]} out[n']$





Generic Iterative (Forward) Analysis

```
for all n, in[n] := T, out[n] := T
repeat until no change
for all n
in[n] := \prod_{n' \in pred[n]} out[n']
out[n] := F_n(in[n])
end
end
```

- Here, $\top \subseteq \mathcal{L}$ ("top") represents having the "maximum" amount of information.
 - Having "more" information enables more optimizations
 - "Maximum" amount could be inconsistent with the constraints.
 - Iteration refines the answer, eliminating inconsistencies

Structure of \mathcal{L}

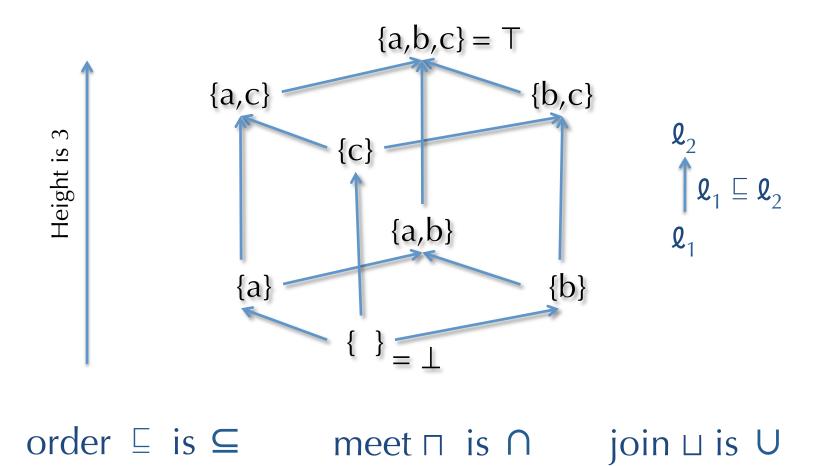
- The domain has structure that reflects the "amount" of information contained in each dataflow value.
- Some dataflow values are more informative than others:
 - Write $\ell_1 \sqsubseteq \ell_2$ whenever ℓ_2 provides at least as much information as ℓ_1 .
 - The dataflow value Q_2 is "better" for enabling optimizations.
- Example 1: for liveness analysis, *smaller* sets of variables are more informative.
 - Having smaller sets of variables live across an edge means that there are fewer conflicts for register allocation assignments.
 - So: $\ell_1 \sqsubseteq \ell_2$ if and only if $\ell_1 \supseteq \ell_2$
- Example 2: for available expressions analysis, larger sets of nodes are more informative.
 - Having a larger set of nodes (equivalently, expressions) available means that there is more opportunity for common subexpression elimination.
 - So: $\ell_1 \subseteq \ell_2$ if and only if $\ell_1 \subseteq \ell_2$

L as a Partial Order

- \mathcal{L} is a partial order defined by the ordering relation \sqsubseteq .
- A partial order is an ordered set.
- Some of the elements might be *incomparable*.
 - That is, there might be ℓ_1 , $\ell_2 \subseteq \mathcal{L}$ such that neither $\ell_1 \subseteq \ell_2$ nor $\ell_2 \subseteq \ell_1$
- Properties of a partial order:
 - Reflexivity: $Q \sqsubseteq Q$
 - Transitivity: $\mathbf{l}_1 \sqsubseteq \mathbf{l}_2$ and $\mathbf{l}_2 \sqsubseteq \mathbf{l}_3$ implies $\mathbf{l}_1 \sqsubseteq \mathbf{l}_2$
 - Anti-symmetry: $\mathbf{l}_1 \sqsubseteq \mathbf{l}_2$ and $\mathbf{l}_2 \sqsubseteq \mathbf{l}_1$ implies $\mathbf{l}_1 = \mathbf{l}_2$
- Examples:
 - Integers ordered by ≤
 - Types ordered by <:
 - Sets ordered by \subseteq or \supseteq

Subsets of $\{a,b,c\}$ ordered by \subseteq

Partial order presented as a Hasse diagram.



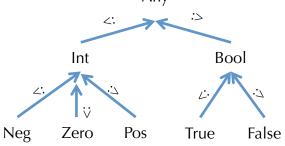
Meets and Joins

- The combining operator □ is called the "meet" operation.
- It constructs the *greatest lower bound*:
 - $\mathbf{l}_1 \sqcap \mathbf{l}_2 \sqsubseteq \mathbf{l}_1$ and $\mathbf{l}_1 \sqcap \mathbf{l}_2 \sqsubseteq \mathbf{l}_2$ "the meet is a lower bound"
 - If $\ell \subseteq \ell_1$ and $\ell \subseteq \ell_2$ then $\ell \subseteq \ell_1 \sqcap \ell_2$ "there is no greater lower bound"
- Dually, the ⊔ operator is called the "join" operation.
- It constructs the *least upper bound*:
 - $\mathbf{l}_1 \sqsubseteq \mathbf{l}_1 \sqcup \mathbf{l}_2$ and $\mathbf{l}_2 \sqsubseteq \mathbf{l}_1 \sqcup \mathbf{l}_2$ "the join is an upper bound"
 - If $\mathbf{l}_1 \sqsubseteq \mathbf{l}$ and $\mathbf{l}_2 \sqsubseteq \mathbf{l}$ then $\mathbf{l}_1 \sqcup \mathbf{l}_2 \sqsubseteq \mathbf{l}$ "there is no smaller upper bound"
- A partial order that has all meets and joins is called a lattice.
 - If it has just meets, it's called a meet semi-lattice.

Building Lattices?

- Information about individual nodes or variables can be lifted pointwise:
 - If \mathcal{L} is a lattice, then so is $\{f: X \to \mathcal{L}\}$ where $f \sqsubseteq g$ if and only if $f(x) \sqsubseteq g(x)$ for all $x \in X$.

- Like *types*, the dataflow lattices are *static approximations* to the dynamic behavior:
 - Could pick a lattice based on subtyping:
 - Or other information:



Points in the lattice are sometimes called dataflow "facts"

Another Way to Describe the Algorithm

- Algorithm repeatedly computes (for each node n):
- out[n] := $F_n(in[n])$
- Equivalently: out[n] := $F_n(\prod_{n' \in pred[n]} out[n'])$
 - By definition of in[n]
- We can write this as a simultaneous update of the vector of out[n] values:
 - let $x_n = out[n]$
 - Let $\mathbf{X} = (x_1, x_2, \dots, x_n)$ it's a vector of points in \mathcal{L}
 - $\ \mathbf{F}(\mathbf{X}) = (\mathsf{F}_1(\prod_{j \in \mathsf{pred}[1]} \mathsf{out}[j]), \ \mathsf{F}_2(\prod_{j \in \mathsf{pred}[2]} \mathsf{out}[j]), \ \ldots, \ \mathsf{F}_n(\prod_{j \in \mathsf{pred}[n]} \mathsf{out}[j]))$
- Any solution to the constraints is a fixpoint X of F
 - i.e. F(X) = X

Iteration Computes Fixpoints

- Let $\mathbf{X}_0 = (\top, \top, ..., \top)$
- Each loop through the algorithm apply F to the old vector:

$$\mathbf{X}_1 = \mathbf{F}(\mathbf{X}_0)$$
$$\mathbf{X}_2 = \mathbf{F}(\mathbf{X}_1)$$

. . .

- $\mathbf{F}^{k+1}(\mathbf{X}) = \mathbf{F}(\mathbf{F}^k(\mathbf{X}))$
- A fixpoint is reached when $\mathbf{F}^{k}(\mathbf{X}) = \mathbf{F}^{k+1}(\mathbf{X})$
 - That's when the algorithm stops.
- Wanted: a maximal fixpoint
 - Because that one is more informative/useful for performing optimizations

Monotonicity & Termination

- Each flow function F_n maps lattice elements to lattice elements; to be sensible is should be *monotonic*:
- $F: \mathcal{L} \to \mathcal{L}$ is monotonic iff: $\ell_1 \sqsubseteq \ell_2$ implies that $F(\ell_1) \sqsubseteq F(\ell_2)$
 - Intuitively: "If you have more information entering a node, then you have more information leaving the node."
- Monotonicity lifts point-wise to the function: $\mathbf{F}: \mathcal{L}^{n} \to \mathcal{L}^{n}$
 - vector $(x_1, x_2, ..., x_n) \sqsubseteq (y_1, y_2, ..., y_n)$ iff $x_i \sqsubseteq y_i$ for each i
- Note that **F** is consistent: $\mathbf{F}(\mathbf{X}_0) \sqsubseteq \mathbf{X}_0$
 - So each iteration moves at least one step down the lattice (for some component of the vector)
 - $\ldots \sqsubseteq \mathbf{F}(\mathbf{F}(\mathbf{X}_0)) \sqsubseteq \mathbf{F}(\mathbf{X}_0) \sqsubseteq \mathbf{X}_0$
- Therefore, # steps needed to reach a fixpoint is at most the height H of \mathcal{L} times the number of nodes: O(Hn)

QUALITY OF DATAFLOW ANALYSIS SOLUTIONS

Zdancewic CIS 341: Compilers

30

Best Possible Solution

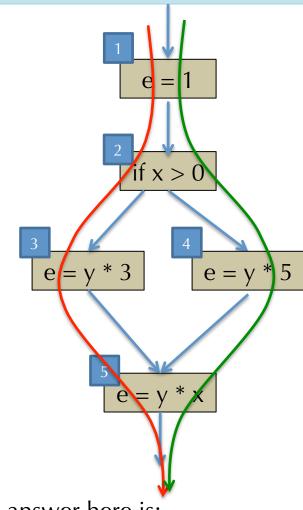
- Suppose we have a control-flow graph.
- If there is a path p₁ starting from the root node (entry point of the function) traversing the nodes n₀, n₁, n₂, ... n_k
- The best possible information along the path p₁ is:

$$Q_{p1} = F_{nk}(...F_{n2}(F_{n1}(F_{n0}(T)))...)$$

- Best solution at the output is some

 ^Q ⊆ Q_p for all paths p.
- Meet-over-paths (MOP) solution:

$$\prod_{p \in paths_to[n]} \mathbf{\ell}_p$$



Best answer here is:

$$F_5(F_3(F_2(F_1(T)))) \sqcap F_5(F_4(F_2(F_1(T))))$$

What about quality of iterative solution?

- Does the iterative solution: out[n] = $F_n(\prod_{n' \in pred[n]} out[n'])$ compute the MOP solution?
- MOP Solution: $\prod_{p \in paths_to[n]} \varrho_p$
- Answer: Yes, if the flow functions distribute over \square
 - Distributive means: $\prod_i F_n(\ell_i) = F_n(\prod_i \ell_i)$
 - Proof is a bit tricky & beyond the scope of this class. (Difficulty: loops in the control flow graph might mean there are infinitely many paths...)
- Not all analyses give MOP solution
 - They are more conservative.

Reaching Definitions is MOP

- $F_n[x] = gen[n] U (x kill[n])$
- Does F_n distribute over meet $\Pi = U$?

```
• F_n[x \sqcap y]

= gen[n] \cup ((x \cup y) - kill[n])

= gen[n] \cup ((x - kill[n]) \cup (y - kill[n]))

= (gen[n] \cup (x - kill[n])) \cup (gen[n] \cup (y - kill[n]))

= F_n[x] \cup F_n[y]

= F_n[x] \cap F_n[y]
```

• Therefore: Reaching Definitions with iterative analysis always terminates with the MOP (i.e. best) solution.

"Classic" Constant Propagation

- Constant propagation can be formulated as a dataflow analysis.
- Idea: propagate and fold integer constants in one pass:

$$x = 1;$$
 $x = 1;$ $y = 5 + x;$ $y = 6;$ $z = y * y;$ $z = 36;$

- Information about a single variable:
 - Variable is never defined.
 - Variable has a single, constant value.
 - Variable is assigned multiple values.

Domains for Constant Propagation

• We can make a constant propagation lattice \mathcal{L} for *one variable* like this:

$$T = \text{multiple values}$$
 ..., -3, -2, -1, 0, 1, 2, 3, ...

 \perp = never defined

- To accommodate multiple variables, we take the product lattice, with one element per variable.
 - Assuming there are three variables, x, y, and z, the elements of the product lattice are of the form (ℓ_x, ℓ_y, ℓ_z) .
 - Alternatively, think of the product domain as a context that maps variable names to their "abstract interpretations"
- What are "meet" and "join" in this product lattice?
- What is the height of the product lattice?

Flow Functions

- Consider the node x = y op z
- $F(Q_{x'} Q_{y'} Q_z) = ?$

F(\mathbb{l}_{x'} \ \pi, \mathbb{l}_{z}) = (\pi, \pi, \mathbb{l}_{z})
 "If either input might have multiple values the result of the operation might too."

•
$$F(\mathbf{Q}_{x'} \perp, \mathbf{Q}_{z}) = (\perp, \perp, \mathbf{Q}_{z})$$

$$\bullet \quad \mathsf{F}(\mathbf{Q}_{\mathsf{x}'} \; \mathbf{Q}_{\mathsf{y}'} \; \bot) = (\bot, \; \mathbf{Q}_{\mathsf{y}'} \; \bot)$$

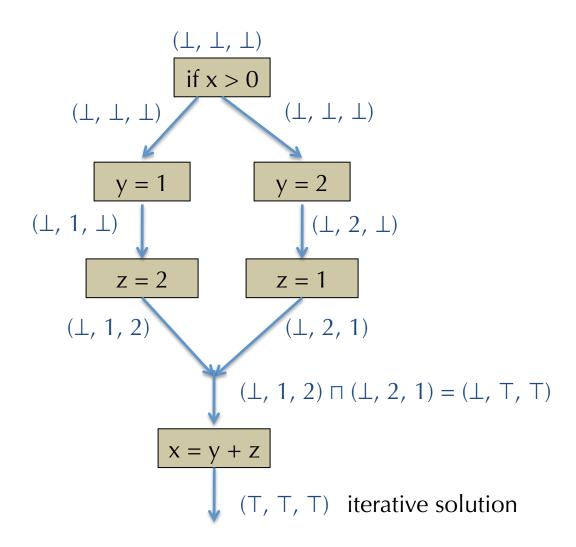
 F(\mathbb{l}_x, \perp , \mathbb{l}_z) = (\perp , \perp , \perp , \mathbb{l}_z)
 F(\mathbb{l}_x, \mathbb{l}_{y'} \perp) = (\perp , \mathbb{l}_{y'} \perp)
 "If either input is undefined the result of the operation is the result of the operation is too."

•
$$F(\ell_x, i, j) = (i \text{ op } j, i, j)$$

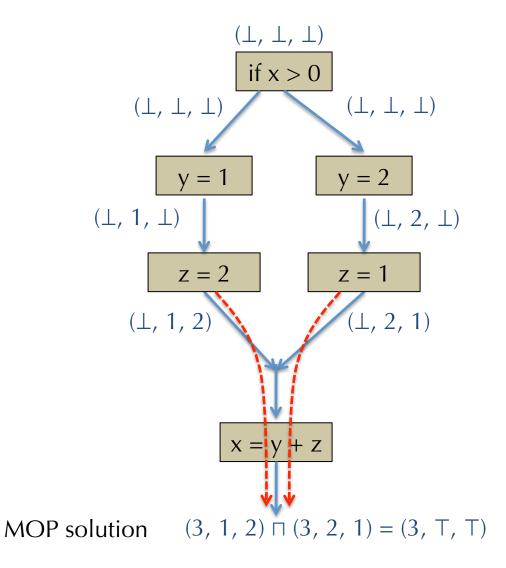
• $F(\ell_x, i, j) = (i \text{ op } j, i, j)$ "If the inputs are known constants, calculate the output statically."

- Flow functions for the other nodes are easy...
- Monotonic?
- Distributes over meets?

Iterative Solution

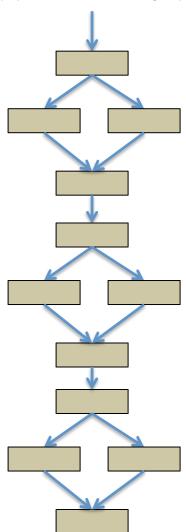


MOP Solution ≠ Iterative Solution



Why not compute MOP Solution?

- If MOP is better than the iterative analysis, why not compute it instead?
 - ANS: exponentially many paths (even in graph without loops)
- O(n) nodes
- O(n) edges
- O(2ⁿ) paths*
 - At each branch there is a choice of 2 directions



Zdancewic CIS 341: Compilers

^{*} Incidentally, a similar idea can be used to force ML / Haskell type inference to need to construct a type that is exponentially big in the size of the program!

Dataflow Analysis: Summary

- Many dataflow analyses fit into a common framework.
- Key idea: *Iterative solution* of a system of equations over a *lattice* of constraints.
 - Iteration terminates if flow functions are monotonic.
 - Solution is equivalent to meet-over-paths answer if the flow functions distribute over meet (□).

- Dataflow analyses as presented work for an "imperative" intermediate representation.
 - The values of temporary variables are updated ("mutated") during evaluation.
 - Such mutation complicates calculations
 - SSA = "Single Static Assignment" eliminates this problem, by introducing more temporaries – each one assigned to only once.
 - Next up: Converting to SSA, finding loops and dominators in CFGs