
CIS 341: COMPILERS
Lecture 7

Announcements

• HW2: X86lite
– Available on the course web pages.
– Due: TOMORROW at 11:59:59pm

• HW3: LLVM to X86lite compiler
– Available by Thursday
– Due Weds. Feb. 23rd

Zdancewic CIS 341: Compilers 2

INTERMEDIATE
REPRESENTATIONS

Zdancewic CIS 341: Compilers 3

see: ir-by-hand.ml, ir<X>.ml

Eliminating Nested Expressions
• Fundamental problem:

– Compiling complex & nested expression forms to simple operations.

IR

• Idea: name intermediate values, make order of evaluation explicit.
– No nested operations.

CIS 341: Compilers 4

((1 + X4) + (3 + (X1 * 5)))

Add(Add(Const 1, Var X4),
Add(Const 3, Mul(Var X1,

Const 5)))

Source

AST

?

Translation to SLL
• Given this:

• Translate to this desired SLL form:
let tmp0 = add 1L varX4 in
let tmp1 = mul varX1 5L in
let tmp2 = add 3L tmp1 in
let tmp3 = add tmp0 tmp2 in

tmp3

• Translation makes the order of evaluation explicit.
• Names intermediate values
• Note: introduced temporaries are never modified

CIS 341: Compilers 5

Add(Add(Const 1, Var X4),
Add(Const 3, Mul(Var X1,

Const 5)))

Basic Blocks
• A sequence of instructions that is always executed starting at the first

instruction and always exits at the last instruction.
– Starts with a label that names the entry point of the basic block.
– Ends with a control-flow instruction (e.g., branch or return) the “link”
– Contains no other control-flow instructions
– Contains no interior label used as a jump target

• Basic blocks can be arranged into a control-flow graph
– Nodes are basic blocks
– There is a directed edge from node A to node B if the control flow

instruction at the end of basic block A might jump to the label of basic
block B.

CIS 341: Compilers 6

Control-flow Graphs

Zdancewic CIS 341: Compilers 7

tmp1 = add 3 4
tmp2 = mul 4 5
…
…
br loop

tmp3 = load valX
tmp4 = icmp eq tmp3, 0
br %4, label %body, label %post

loop:

tmp5 = load valX
tmp6 = sub tmp5 1
store valX tmp6
…
…
…
br label %loop

tmp7 = load valX
ret tmp7

body: post:

Nodes:
(labeled) basic blocks
instruction sequences
terminators

Edges:
determined by terminators

Intermediate Representations
• IR1: Expressions

– immutable global variables
– simple arithmetic expressions

• IR2: Commands
– mutable global variables
– commands for update and sequencing

• IR3: Local control flow
– conditional commands & while loops
– basic blocks

• IR4: Procedures (top-level functions)
– local variables
– call stack

• IR5: “almost” LLVM IR
– missing phi-nodes (explained when we get there)

Zdancewic CIS 341: Compilers 8

LLVM

Zdancewic CIS 341: Compilers 9

See llvm.org

Low-Level Virtual Machine (LLVM)
• Open-Source Compiler Infrastructure

– see llvm.org for full documentation
• Created by Chris Lattner (advised by Vikram Adve) at UIUC

– LLVM: An infrastructure for Mult-stage Optimization, 2002
– LLVM: A Compilation Framework for Lifelong Program Analysis and

Transformation, 2004

• 2005: Adopted by Apple for XCode 3.1
• Front ends:

– llvm-gcc (drop-in replacement for gcc)
– Clang: C, objective C, C++ compiler supported by Apple
– various languages: Swift, ADA, Scala, Haskell, …

• Back ends:
– x86 / Arm / Power / etc.

• Used in many academic/research projects
– Here at Penn: SoftBound, Vellvm

Zdancewic CIS 341: Compilers 10

LLVM Compiler Infrastructure

LLVM

frontends
like

'clang'

llc
backend
code gen

jit

Optimizations/
Transformations

Typed SSA
IR

Analysis

[Lattner et al.]

IR3/4/5 vs. LLVM
• “let - in” and

OCaml-style identifiers:

let tmp1 = add 3L 4L in

• OCaml-style “let-rec”
and functions for blocks:

let rec entry () =
let tmp1 = …

and foo () =
let tmp2 = …

• OCaml-style global variables:
let varX = ref 0L

• Omits let/in and prefixes local
identifiers with %:

%tmp1 = add i64 3, i64 4

• Uses lighter-weight colon
notation:

entry:
%tmp1 = …

foo:
%tmp2 = …

• Prefixes globals with @
define @X = i64 0

Zdancewic CIS 341: Compilers 12

Example LLVM Code
• LLVM offers a textual representation of its IR

– files ending in .ll

Zdancewic CIS 341: Compilers 13

define @factorial(%n) {
%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

start:
%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

then:
%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

else:
%12 = load %acc
ret %12

}

#include <stdio.h>
#include <stdint.h>

int64_t factorial(int64_t n) {
int64_t acc = 1;
while (n > 0) {

acc = acc * n;
n = n - 1;

}
return acc;

}

factorial64.c

factorial-pretty.ll

Real LLVM
• Decorates values with type information

i64
i64*
i1

• Permits numeric
identifiers

• Has alignment
annotations

• Keeps track of
entry edges for
each block:
preds = %5, %0

Zdancewic CIS 341: Compilers 14

; Function Attrs: nounwind ssp
define i64 @factorial(i64 %n) #0 {
%1 = alloca i64, align 8
%acc = alloca i64, align 8
store i64 %n, i64* %1, align 8
store i64 1, i64* %acc, align 8
br label %2

; <label>:2 ; preds = %5, %0
%3 = load i64* %1, align 8
%4 = icmp sgt i64 %3, 0
br i1 %4, label %5, label %11

; <label>:5 ; preds = %2
%6 = load i64* %acc, align 8
%7 = load i64* %1, align 8
%8 = mul nsw i64 %6, %7
store i64 %8, i64* %acc, align 8
%9 = load i64* %1, align 8
%10 = sub nsw i64 %9, 1
store i64 %10, i64* %1, align 8
br label %2

; <label>:11 ; preds = %2
%12 = load i64* %acc, align 8
ret i64 %12

}

factorial.ll

Example Control-flow Graph

Zdancewic CIS 341: Compilers 15

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %loop

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %body, label %post

loop:

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %loop

%12 = load %acc
ret %12

body: post:

define @factorial(%n) {

}

LL Basic Blocks and Control-Flow Graphs

• LLVM enforces (some of) the basic block invariants syntactically.
• Representation in OCaml:

• A control flow graph is represented as a list of labeled basic blocks
with these invariants:
– No two blocks have the same label
– All terminators mention only labels that are defined among the set of

basic blocks
– There is a distinguished, unlabeled, entry block:

Zdancewic CIS 341: Compilers 16

type block = {
insns : (uid * insn) list;
term : (uid * terminator)

}

type cfg = block * (lbl * block) list

LL Storage Model: Locals
• Several kinds of storage:

– Local variables (or temporaries): %uid
– Global declarations (e.g., for string constants): @gid
– Abstract locations: references to (stack-allocated) storage created by the

alloca instruction
– Heap-allocated structures created by external calls (e.g., to malloc)

• Local variables:
– Defined by the instructions of the form %uid = …
– Must satisfy the static single assignment invariant

• Each %uid appears on the left-hand side of an assignment only once in the
entire control flow graph.

– The value of a %uid remains unchanged throughout its lifetime
– Analogous to “let %uid = e in …” in OCaml

• Intended to be an abstract version of machine registers.
• We’ll see later how to extend SSA to allow richer use of local variables

– phi nodes

Zdancewic CIS 341: Compilers 17

LL Storage Model: alloca
• alloca instruction allocates stack space and returns a reference to it.

– The returned reference is stored in local:
%ptr = alloca type

– The amount of space allocated is determined by the type

• The contents of the slot are accessed via the load and store
instructions:

%acc = alloca i64 ; allocate a storage slot
store i64 341, i64* %acc ; store the integer value 341
%x = load i64, i64* %acc ; load the value 341 into %x

• Gives an abstract version of stack slots

Zdancewic CIS 341: Compilers 18

