
CIS 341: COMPILERS
Lecture 11

Announcements

• HW3: LLVM lite
– Available on the course web pages.
– Due: Weds., February 23rd at 11:59:59pm

• Midterm: March 3rd

– In class
– One-page, letter-sized, double-sided “cheat sheet” of notes permitted
– Coverage: interpreters / program transformers / x86 / calling conventions /

IRs / LLVM / Lexing / Parsing
– See examples of previous exams on the web pages

Zdancewic CIS 341: Compilers 2

it is officially too late to

START EARLY!!

Parsing

CIS 341: Compilers 3

Source Code
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
cmpq %eax, $0
jeq l2
jmp l3

l2:
…

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis
Token stream:

if (b == 0) { a = 0 ; }

Analysis &
Transformation

Intermediate code:
l1:
%cnd = icmp eq i64 %b,

0
br i1 %cnd, label %l2,

label %l3
l2:
store i64* %a, 1
br label %l3

l3:

Parsing: Finding Syntactic Structure

CIS 341: Compilers 4

{
if (b == 0) a = b;
while (a != 1) {

print_int(a);
a = a – 1;

}
}

Block

If While

Bop

b == 0

Bop

a != 1

Block

Expr

… …

Call

…

…

Source input

Abstract Syntax tree

CONTEXT FREE GRAMMARS

Zdancewic CIS 341: Compilers 5

Context-free Grammars
• Here is a specification of the language of balanced parens:

• The definition is recursive – S mentions itself.

• Idea: “derive” a string in the language by starting with S and rewriting
according to the rules:
– Example: S ⟼ (S)S ⟼ ((S)S)S ⟼ ((e)S)S ⟼ ((e)S)e⟼ ((e)e)e = (())

• You can replace the “nonterminal” S by one of its definitions
anywhere

• A context-free grammar accepts a string iff there is a derivation from
the start symbol

CIS 341: Compilers 6

S ⟼ (S)S

S ⟼ e

Note: Once again we
have to take care to
distinguish meta-language
elements (e.g. “S” and “⟼”)
from object-language
elements (e.g. “(“).*

* And, since we’re writing this description in English, we are
careful distinguish the meta-meta-language (e.g. words) from the
meta-language and object-language (e.g. symbols) by using quotes.

CFGs Mathematically
• A Context-free Grammar (CFG) consists of

– A set of terminals (e.g., a lexical token or e)
– A set of nonterminals (e.g., S and other syntactic variables)
– A designated nonterminal called the start symbol
– A set of productions: LHS ⟼ RHS

• LHS is a nonterminal
• RHS is a string of terminals and nonterminals

• Example: The balanced parentheses language:

• How many terminals? How many nonterminals? Productions?

CIS 341: Compilers 7

S ⟼ (S)S

S ⟼ e

Another Example: Sum Grammar
• A grammar that accepts parenthesized sums of numbers:

e.g.: (1 + 2 + (3 + 4)) + 5

• Note the vertical bar ‘|’ is shorthand for multiple productions:

S ⟼ E + S 4 productions

S ⟼ E 2 nonterminals: S, E
E ⟼ number 4 terminals: (,), +, number
E ⟼ (S) Start symbol: S

CIS 341: Compilers 8

S ⟼ E + S | E

E ⟼ number | (S)

Derivations in CFGs
• Example: derive (1 + 2 + (3 + 4)) + 5
• S ⟼ E + S

⟼ (S) + S
⟼ (E + S) + S
⟼ (1 + S) + S
⟼ (1 + E + S) + S
⟼ (1 + 2 + S) + S
⟼ (1 + 2 + E) + S
⟼ (1 + 2 + (S)) + S
⟼ (1 + 2 + (E + S)) + S
⟼ (1 + 2 + (3 + S)) + S
⟼ (1 + 2 + (3 + E)) + S
⟼ (1 + 2 + (3 + 4)) + S
⟼ (1 + 2 + (3 + 4)) + E
⟼ (1 + 2 + (3 + 4)) + 5

CIS 341: Compilers 9

S ⟼ E + S | E
E ⟼ number | (S)

For arbitrary strings a, b, g and
production rule A ⟼ b
a single step of the derivation is:

aAg ⟼ abg

(substitute b for an occurrence of A)

In general, there are many possible
derivations for a given string

Note: Underline indicates symbol
being expanded.

From Derivations to Parse Trees

• Tree representation of the
derivation

• Leaves of the tree are
terminals
– In-order traversal yields the

input sequence of tokens

• Internal nodes: nonterminals
• No information about the

order of the derivation steps

• (1 + 2 + (3 + 4)) + 5

CIS 341: Compilers 10

Parse Tree

4

S

E + S

(S) E

E + S 5

1 E + S

2 E

(S)

E + S

3 ES ⟼ E + S | E
E ⟼ number | (S)

From Parse Trees to Abstract Syntax
• Parse tree:
“concrete syntax”

• Abstract syntax tree
(AST):

• Hides, or abstracts,
unneeded information.

CIS 341: Compilers 11

+

1 +

+ 5

2 +

3 4

4

S

E + S

(S) E

E + S 5

1 E + S

2 E

(S)

E + S

3 E

Derivation Orders
• Productions of the grammar can be applied in any order.
• There are two standard orders:

– Leftmost derivation: Find the left-most nonterminal and apply a
production to it.

– Rightmost derivation: Find the right-most nonterminal and apply a
production there.

• Note that both strategies (and any other) yield the same
parse tree!
– Parse tree doesn’t contain the information about what order the

productions were applied.

CIS 341: Compilers 12

Example: Left- and rightmost derivations

• Leftmost derivation: Rightmost derivation:
• S ⟼ E + S S ⟼ E + S

⟼ (S) + S ⟼ E + E
⟼ (E + S) + S ⟼ E + 5
⟼ (1 + S) + S ⟼ (S) + 5
⟼ (1 + E + S) + S ⟼ (E + S) + 5
⟼ (1 + 2 + S) + S ⟼ (E + E + S) + 5
⟼ (1 + 2 + E) + S ⟼ (E + E + E) + 5
⟼ (1 + 2 + (S)) + S ⟼ (E + E + (S)) + 5
⟼ (1 + 2 + (E + S)) + S ⟼ (E + E + (E + S)) + 5
⟼ (1 + 2 + (3 + S)) + S ⟼ (E + E + (E + E)) + 5
⟼ (1 + 2 + (3 + E)) + S ⟼ (E + E + (E + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + S ⟼ (E + E + (3 + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + E ⟼ (E + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + 5 ⟼ (1 + 2 + (3 + 4)) + 5

CIS 341: Compilers 13

S ⟼ E + S | E
E ⟼ number | (S)

Loops and Termination
• Some care is needed when defining CFGs
• Consider:

– This grammar has nonterminal definitions that are “nonproductive”.
(i.e. they don’t mention any terminal symbols)

– There is no finite derivation starting from S, so the language is empty.

• Consider:

– This grammar is productive, but again there is no finite derivation starting from
S, so the language is empty

• Easily generalize these examples to a “cycle” of many nonterminals,
which can be harder to find in a large grammar

• Upshot: be aware of “vacuously empty” CFG grammars.
– Every nonterminal should eventually rewrite to an alternative that contains

only terminal symbols.

Zdancewic CIS 341: Compilers 14

S ⟼ E
E ⟼ S

S ⟼ (S)

GRAMMARS FOR
PROGRAMMING LANGUAGES

Zdancewic CIS 341: Compilers 15

Associativity, ambiguity, and precedence.

Associativity

Leftmost derivation:
S⟼ E + S
⟼ 1 + S
⟼ 1 + E + S
⟼ 1 + 2 + S
⟼ 1 + 2 + E
⟼ 1 + 2 + 3

Rightmost derivation:
S⟼ E + S
⟼ E + E + S
⟼ E + E + E
⟼ E + E + 3
⟼ E + 2 + 3
⟼ 1 + 2 + 3

CIS 341: Compilers 16

S

E + S

1 E + S

2 E

3
Parse Tree

3

+

1 +

2

AST

S ⟼ E + S | E
E ⟼ number | (S)Consider the input: 1 + 2 + 3

Associativity
• This grammar makes ‘+’ right associative…

– i.e., the abstract syntax tree is the same for both
1 + 2 + 3 and 1 + (2 + 3)

• Note that the grammar is right recursive…

• How would you make ‘+’ left associative?
• What are the trees for “1 + 2 + 3”?

Zdancewic CIS 341: Compilers 17

S ⟼ E + S | E
E ⟼ number | (S)

S refers to itself
on the right of +

Ambiguity
• Consider this grammar:

• Claim: it accepts the same set of strings as the previous one.

• What’s the difference?
• Consider these two leftmost derivations:

– S ⟼ S + S ⟼ 1 + S ⟼ 1 + S + S ⟼ 1 + 2 + S ⟼ 1 + 2 + 3
– S ⟼ S + S ⟼ S + S + S ⟼ 1 + S + S ⟼ 1 + 2 + S ⟼ 1 + 2 + 3

• One derivation gives left
associativity, the other gives
right associativity to ‘+’
– Which is which?

CIS 341: Compilers 18

S ⟼ S + S | (S) | number

+ +

1 +

2 3

+ 3

1 2

AST 1 AST 2

Why do we care about ambiguity?
• The ‘+’ operation is associative, so it doesn’t matter which tree we

pick. Mathematically, x + (y + z) = (x + y) + z
– But, some operations aren’t associative. Examples?
– Some operations are only left (or right) associative. Examples?

• Moreover, if there are multiple operations, ambiguity in the grammar
leads to ambiguity in their precedence

• Consider:

• Input: 1 + 2 * 3
– One parse = (1 + 2) * 3 = 9
– The other = 1 + (2 * 3) = 7

CIS 341: Compilers 19

*

+ 3

1 2

+

1 *

2 3

vs.

S ⟼ S + S | S * S | (S) | number

Eliminating Ambiguity
• We can often eliminate ambiguity by adding nonterminals and

allowing recursion only on the left (or right) .
• Higher-precedence operators go farther from the start symbol.

• Example:

• To disambiguate:
– Decide (following math) to make ‘*’ higher precedence than ‘+’
– Make ‘+’ left associative
– Make ‘*’ right associative

• Note:
– S2 corresponds to ‘atomic’

expressions

CIS 341: Compilers 20

S ⟼ S + S | S * S | (S) | number

S0 ⟼ S0 + S1 | S1

S1 ⟼ S2 * S1 | S2

S2 ⟼ number | (S0)

Context Free Grammars: Summary
• Context-free grammars allow concise specifications of

programming languages.
– An unambiguous CFG specifies how to parse: convert a token

stream to a (parse tree)

– Ambiguity can (often) be removed by encoding precedence and
associativity in the grammar.

• Even with an unambiguous CFG, there may be more than
one derivation
– Though all derivations correspond to the same abstract syntax tree.

• Still to come: finding a derivation
– But first: menhir

CIS 341: Compilers 21

DEMO: BOOLEAN LOGIC

Zdancewic CIS 341: Compilers 22

parser.mly, lexer.mll, range.ml, ast.ml, main.ml

LL & LR PARSING

Zdancewic CIS 341: Compilers 23

Searching for derivations.

CFGs Mathematically
• A Context-free Grammar (CFG) consists of

– A set of terminals (e.g., a token or e)
– A set of nonterminals (e.g., S and other syntactic variables)
– A designated nonterminal called the start symbol
– A set of productions: LHS ⟼ RHS

• LHS is a nonterminal
• RHS is a string of terminals and nonterminals

• Example: The balanced parentheses language:

• How many terminals? How many nonterminals? Productions?

CIS 341: Compilers 24

S ⟼ (S)S

S ⟼ e

Consider finding left-most derivations
• Look at only one input symbol at a time.

Partly-derived String Look-ahead Parsed/Unparsed Input
S ((1 + 2 + (3 + 4)) + 5
⟼ E + S ((1 + 2 + (3 + 4)) + 5
⟼ (S) + S 1 (1 + 2 + (3 + 4)) + 5
⟼ (E + S) + S 1 (1 + 2 + (3 + 4)) + 5
⟼ (1 + S) + S 2 (1 + 2 + (3 + 4)) + 5
⟼ (1 + E + S) + S 2 (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + S) + S ((1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + E) + S ((1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (S)) + S 3 (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (E + S)) + S 3 (1 + 2 + (3 + 4)) + 5
⟼ …

CIS 341: Compilers 25

S ⟼ E + S | E
E ⟼ number | (S)

There is a problem
• We want to decide which production

to apply based on the look-ahead symbol.
• But, there is a choice:

(1) S ⟼ E ⟼ (S) ⟼ (E) ⟼ (1)
vs.

(1) + 2 S ⟼ E + S ⟼ (S) + S ⟼ (E) + S ⟼ (1) + S ⟼ (1) + E
⟼ (1) + 2

• Given the look-ahead symbol: ‘(‘ it isn’t clear whether to pick
S ⟼ E or S ⟼ E + S first.

CIS 341: Compilers 26

S ⟼ E + S | E
E ⟼ number | (S)

LL(1) GRAMMARS

Zdancewic CIS 341: Compilers 27

Grammar is the problem
• Not all grammars can be parsed “top-down” with only a single

lookahead symbol.
• Top-down: starting from the start symbol (root of the parse tree) and

going down

• LL(1) means
– Left-to-right scanning
– Left-most derivation,
– 1 lookahead symbol

• This language isn’t “LL(1)”
• Is it LL(k) for some k?

• What can we do?

CIS 341: Compilers 28

S ⟼ E + S | E
E ⟼ number | (S)

Making a grammar LL(1)
• Problem: We can’t decide which S production to apply until we see

the symbol after the first expression.
• Solution: “Left-factor” the grammar. There is a common S prefix for

each choice, so add a new non-terminal S’ at the decision point:

• Also need to eliminate left-recursion somehow. Why?
• Consider:

CIS 341: Compilers 29

S ⟼ E + S | E
E ⟼ number | (S)

S ⟼ S + E | E
E ⟼ number | (S)

S ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E ⟼ number | (S)

LL(1) Parse of the input string
• Look at only one input symbol at a time.

Partly-derived String Look-ahead Parsed/Unparsed Input
S ((1 + 2 + (3 + 4)) + 5
⟼ E S’ ((1 + 2 + (3 + 4)) + 5
⟼ (S) S’ 1 (1 + 2 + (3 + 4)) + 5
⟼ (E S’) S’ 1 (1 + 2 + (3 + 4)) + 5
⟼ (1 S’) S’ + (1 + 2 + (3 + 4)) + 5
⟼ (1 + S) S’ 2 (1 + 2 + (3 + 4)) + 5
⟼ (1 + E S’) S’ 2 (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 S’) S’ + (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + S) S’ ((1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + E S’) S’ ((1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (S)S’) S’ 3 (1 + 2 + (3 + 4)) + 5

CIS 341: Compilers 30

S ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E ⟼ number | (S)

Predictive Parsing
• Given an LL(1) grammar:

– For a given nonterminal, the lookahead symbol uniquely determines the
production to apply.

– Top-down parsing = predictive parsing
– Driven by a predictive parsing table:

nonterminal * input token → production

• Note: it is convenient to add a special end-of-file token $ and a start
symbol T (top-level) that requires $.

CIS 341: Compilers 31

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ (S)

T ⟼ S$
S ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E ⟼ number | (S)

How do we construct the parse table?
• Consider a given production: A à g
• Construct the set of all input tokens that may appear first in strings

that can be derived from g
– Add the production à g to the entry (A,token) for each such token.

• If g can derive e (the empty string), then we construct the set of all
input tokens that may follow the nonterminal A in the grammar.
– Add the production à g to the entry (A, token) for each such token.

• Note: if there are two different productions for a given entry, the
grammar is not LL(1)

CIS 341: Compilers 32

Example
• First(T) = First(S)
• First(S) = First(E)
• First(S’) = { + }
• First(E) = { number, ‘(‘ }

• Follow(S’) = Follow(S)
• Follow(S) = { $, ‘)’ } ∪ Follow(S’)

Zdancewic CIS 341: Compilers 33

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ (S)

T ⟼ S$
S ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E ⟼ number | (S)

Note: we want the least
solution to this system of set
equations… a fixpoint
computation. More on
these later in the course.

Converting the table to code
• Define n mutually recursive functions

– one for each nonterminal A: parse_A
– The type of parse_A is unit -> ast if A is not an auxiliary nonterminal
– Parse functions for auxiliary nonterminals (e.g. S’) take extra ast’s as

inputs, one for each nonterminal in the “factored” prefix.

• Each function “peeks” at the lookahead token and then follows the
production rule in the corresponding entry.
– Consume terminal tokens from the input stream
– Call parse_X to create sub-tree for nonterminal X
– If the rule ends in an auxiliary nonterminal, call it with appropriate ast’s.

(The auxiliary rule is responsible for creating the ast after looking at more
input.)

– Otherwise, this function builds the ast tree itself and returns it.

CIS 341: Compilers 34

DEMO: PARSER.ML

Zdancewic CIS 341: Compilers 35

Hand-generated LL(1) code for the table above.

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ (S)

LL(1) Summary
• Top-down parsing that finds the leftmost derivation.
• Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursive-

descent parser

• Problems:
– Grammar must be LL(1)
– Can extend to LL(k) (it just makes the table bigger)
– Grammar cannot be left recursive (parser functions will loop!)

• Is there a better way?

CIS 341: Compilers 36

LR GRAMMARS

Zdancewic CIS 341: Compilers 37

Bottom-up Parsing (LR Parsers)
• LR(k) parser:

– Left-to-right scanning
– Rightmost derivation
– k lookahead symbols

• LR grammars are more expressive than LL
– Can handle left-recursive (and right recursive) grammars; virtually all

programming languages
– Easier to express programming language syntax (no left factoring)

• Technique: “Shift-Reduce” parsers
– Work bottom up instead of top down
– Construct right-most derivation of a program in the grammar
– Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
– Better error detection/recovery

CIS 341: Compilers 38

Top-down vs. Bottom up
• Consider the left-

recursive grammar:

• (1 + 2 + (3 + 4)) + 5

• What part of the
tree must we
know after scanning
just “(1 + 2” ?

• In top-down, must
be able to guess
which productions
to use…

CIS 341: Compilers 39

S

S + E

E 5

S + E

1

S + E

E 2

(S)

E 4

(S)

S + E

3
Top-down

S

S + E

E 5

S + E

1

S + E

E 2

(S)

E 4

(S)

S + E

3

Bottom-up

Note: ‘(‘ has
been scanned
but not
consumed.
Processing it is
still pending.

S ⟼ S + E | E
E ⟼ number | (S)

Progress of Bottom-up Parsing
Reductions Scanned Input Remaining
(1 + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(E + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + E + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (E + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S + E)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + E) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
E + 5 ⟻ (1 + 2 + (3 + 4)) + 5
S + 5 ⟻ (1 + 2 + (3 + 4)) + 5
S + E⟻ (1 + 2 + (3 + 4)) + 5
S

CIS 341: Compilers 40

S ⟼ S + E | E
E ⟼ number | (S)

R
ig

ht
m

os
t d

er
iv

at
io

n

Shift/Reduce Parsing
• Parser state:

– Stack of terminals and nonterminals.
– Unconsumed input is a string of terminals
– Current derivation step is stack + input

• Parsing is a sequence of shift and reduce operations:
• Shift: move look-ahead token to the stack
• Reduce: Replace symbols g at top of stack with nonterminal X such

that X ⟼ g is a production. (pop g, push X)
Stack Input Action

(1 + 2 + (3 + 4)) + 5 shift (
(1 + 2 + (3 + 4)) + 5 shift 1
(1 + 2 + (3 + 4)) + 5 reduce: E ⟼ number
(E + 2 + (3 + 4)) + 5 reduce: S ⟼ E
(S + 2 + (3 + 4)) + 5 shift +
(S + 2 + (3 + 4)) + 5 shift 2
(S + 2 + (3 + 4)) + 5 reduce: E ⟼ number

CIS 341: Compilers 41

S ⟼ S + E | E
E ⟼ number | (S)

LR(0) GRAMMARS

Zdancewic CIS 341: Compilers 42

Simple LR parsing with no look ahead.

LR Parser States
• Goal: know what set of reductions are legal at any given point.
• Idea: Summarize all possible stack prefixes a as a finite parser state.

– Parser state is computed by a DFA that reads the stack s.
– Accept states of the DFA correspond to unique reductions that apply.

• Example: LR(0) parsing
– Left-to-right scanning, Right-most derivation, zero look-ahead tokens
– Too weak to handle many language grammars (e.g. the “sum” grammar)
– But, helpful for understanding how the shift-reduce parser works.

CIS 341: Compilers 43

Example LR(0) Grammar: Tuples
• Example grammar for non-empty tuples and identifiers:

• Example strings:
x
(x,y)
((((x))))
(x, (y, z), w)
(x, (y, (z, w)))

CIS 341: Compilers 44

S ⟼ (L) | id
L ⟼ S | L , S

Parse tree for:
(x, (y, z), w)

(L)

L , S

L , S

(L)

L , Sx

S

y

S z

w

S

Shift/Reduce Parsing
• Parser state:

– Stack of terminals and nonterminals.
– Unconsumed input is a string of terminals
– Current derivation step is stack + input

• Parsing is a sequence of shift and reduce operations:
• Shift: move look-ahead token to the stack: e.g.

Stack Input Action
(x, (y, z), w) shift (

(x, (y, z), w) shift x

• Reduce: Replace symbols g at top of stack with nonterminal X such
that X ⟼ g is a production. (pop g, push X): e.g.

Stack Input Action
(x , (y, z), w) reduce S ⟼ id
(S , (y, z), w) reduce L ⟼ S

CIS 341: Compilers 45

S ⟼ (L) | id
L ⟼ S | L , S

Example Run
Stack Input Action

(x, (y, z), w) shift (
(x, (y, z), w) shift x
(x , (y, z), w) reduce S ⟼ id
(S , (y, z), w) reduce L ⟼ S
(L , (y, z), w) shift ,
(L, (y, z), w) shift (
(L, (y, z), w) shift y
(L, (y , z), w) reduce S ⟼ id
(L, (S , z), w) reduce L ⟼ S
(L, (L , z), w) shift ,
(L, (L, z), w) shift z
(L, (L, z), w) reduce S ⟼ id
(L, (L, S), w) reduce L ⟼ L, S
(L, (L), w) shift)
(L, (L) , w) reduce S ⟼ (L)
(L, S , w) reduce L ⟼ L, S
(L , w) shift ,
(L, w) shift w

CIS 341: Compilers 46

S ⟼ (L) | id
L ⟼ S | L , S

Action Selection Problem
• Given a stack s and a look-ahead symbol b, should the parser:

– Shift b onto the stack (new stack is sb)
– Reduce a production X ⟼ g, assuming that s = ag (new stack is aX)?

• Sometimes the parser can reduce but shouldn’t
– For example, X ⟼ e can always be reduced

• Sometimes the stack can be reduced in different ways

• Main idea: decide what to do based on a prefix a of the stack plus the
look-ahead symbol.
– The prefix a is different for different possible reductions since in

productions X ⟼ g and Y ⟼ b, g and b might have different lengths.

• Main goal: know what set of reductions are legal at any point.
– How do we keep track?

CIS 341: Compilers 47

LR(0) States
• An LR(0) state is a set of items keeping track of progress on possible

upcoming reductions.
• An LR(0) item is a production from the language with an extra

separator “.” somewhere in the right-hand-side

• Example items: S ⟼ .(L) or S ⟼ (. L) or L ⟼ S.
• Intuition:

– Stuff before the ‘.’ is already on the stack
(beginnings of possible g’s to be reduced)

– Stuff after the ‘.’ is what might be seen next
– The prefixes a are represented by the state itself

CIS 341: Compilers 48

S ⟼ (L) | id
L ⟼ S | L , S

Constructing the DFA: Start state & Closure

• First step: Add a new production
S’ ⟼ S$ to the grammar

• Start state of the DFA = empty stack,
so it contains the item:

S’ ⟼ .S$
• Closure of a state:

– Adds items for all productions whose LHS nonterminal occurs in an item
in the state just after the ‘.’

– The added items have the ‘.’ located at the beginning (no symbols for
those items have been added to the stack yet)

– Note that newly added items may cause yet more items to be added to the
state… keep iterating until a fixed point is reached.

• Example: CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .(L), S⟼.id}

• Resulting “closed state” contains the set of all possible productions
that might be reduced next.

CIS 341: Compilers 49

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

Example: Constructing the DFA

• First, we construct a state with the initial item S’ ⟼ .S$

CIS 341: Compilers 50

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$

Example: Constructing the DFA

• Next, we take the closure of that state:
CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .(L), S ⟼ .id}

• In the set of items, the nonterminal S appears after the ‘.’
• So we add items for each S production in the grammar

CIS 341: Compilers 51

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

Example: Constructing the DFA

• Next we add the transitions:
• First, we see what terminals and

nonterminals can appear after the
‘.’ in the source state.
– Outgoing edges have those label.

• The target state (initially) includes
all items from the source state that
have the edge-label symbol after
the ‘.’, but we advance the ‘.’ (to
simulate shifting the item onto the
stack)

CIS 341: Compilers 52

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)

S ⟼ id.

S’ ⟼ S.$

id

S

(

Example: Constructing the DFA

• Finally, for each new state, we take the closure.
• Note that we have to perform two iterations to compute

CLOSURE({S ⟼ (. L)})
– First iteration adds L ⟼ .S and L ⟼ .L, S
– Second iteration adds S ⟼ .(L) and S ⟼ .id

CIS 341: Compilers 53

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)
L ⟼ .S
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id.

S’ ⟼ S.$

id

S

(

Full DFA for the Example

CIS 341: Compilers 54

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)
L ⟼ .S
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id. L ⟼ L, . S
S ⟼ .(L)
S ⟼ .id

L ⟼ L, S.

S ⟼ (L .)
L ⟼ L . , S

S ⟼ (L).L ⟼ S.S’ ⟼ S.$

Done!

id id S

S

$

(

(

S
)

(

L

id

,

Reduce state: ‘.’ at the
end of the production

• Current state: run the
DFA on the stack.

• If a reduce state is
reached, reduce

• Otherwise, if the next
token matches an
outgoing edge, shift.

• If no such transition,
it is a parse error.

1 2

3

4

5

67

8 9

Using the DFA
• Run the parser stack through the DFA.
• The resulting state tells us which productions might be

reduced next.
– If not in a reduce state, then shift the next symbol and transition

according to DFA.
– If in a reduce state, X ⟼ g with stack ag, pop g and push X.

• Optimization: No need to re-run the DFA from beginning
every step
– Store the state with each symbol on the stack: e.g. 1(3(3L5)6
– On a reduction X ⟼ g, pop stack to reveal the state too:

e.g. From stack 1(3(3L5)6 reduce S ⟼ (L) to reach stack 1(3
– Next, push the reduction symbol: e.g. to reach stack 1(3S
– Then take just one step in the DFA to find next state: 1(3S7

CIS 341: Compilers 55

Implementing the Parsing Table
Represent the DFA as a table of shape:

state * (terminals + nonterminals)
• Entries for the “action table” specify two kinds of actions:

– Shift and goto state n
– Reduce using reduction X ⟼ g

• First pop g off the stack to reveal the state
• Look up X in the “goto table” and goto that state

CIS 341: Compilers 56

Action
table

Goto
tableSt

at
e

Terminal Symbols Nonterminal Symbols

Example Parse Table

CIS 341: Compilers 57

() id , $ S L

1 s3 s2 g4

2 S⟼id S⟼id S⟼id S⟼id S⟼id

3 s3 s2 g7 g5

4 DONE

5 s6 s8

6 S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L)

7 L ⟼ S L ⟼ S L ⟼ S L ⟼ S L ⟼ S

8 s3 s2 g9

9 L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S

sx = shift and goto state x
gx = goto state x

Example
• Parse the token stream: (x, (y, z), w)$

Stack Stream Action (according to table)

e1 (x, (y, z), w)$ s3
e1(3 x, (y, z), w)$ s2
e1(3x2 , (y, z), w)$ Reduce: S⟼id
e1(3S , (y, z), w)$ g7 (from state 3 follow S)
e1(3S7 , (y, z), w)$ Reduce: L⟼S
e1(3L , (y, z), w)$ g5 (from state 3 follow L)
e1(3L5 , (y, z), w)$ s8
e1(3L5,8 (y, z), w)$ s3

e1(3L5,8(3 y, z), w)$ s2

Zdancewic CIS 341: Compilers 58

LR(0) Limitations
• An LR(0) machine only works if states with reduce actions

have a single reduce action.
– In such states, the machine always reduces (ignoring lookahead)

• With more complex grammars, the DFA construction will
yield states with shift/reduce and reduce/reduce conflicts:

OK shift/reduce reduce/reduce

• Such conflicts can often be resolved by using a look-ahead
symbol: LR(1)

CIS 341: Compilers 59

S ⟼ (L). S ⟼ (L).
L ⟼ .L , S

S ⟼ L ,S.
S ⟼ ,S.

Examples
• Consider the left associative and right associative “sum” grammars:

left right

• One is LR(0) the other isn’t… which is which and why?
• What kind of conflict do you get? Shift/reduce or Reduce/reduce?

• Ambiguities in associativity/precedence usually lead to shift/reduce
conflicts.

CIS 341: Compilers 60

S ⟼ S + E | E
E ⟼ number | (S)

S ⟼ E + S | E
E ⟼ number | (S)

LR(1) Parsing
• Algorithm is similar to LR(0) DFA construction:

– LR(1) state = set of LR(1) items
– An LR(1) item is an LR(0) item + a set of look-ahead symbols:

A ⟼ a.b , L

• LR(1) closure is a little more complex:
• Form the set of items just as for LR(0) algorithm.
• Whenever a new item C ⟼ .g is added because A ⟼ b.Cd , L is

already in the set, we need to compute its look-ahead set M:
1. The look-ahead set M includes FIRST(d)

(the set of terminals that may start strings derived from d)
2. If d can derive e (it is nullable), then the look-ahead M also contains L

CIS 341: Compilers 61

Example Closure

• Start item: S’ ⟼ .S$, {}

• Since S is to the right of a ‘.’, add:
S ⟼ .E + S , {$} Note: {$} is FIRST($)
S ⟼ .E , {$}

• Need to keep closing, since E appears to the right of a ‘.’ in
‘.E + S’:

E ⟼ .number , {+} Note: + added for reason 1
E ⟼ .(S) , {+}

• Because E also appears to the right of ‘.’ in ‘.E’ we get:
E ⟼ .number , {$} Note: $ added for reason 2
E ⟼ .(S) , {$}

• All items are distinct, so we’re done

CIS 341: Compilers 62

S’ ⟼ S$
S ⟼ E + S | E
E ⟼ number | (S)

Using the DFA

• The behavior is determined if:
– There is no overlap among the

look-ahead sets for each reduce
item, and

– None of the look-ahead symbols
appear to the right of a ‘.’

CIS 341: Compilers 63

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+}
E ⟼ .(S) {+}
E ⟼ .num {$}
E ⟼ .(S) {$}

S ⟼ E .+ S {$}
S ⟼ E. {$}

E

1

+ $ E

1 g2

2 s3 S ⟼ E

2
+

Fragment of the Action & Goto tables

Choice between shift
and reduce is resolved.

LR variants
• LR(1) gives maximal power out of a 1 look-ahead symbol parsing table

– DFA + stack is a push-down automaton (recall 262)
• In practice, LR(1) tables are big.

– Modern implementations (e.g. menhir) directly generate code

• LALR(1) = “Look-ahead LR”
– Merge any two LR(1) states whose items are identical except for the look-

ahead sets:

– Such merging can lead to nondeterminism (e.g. reduce/reduce conflicts), but
– Results in a much smaller parse table and works well in practice
– This is the usual technology for automatic parser generators: yacc, ocamlyacc

• GLR = “Generalized LR” parsing
– Efficiently compute the set of all parses for a given input
– Later passes should disambiguate based on other context

CIS 341: Compilers 64

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+}
E ⟼ .(S) {+}
E ⟼ .num {$}
E ⟼ .(S) {$}

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+,$}
E ⟼ .(S) {+,$}

Classification of Grammars

CIS 341: Compilers 65

LR(0)

SLR

LALR(1)

LR(1)

LL(1)

