
CIS 341: COMPILERS
Lecture 2

HW1: Hellocaml
• Homework 1 is available on the course web site.

– Individual project – no groups
– Due: Wednesday, 26 Jan. 2020 at 11:59pm
– Topic: OCaml programming, an introduction

• OCaml head start:
– use `make test` to build the compiler

• We recommend using:
– VSCode + OCaml Platform

• See the course web pages about the CIS341 tool chain to get started

Zdancewic CIS 341: Compilers 2

INTERPRETERS

How to represent programs as data structures.
How to write programs that process programs.

Zdancewic CIS 341: Compilers 3

Factorial: Everyone’s Favorite Function
• Consider this implementation of factorial in a hypothetical

programming language:

• We need to describe the constructs of this hypothetical language
– Syntax: which sequences of characters count as a legal “program”?
– Semantics: what is the meaning (behavior) of a legal “program”?

Zdancewic CIS 341: Compilers 4

X = 6;
ANS = 1;
whileNZ (x) {

ANS = ANS * X;
X = X + -1;

}

Grammar for a Simple Language

• Concrete syntax (grammar) for a simple imperative language
– Written in “Backus-Naur form”
– <exp> and <cmd> are nonterminals
– ‘::=‘ , ‘|’ , and <…> symbols are part of the metalanguage
– keywords, like ‘skip’ and ‘ifNZ’ and symbols, like ‘{‘ and ‘+’ are part of the object language

• Need to represent the abstract syntax (i.e. hide the irrelevant of the concrete syntax)
• Implement the operational semantics (i.e. define the behavior, or meaning, of the program)

Zdancewic CIS 341: Compilers 5

<exp> ::=
| <X>
| <exp> + <exp>
| <exp> * <exp>
| <exp> < <exp>
| <integer constant>
| (<exp>)

<cmd> ::=
| skip
| <X> = <exp>
| ifNZ <exp> { <cmd> } else { <cmd> }
| whileNZ <exp> { <cmd> }
| <cmd>; <cmd>

BNF grammars are
themselves domain-specific
metalanguages for describing
the syntax of other languages…

OCaml Demo

simple.ml
translate.ml

Zdancewic CIS 341: Compilers 6

Concepts from the Demo
• ”Object” vs. “Meta” language:

– Object language: the language being represented, manipulated, analyzed
and transformed

– Metalanguage: the language in which the object language representation
and transformations are implemented

– SIMPLE vs. OCaml

• “Interpretation” vs. “Compilation”
– Interpreter: uses the features of the metalanguage to evaluate an object-

language program, producing a result
– Compiler: translates the object language to another (often lower level)

object language

• “Static” vs. “Dynamic”:
– Static = determined before the program is executed
– Dynamic = determined while the program is running

Zdancewic CIS 341: Compilers 7

Correctness?
• What does it mean for a compiler to be correct?

• What constitutes the “observable behavior” of a program?

• How do these notions affect what program transformations are
allowed?

Zdancewic CIS 341: Compilers 8

