
CIS 341: COMPILERS
Lecture 6

Announcements

• HW2: X86lite
– Due: Weds, February 9th at 11:59:59pm
– Pair-programming

– Please get started! (I can see who has cloned the git repo!)

Zdancewic CIS 341: Compilers 2

INTERMEDIATE
REPRESENTATIONS

Zdancewic CIS 341: Compilers 3

see: ir-by-hand.ml, ir<X>.ml

Multiple IR’s
• Goal: get program closer to machine code without losing the

information needed to do analysis and optimizations
• In practice, multiple intermediate representations

might be used (for different purposes)

CIS 341: Compilers 4

AST MIR

x86

Java
Byte-
code

Arm

Optimization

HIR

Optimization Optimization

Mid-level IR’s: Many Varieties
• Intermediate between AST (abstract syntax) and assembly
• May have unstructured jumps, abstract registers or memory locations
• Convenient for translation to high-quality machine code

– Example: all intermediate values might be named to facilitate
optimizations that attempt to minimize stack/register usage

• Many examples:
– Triples: OP a b

• Useful for instruction selection on X86 via “tiling”
– Quadruples: a = b OP c (RISC-like “three address form”)
– Stack-based:

• Easy to generate
• e.g., Java Bytecode, UCODE

– SSA: variant of quadruples where each temporary is assigned exactly once
• “pure” semantics (more like OCaml!)
• Easy dataflow analysis for optimization
• e.g., LLVM: industrial-strength IR, based on SSA

CIS 341: Compilers 5

our destination

Intermediate Representations
• IR1: Expressions

– immutable global variables
– simple arithmetic expressions

• IR2: Commands
– mutable global variables
– commands for update and sequencing

• IR3: Local control flow
– conditional commands & while loops
– basic blocks

• IR4: Procedures (top-level functions)
– local variables
– call stack

• IR5: “almost” LLVM IR
– missing phi-nodes (explained when we get there)

Zdancewic CIS 341: Compilers 6

Eliminating Nested Expressions
• Fundamental problem:

– Compiling complex & nested expression forms to simple operations.

IR

• Idea: name intermediate values, make order of evaluation explicit.
– No nested operations.

CIS 341: Compilers 7

((1 + X4) + (3 + (X1 * 5)))

Add(Add(Const 1, Var X4),
Add(Const 3, Mul(Var X1,

Const 5)))

Source

AST

?

Translation to SLL
• Given this:

• Translate to this desired SLL form:
let tmp0 = add 1L varX4 in
let tmp1 = mul varX1 5L in
let tmp2 = add 3L tmp1 in
let tmp3 = add tmp0 tmp2 in

tmp3

• Translation makes the order of evaluation explicit.
• Names intermediate values
• Note: introduced temporaries are never modified

CIS 341: Compilers 8

Add(Add(Const 1, Var X4),
Add(Const 3, Mul(Var X1,

Const 5)))

