
CIS 341: COMPILERS
Lecture 9

Announcements

• HW3: LLVM lite
– Available on the course web pages.
– Due: Weds., February 23rd at 11:59:59pm

• Midterm: March 3rd

– In class
– One-page, letter-sized, double-sided “cheat sheet” of notes permitted
– See examples of previous exams on the web pages

Zdancewic CIS 341: Compilers 2

START EARLY!!

TAGGED DATATYPES

Zdancewic CIS 341: Compilers 3

C-style Enumerations / ML-style datatypes

• In C:

• In ML:

• Associate an integer tag with each case: sun = 0, mon = 1, …
– C lets programmers choose the tags

• ML datatypes can also carry data:

• Representation: a foo value is a pointer to a pair: (tag, data)
• Example: tag(Bar) = 0, tag(Baz) = 1

⟦let f = Bar(3)⟧ =

⟦let g = Baz(4, f)⟧ =

CIS 341: Compilers 4

0 3f

1 4 fg

enum Day {sun, mon, tue, wed, thu, fri, sat} today;

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

type foo = Bar of int | Baz of int * foo

Switch Compilation
• Consider the C statement:

switch (e) {
case sun: s1; break;

case mon: s2; break;

…
case sat: s3; break;

}

• How to compile this?
– What happens if some of the break statements are omitted? (Control falls

through to the next branch.)

CIS 341: Compilers 5

Cascading ifs and Jumps
⟦switch(e) {case tag1: s1; case tag2 s2; …}⟧ =

• Each $tag1…$tagN
is just a constant
int tag value.

• Note: ⟦break;⟧
(within the
switch branches)
is:
br %merge

CIS 341: Compilers 6

%tag = ⟦e⟧;
br label %l1

l1: %cmp1 = icmp eq %tag, $tag1
br %cmp1 label %b1, label %merge

b1: ⟦s1⟧
br label %l2

l2: %cmp2 = icmp eq %tag, $tag2
br %cmp2 label %b2, label %merge

b2: ⟦s2⟧
br label %l3

…
lN: %cmpN = icmp eq %tag, $tagN

br %cmpN label %bN, label %merge
bN: ⟦sN⟧

br label %merge

merge:

Alternatives for Switch Compilation
• Nested if-then-else works OK in practice if # of branches is small

– (e.g. < 16 or so).

• For more branches, use better datastructures to organize the jumps:
– Create a table of pairs (v1, branch_label) and loop through
– Or, do binary search rather than linear search
– Or, use a hash table rather than binary search

• One common case: the tags are dense in some range
[min…max]
– Let N = max – min
– Create a branch table Branches[N] where Branches[i] = branch_label for

tag i.
– Compute tag = ⟦e⟧ and then do an indirect jump: J Branches[tag]

• Common to use heuristics to combine these techniques.

CIS 341: Compilers 7

ML-style Pattern Matching
• ML-style match statements are like C’s switch statements except:

– Patterns can bind variables
– Patterns can nest

• Compilation strategy:
– “Flatten” nested patterns into

matches against one constructor
at a time.

– Compile the match against the
tags of the datatype as for C-style switches.

– Code for each branch additionally must copy data from ⟦e⟧ to the
variables bound in the patterns.

• There are many opportunities for optimization, many papers about
“pattern-match compilation”
– Many of these transformations can be done at the AST level

CIS 341: Compilers 8

match e with
| Bar(z) -> e1
| Baz(y, Bar(w)) -> e2
| _ -> e3

match e with
| Bar(z) -> e1
| Baz(y, tmp) ->

(match tmp with
| Bar(w) -> e2
| Baz(_, _) -> e3)

DATATYPES IN THE LLVM IR

Zdancewic CIS 341: Compilers 9

Structured Data in LLVM
• LLVM’s IR is uses types to describe the structure of data.

• <#elts> is an integer constant >= 0
• Structure types can be named at the top level:

– Such structure types can be recursive

Zdancewic CIS 341: Compilers 10

t ::=
void
i1 | i8 | i64 N-bit integers
[<#elts> x t] arrays
fty function types
{t1, t2, … , tn} structures
t* pointers
%Tident named (identified) type

fty ::= Function Types
t (t1, .., tn) return, argument types

%T1 = type {t1, t2, … , tn}

Example LL Types
• An array of 341 integers: [341 x i64]

• A two-dimensional array of integers: [3 x [4 x i64]]

• Structure for representing arrays with their length:
{ i64 , [0 x i64] }

– There is no array-bounds check; the static type information is only used
for calculating pointer offsets.

• C-style linked lists (declared at the top level):
%Node = type { i64, %Node*}

• Structs from the C program shown earlier:
%Rect = { %Point, %Point, %Point, %Point }
%Point = { i64, i64 }

Zdancewic CIS 341: Compilers 11

getelementptr
• LLVM provides the getelementptr instruction to compute pointer

values
– Given a pointer and a “path” through the structured data pointed to by

that pointer, getelementptr computes an address
– This is the abstract analog of the X86 LEA (load effective address). It does

not access memory.
– It is a “type indexed” operation, since the size computations depend on

the type

• Example: access the x component of the first point of a rectangle:

Zdancewic CIS 341: Compilers 12

insn ::= …
| getelementptr t* %val, t1 idx1, t2 idx2 ,…

%tmp1 = getelementptr %Rect* %square, i32 0, i32 0
%tmp2 = getelementptr %Point* %tmp1, i32 0, i32 0

GEP Example*

Zdancewic CIS 341: Compilers 13

struct RT {
int A;
int B[10][20];
int C;

}
struct ST {

struct RT X;
int Y;
struct RT Z;

}
int *foo(struct ST *s) {
return &s[1].Z.B[5][13];

}

%RT = type { i32, [10 x [20 x i32]], i32 }
%ST = type { %RT, i32, %RT }
define i32* @foo(%ST* %s) {
entry:

%arrayidx = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
ret i32* %arrayidx

}

*adapted from the LLVM documentaion: see http://llvm.org/docs/LangRef.html#getelementptr-instruction

1. %s is a pointer to an (array of) %ST structs,
suppose the pointer value is ADDR

2. Compute the index of the 1st element by
adding size_ty(%ST).

3. Compute the index of the Z field by
adding size_ty(%RT) +
size_ty(i32) to skip past X and Y.

4. Compute the index of the B field by
adding size_ty(i32) to skip past A.

5. Index into the 2d array.

Final answer: ADDR + size_ty(%ST) + size_ty(%RT) + size_ty(i32)
+ size_ty(i32) + 5*20*size_ty(i32) + 13*size_ty(i32)

getelementptr
• GEP never dereferences the address it’s calculating:

– GEP only produces pointers by doing arithmetic
– It doesn’t actually traverse the links of a datastructure

• To index into a deeply nested structure, need to “follow the pointer”
by loadingfrom the computed pointer
– See list.ll from HW3

Zdancewic CIS 341: Compilers 14

Compiling Datastructures via LLVM
1. Translate high level language types into an LLVM representation type.

– For some languages (e.g. C) this process is straight forward
• The translation simply uses platform-specific alignment and padding

– For other languages, (e.g. OO languages) there might be a fairly complex
elaboration.
• e.g. for Ocaml, arrays types might be translated to pointers to length-indexed

structs.

⟦int array⟧ = { i32, [0 x i32]}*

2. Translate accesses of the data into getelementptr operations:
– e.g. for Ocaml array size access:

⟦length a⟧ =
%1 = getelementptr {i32, [0xi32]}* %a, i32 0, i32 0

Zdancewic CIS 341: Compilers 15

Bitcast
• What if the LLVM IR’s type system isn’t expressive enough?

– e.g. if the source language has subtyping, perhaps due to inheritance
– e.g. if the source language has polymorphic/generic types

• LLVM IR provides a bitcast instruction
– This is a form of (potentially) unsafe cast. Misuse can cause serious bugs

(segmentation faults, or silent memory corruption)

Zdancewic CIS 341: Compilers 16

%rect2 = type { i64, i64 } ; two-field record
%rect3 = type { i64, i64, i64 } ; three-field record

define @foo() {
%1 = alloca %rect3 ; allocate a three-field record
%2 = bitcast %rect3* %1 to %rect2* ; safe cast
%3 = getelementptr %rect2* %2, i32 0, i32 1 ; allowed
…

}

LLVMlite notes
• Real LLVM requires that constants appearing in getelementptr be

declared with type i32:

• LLVMlite ignores the i32 annotation and treats these as i64 values
– we keep the i32 annotation in the syntax to retain compatibility with the

clang compiler

Zdancewic CIS 341: Compilers 17

%struct = type { i64, [5 x i64], i64}

@gbl = global %struct {i64 1,
[5 x i64] [i64 2, i64 3, i64 4, i64 5, i64 6], i64 7}

define void @foo() {
%1 = getelementptr %struct* @gbl, i32 0, i32 0
…

}

TOUR OF HW 3

Zdancewic CIS 341: Compilers 18

see HW3 and README

ll.ml, using oatc, clang, etc.

LEXING

Zdancewic CIS 341: Compilers 19

Lexical analysis, tokens, regular expressions, automata

Compilation in a Nutshell

CIS 341: Compilers 20

Source Code
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
cmpq %eax, $0
jeq l2
jmp l3

l2:
…

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis
Token stream:

if (b == 0) { a = 0 ; }

Analysis &
Transformation

Intermediate code:
l1:
%cnd = icmp eq i64 %b,

0
br i1 %cnd, label %l2,

label %l3
l2:
store i64* %a, 1
br label %l3

l3:

Today: Lexing

CIS 341: Compilers 21

Source Code
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
cmpq %eax, $0
jeq l2
jmp l3

l2:
…

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis
Token stream:

if (b == 0) { a = 0 ; }

Analysis &
Transformation

Intermediate code:
l1:
%cnd = icmp eq i64 %b,

0
br i1 %cnd, label %l2,

label %l3
l2:
store i64* %a, 1
br label %l3

l3:

First Step: Lexical Analysis
• Change the character stream “if (b == 0) a = 0;” into tokens:

IF; LPAREN; Ident(“b”); EQEQ; Int(0); RPAREN; LBRACE;
Ident(“a”); EQ; Int(0); SEMI; RBRACE

• Token: data type that represents indivisible “chunks” of text:
– Identifiers: a y11 elsex _100
– Keywords: if else while
– Integers: 2 200 -500 5L
– Floating point: 2.0 .02 1e5
– Symbols: + * ` { } () ++ << >> >>>
– Strings: “x” “He said, \”Are you?\””
– Comments: (* CIS341: Project 1 … *) /* foo */

• Often delimited by whitespace (‘ ‘, \t, etc.)
– In some languages (e.g. Python or Haskell) whitespace is significant

CIS 341: Compilers 22

if (b == 0) { a = 0 ; }

DEMO: HANDLEX

Zdancewic CIS 341: Compilers 23

How hard can it be?
handlex0.ml and handlex.ml

Lexing By Hand
• How hard can it be?

– Tedious and painful!

CIS 341: Compilers 24

• Problems:
– Precisely define tokens

– Matching tokens simultaneously
– Reading too much input (need look ahead)
– Error handling
– Hard to compose/interleave tokenizer code
– Hard to maintain

PRINCIPLED SOLUTION TO
LEXING

Zdancewic CIS 341: Compilers 25

Regular Expressions
• Regular expressions precisely describe sets of strings.
• A regular expression R has one of the following forms:

– e Epsilon stands for the empty string
– ‘a’ An ordinary character stands for itself
– R1 | R2 Alternatives, stands for choice of R1 or R2
– R1R2 Concatenation, stands for R1 followed by R2
– R* Kleene star, stands for zero or more repetitions of R

• Useful extensions:
– “foo” Strings, equivalent to 'f''o''o'

– R+ One or more repetitions of R, equivalent to RR*
– R? Zero or one occurrences of R, equivalent to (e|R)
– ['a'-'z'] One of a or b or c or … z, equivalent to (a|b|…|z)

– [^'0'-'9'] Any character except 0 through 9
– R as x Name the string matched by R as x

CIS 341: Compilers 26

Example Regular Expressions
• Recognize the keyword “if”: ”if”

• Recognize a digit: ['0'-'9']
• Recognize an integer literal: '-'?['0'-'9']+
• Recognize an identifier:

(['a'-'z']|['A'-'Z'])(['0'-'9']|'_'|['a'-'z']|['A'-
'Z'])*

• In practice, it’s useful to be able to name regular expressions:

let lowercase = ['a'-'z']

let uppercase = ['A'-'Z']

let character = uppercase | lowercase

CIS 341: Compilers 27

How to Match?
• Consider the input string: ifx = 0

– Could lex as: or as:

• Regular expressions alone are ambiguous, need a rule for choosing
between the options above

• Most languages choose “longest match”
– So the 2nd option above will be picked
– Note that only the first option is “correct” for parsing purposes

• Conflicts: arise due to two tokens whose regular expressions have a
shared prefix
– Ties broken by giving some matches higher priority
– Example: keywords have priority over identifiers
– Usually specified by order the rules appear in the lex input file

CIS 341: Compilers 28

if x = 0 ifx = 0

Lexer Generators
• Reads a list of regular expressions: R1,…,Rn , one per token.
• Each token has an attached “action” Ai (just a piece of code to run

when the regular expression is matched):

rule token = parse
| '-'?digit+ { Int (Int32.of_string (lexeme lexbuf)) }
| '+' { PLUS }
| 'if' { IF }
| character (digit|character|'_')* { Ident (lexeme lexbuf) }
| whitespace+ { token lexbuf }

• Generates scanning code that:
1. Decides whether the input is of the form (R1|…|Rn)*
2. Whenever the scanner matches a (longest) token, it runs the associated

action

CIS 341: Compilers 29

actions
token
regular expressions

DEMO: OCAMLLEX

Zdancewic CIS 341: Compilers 30

lexlex.mll

Implementation Strategies
• Most Tools: lex, ocamllex, flex, etc.:

– Table-based
– Deterministic Finite Automata (DFA)
– Goal: Efficient, compact representation, high performance

• Other approaches:
– Brzozowski derivatives
– Idea: directly manipulate the (abstract syntax of) the regular expression
– Compute partial “derivatives”

• Regular expression that is “left-over” after seeing the next character

– Elegant, purely functional, implementation
– (very cool!)

Zdancewic CIS 341: Compilers 31

Finite Automata
• Consider the regular expression: ‘”’[^’”’]*’”’

• An automaton (DFA) can be represented as:
– A transition table:

– A graph:

CIS 341: Compilers 32

" Non-"

0 1 ERROR

1 2 1

2 ERROR ERROR

0 1 2
" "

Non-"

RE to Finite Automaton?
• Can we build a finite automaton for every regular expression?

– Yes! Recall CIS 262 for the complete theory…

• Strategy: consider every possible regular expression (by induction on
the structure of the regular expressions):

'a'

e

R1R2

CIS 341: Compilers 33

a

R1 R2
??

What about?

R1|R2

Nondeterministic Finite Automata
• A finite set of states, a start state, and accepting state(s)
• Transition arrows connecting states

– Labeled by input symbols
– Or e (which does not consume input)

• Nondeterministic: two arrows leaving the same state may have the
same label

CIS 341: Compilers 34

a

b

e

e

b

a
a

RE to NFA?
• Converting regular expressions to NFAs is easy.
• Assume each NFA has one start state, unique accept state

CIS 341: Compilers 35

a

R1 R2
e

‘a’

e

R1R2

RE to NFA (cont’d)
• Sums and Kleene star are easy with NFAs

CIS 341: Compilers 36

R1

R2
e

e

e

e

R1|R2

R*
R

e e

e

e

DFA versus NFA
• DFA:

– Action of the automaton for each input is fully determined
– Automaton accepts if the input is consumed upon reaching an accepting

state
– Obvious table-based implementation

• NFA:
– Automaton potentially has a choice at every step
– Automaton accepts an input string if there exists a way to reach an

accepting state
– Less obvious how to implement efficiently

CIS 341: Compilers 37

NFA to DFA conversion (Intuition)
• Idea: Run all possible executions of the NFA “in parallel”
• Keep track of a set of possible states: “finite fingers”
• Consider: -?[0-9]+

• NFA representation:

• DFA representation:

CIS 341: Compilers 38

1 2 3
[0-9] e

[0-9]

0

e

-

{1}

{2,3}{0,1}

- [0-9]

[0-9]
[0-9]

Summary of Lexer Generator Behavior
• Take each regular expression Ri and it’s action Ai
• Compute the NFA formed by (R1 | R2 | … | Rn)

– Remember the actions associated with the accepting states of the Ri
• Compute the DFA for this big NFA

– There may be multiple accept states (why?)
– A single accept state may correspond to one or more actions (why?)

• Compute the minimal equivalent DFA
– There is a standard algorithm due to Myhill & Nerode

• Produce the transition table
• Implement longest match:

– Start from initial state
– Follow transitions, remember last accept state entered (if any)
– Accept input until no transition is possible (i.e. next state is “ERROR”)
– Perform the highest-priority action associated with the last accept state; if

no accept state there is a lexing error

CIS 341: Compilers 39

Lexer Generators in Practice
• Many existing implementations: lex, Flex, Jlex, ocamllex, …

– For example ocamllex program
• see lexlex.mll, olex.mll, piglatin.mll on course website

• Error reporting:
– Associate line number/character position with tokens
– Use a rule to recognize ‘\n’ and increment the line number
– The lexer generator itself usually provides character position info.

• Sometimes useful to treat comments specially
– Nested comments: keep track of nesting depth

• Lexer generators are usually designed to work closely with parser
generators…

CIS 341: Compilers 40

DEMO: OCAMLLEX

Zdancewic CIS 341: Compilers 41

lexlex.mll, olex.mll, piglatin.mll

