
CIS 341: COMPILERS
Lecture 11



Announcements

• HW3: LLVM lite
– Available on the course web pages.
– Due: Weds., February 23rd at 11:59:59pm

• Midterm: March 3rd

– In class
– One-page, letter-sized, double-sided “cheat sheet” of notes permitted
– Coverage: interpreters / program transformers / x86 / calling conventions / 

IRs / LLVM / Lexing / Parsing
– See examples of previous exams on the web pages
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it is officially too late to

START EARLY!!



Parsing
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Source Code
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
cmpq %eax, $0
jeq l2
jmp l3

l2:
…

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Lexical Analysis
Token stream:

if ( b == 0 ) { a = 0 ; }

Analysis & 
Transformation

Intermediate code:
l1:
%cnd = icmp eq i64 %b, 

0 
br i1 %cnd, label %l2, 

label %l3
l2:
store i64* %a, 1
br label %l3

l3:



Parsing: Finding Syntactic Structure
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{
if (b == 0) a = b;
while (a != 1) {

print_int(a);
a = a – 1;

}
}

Block

If While

Bop

b == 0

Bop

a != 1

Block

Expr

… …

Call

…

…

Source input

Abstract Syntax tree



CONTEXT FREE GRAMMARS
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Context-free Grammars
• Here is a specification of the language of balanced parens:

• The definition is recursive – S mentions itself.

• Idea: “derive” a string in the language by starting with S and rewriting 
according to the rules:
– Example:   S ⟼ (S)S ⟼ ((S)S)S ⟼ ((e)S)S ⟼ ((e)S)e⟼ ((e)e)e = (())

• You can replace the “nonterminal” S by one of its definitions 
anywhere

• A context-free grammar accepts a string iff there is a derivation from 
the start symbol
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S ⟼ (S)S

S ⟼ e

Note: Once again we 
have to take care to
distinguish meta-language
elements (e.g. “S” and “⟼”) 
from object-language 
elements (e.g. “(“ ).*

* And, since we’re writing this description in English, we are
careful distinguish the meta-meta-language (e.g. words) from the
meta-language and object-language (e.g. symbols) by using quotes.



CFGs Mathematically
• A Context-free Grammar (CFG) consists of 

– A set of terminals (e.g., a lexical token or e)
– A set of nonterminals (e.g., S and other syntactic variables)
– A designated nonterminal called the start symbol
– A set of productions:      LHS ⟼ RHS

• LHS is a nonterminal
• RHS is a string of terminals and nonterminals

• Example:   The balanced parentheses language:

• How many terminals?  How many nonterminals? Productions?
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S ⟼ (S)S

S ⟼ e



Another Example: Sum Grammar
• A grammar that accepts parenthesized sums of numbers:

e.g.:  (1 + 2 + (3 + 4)) + 5

• Note the vertical bar ‘|’ is shorthand for multiple productions:

S ⟼ E + S 4 productions

S ⟼ E 2 nonterminals: S, E
E ⟼ number 4 terminals: (, ), +, number
E ⟼ (S) Start symbol: S
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S  ⟼ E + S |   E

E  ⟼ number |   ( S )



Derivations in CFGs
• Example: derive (1 + 2 + (3 + 4)) + 5
• S ⟼ E + S

⟼ (S) + S
⟼ (E + S) + S
⟼ (1 + S) + S
⟼ (1 + E + S) + S
⟼ (1 + 2 + S) + S
⟼ (1 + 2 + E) + S
⟼ (1 + 2 + (S)) + S
⟼ (1 + 2 + (E + S)) + S
⟼ (1 + 2 + (3 + S)) + S
⟼ (1 + 2 + (3 + E)) + S
⟼ (1 + 2 + (3 + 4)) + S
⟼ (1 + 2 + (3 + 4)) + E
⟼ (1 + 2 + (3 + 4)) + 5
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S ⟼ E + S  |  E
E ⟼ number | ( S )

For arbitrary strings a, b, g and
production rule   A ⟼ b
a single step of the derivation is:

aAg ⟼ abg

( substitute b for an occurrence of A)

In general, there are many possible
derivations for a given string

Note: Underline indicates symbol
being expanded.



From Derivations to Parse Trees

• Tree representation of the 
derivation

• Leaves of the tree are 
terminals
– In-order traversal yields the 

input sequence of tokens

• Internal nodes: nonterminals
• No information about the 

order of the derivation steps

• (1 + 2 + (3 + 4)) + 5     
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Parse Tree

4

S

E   +   S

(    S    ) E

E   +   S 5

1 E   +   S

2 E

(    S    )

E   +   S

3 ES ⟼ E + S  |  E
E ⟼ number | ( S )



From Parse Trees to Abstract Syntax
• Parse tree:
“concrete syntax”

• Abstract syntax tree
(AST):

• Hides, or abstracts, 
unneeded information.
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+

1 +

+ 5

2 +

3 4

4

S

E   +   S

(    S    ) E

E   +   S 5

1 E   +   S

2 E

(    S    )

E   +   S

3 E



Derivation Orders
• Productions of the grammar can be applied in any order.
• There are two standard orders:

– Leftmost derivation: Find the left-most nonterminal and apply a 
production to it.

– Rightmost derivation: Find the right-most nonterminal and apply a 
production there.

• Note that both strategies (and any other) yield the same 
parse tree!
– Parse tree doesn’t contain the information about what order the 

productions were applied.
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Example: Left- and rightmost derivations

• Leftmost derivation: Rightmost derivation:
• S ⟼ E + S S ⟼ E + S

⟼ (S) + S ⟼ E + E
⟼ (E + S) + S ⟼ E + 5
⟼ (1 + S) + S ⟼ (S) + 5
⟼ (1 + E + S) + S ⟼ (E + S) + 5
⟼ (1 + 2 + S) + S ⟼ (E + E + S) + 5
⟼ (1 + 2 + E) + S ⟼ (E + E + E) + 5
⟼ (1 + 2 + (S)) + S ⟼ (E + E + (S)) + 5
⟼ (1 + 2 + (E + S)) + S ⟼ (E + E + (E + S)) + 5
⟼ (1 + 2 + (3 + S)) + S ⟼ (E + E + (E + E)) + 5
⟼ (1 + 2 + (3 + E)) + S ⟼ (E + E + (E + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + S ⟼ (E + E + (3 + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + E ⟼ (E + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (3 + 4)) + 5 ⟼ (1 + 2 + (3 + 4)) + 5
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S ⟼ E + S  |  E
E ⟼ number | ( S )



Loops and Termination
• Some care is needed when defining CFGs
• Consider:

– This grammar has nonterminal definitions that are “nonproductive”.
(i.e. they don’t mention any terminal symbols)

– There is no finite derivation starting from S, so the language is empty.

• Consider:

– This grammar is productive, but again there is no finite derivation starting from 
S, so the language is empty

• Easily generalize these examples to a “cycle” of many nonterminals, 
which can be harder to find in a large grammar

• Upshot:  be aware of “vacuously empty” CFG grammars.
– Every nonterminal should eventually rewrite to an alternative that contains 

only terminal symbols.
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S ⟼ E
E ⟼ S

S ⟼ ( S )



GRAMMARS FOR 
PROGRAMMING LANGUAGES
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Associativity, ambiguity, and precedence.



Associativity

Leftmost derivation:
S⟼ E + S 
⟼ 1 + S
⟼ 1 + E + S 
⟼ 1 + 2 + S
⟼ 1 + 2 + E
⟼ 1 + 2 + 3

Rightmost derivation:
S⟼ E + S
⟼ E + E + S
⟼ E + E + E
⟼ E + E + 3
⟼ E + 2 + 3
⟼ 1 + 2 + 3 
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S  

E   +   S

1 E   +   S

2 E

3
Parse Tree

3

+

1 +

2

AST

S ⟼ E + S  |  E
E ⟼ number | ( S )Consider the input:    1 + 2 + 3



Associativity
• This grammar makes ‘+’  right associative…

– i.e., the abstract syntax tree is the same for both 
1 + 2 + 3 and 1 + (2 + 3)

• Note that the grammar is right recursive…

• How would you make ‘+’ left associative?  
• What are the trees for “1 + 2 + 3”?
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S ⟼ E + S  |  E
E ⟼ number | ( S )

S refers to itself
on the right of +



Ambiguity
• Consider this grammar:

• Claim: it accepts the same set of strings as the previous one.

• What’s the difference?
• Consider these two leftmost derivations:

– S ⟼ S + S ⟼ 1 + S ⟼ 1 + S + S ⟼ 1 + 2 + S ⟼ 1 + 2 + 3
– S ⟼ S + S ⟼ S + S + S ⟼ 1 + S + S ⟼ 1 + 2 + S ⟼ 1 + 2 + 3

• One derivation gives left
associativity, the other gives
right associativity to ‘+’
– Which is which?

CIS 341: Compilers 18

S ⟼ S + S   |  ( S )  |  number

+ +

1 +

2 3

+ 3

1 2

AST 1 AST 2



Why do we care about ambiguity?
• The ‘+’ operation is associative, so it doesn’t matter which tree we 

pick.  Mathematically,   x + (y + z) = (x + y) + z
– But, some operations aren’t associative.    Examples?
– Some operations are only left (or right) associative.  Examples?

• Moreover, if there are multiple operations, ambiguity in the grammar 
leads to ambiguity in their precedence

• Consider:  

• Input: 1 + 2 * 3
– One parse = (1 + 2) * 3 = 9
– The other = 1 + (2 * 3) = 7
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*

+ 3

1 2

+

1 *

2 3

vs.

S ⟼ S + S   |   S * S  |  ( S )  |  number



Eliminating Ambiguity
• We can often eliminate ambiguity by adding nonterminals and 

allowing recursion only on the left (or right) .
• Higher-precedence operators go farther from the start symbol.

• Example:  

• To disambiguate:  
– Decide (following math) to make ‘*’ higher precedence than ‘+’
– Make ‘+’ left associative
– Make ‘*’ right associative

• Note:
– S2 corresponds to ‘atomic’

expressions
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S ⟼ S + S   |   S * S  |  ( S )  |  number

S0 ⟼ S0 + S1 |   S1

S1 ⟼ S2 * S1 |   S2

S2 ⟼ number | ( S0 ) 



Context Free Grammars: Summary
• Context-free grammars allow concise specifications of 

programming languages.
– An unambiguous CFG specifies how to parse: convert a token 

stream to a (parse tree)

– Ambiguity can (often) be removed by encoding precedence and 
associativity in the grammar.

• Even with an unambiguous CFG, there may be more than 
one derivation 
– Though all derivations correspond to the same abstract syntax tree.

• Still to come: finding a derivation
– But first: menhir

CIS 341: Compilers 21



DEMO: BOOLEAN LOGIC
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parser.mly, lexer.mll, range.ml, ast.ml, main.ml



LL & LR PARSING

Zdancewic     CIS 341: Compilers    23

Searching for derivations.



CFGs Mathematically
• A Context-free Grammar (CFG) consists of 

– A set of terminals (e.g., a token or e)
– A set of nonterminals (e.g., S and other syntactic variables)
– A designated nonterminal called the start symbol
– A set of productions:      LHS ⟼ RHS

• LHS is a nonterminal
• RHS is a string of terminals and nonterminals

• Example:   The balanced parentheses language:

• How many terminals?  How many nonterminals? Productions?
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S ⟼ (S)S

S ⟼ e



Consider finding left-most derivations
• Look at only one input symbol at a time.

Partly-derived String Look-ahead Parsed/Unparsed Input
S ( (1 + 2 + (3 + 4)) + 5
⟼ E + S ( (1 + 2 + (3 + 4)) + 5
⟼ (S) + S 1 (1 + 2 + (3 + 4)) + 5
⟼ (E + S) + S 1 (1 + 2 + (3 + 4)) + 5
⟼ (1 + S) + S 2 (1 + 2 + (3 + 4)) + 5
⟼ (1 + E + S) + S 2 (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + S) + S ( (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + E) + S ( (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (S)) + S 3 (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (E + S)) + S 3 (1 + 2 + (3 + 4)) + 5
⟼ …

CIS 341: Compilers 25

S ⟼ E + S  |  E
E ⟼ number | ( S )



There is a problem
• We want to decide which production

to apply based on the look-ahead symbol.
• But, there is a choice:

(1) S ⟼ E ⟼ (S) ⟼ (E) ⟼ (1)
vs.

(1) + 2 S ⟼ E + S ⟼ (S) + S ⟼ (E) + S ⟼ (1) + S ⟼ (1) + E 
⟼ (1) + 2

• Given the look-ahead symbol: ‘(‘ it isn’t clear whether to pick 
S ⟼ E      or    S ⟼ E + S   first.
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S ⟼ E + S  |  E
E ⟼ number | ( S )



LL(1) GRAMMARS

Zdancewic     CIS 341: Compilers    27



Grammar is the problem
• Not all grammars can be parsed “top-down” with only a single 

lookahead symbol.
• Top-down: starting from the start symbol (root of the parse tree) and 

going down

• LL(1)    means   
– Left-to-right scanning
– Left-most derivation, 
– 1 lookahead symbol

• This language isn’t “LL(1)”
• Is it LL(k) for some k?

• What can we do?
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S ⟼ E + S  |  E
E ⟼ number | ( S )



Making a grammar LL(1)
• Problem: We can’t decide which S production to apply until we see 

the symbol after the first expression.
• Solution: “Left-factor” the grammar.  There is a common S prefix for 

each choice, so add a new non-terminal S’ at the decision point:

• Also need to eliminate left-recursion somehow.  Why?
• Consider:
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S ⟼ E + S  |  E
E ⟼ number | ( S )

S ⟼ S + E  |  E
E ⟼ number | ( S )

S  ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E  ⟼ number | ( S )



LL(1) Parse of the input string
• Look at only one input symbol at a time.

Partly-derived String Look-ahead Parsed/Unparsed Input
S ( (1 + 2 + (3 + 4)) + 5
⟼ E S’ ( (1 + 2 + (3 + 4)) + 5
⟼ (S) S’ 1 (1 + 2 + (3 + 4)) + 5
⟼ (E S’) S’ 1 (1 + 2 + (3 + 4)) + 5
⟼ (1 S’) S’ + (1 + 2 + (3 + 4)) + 5
⟼ (1 + S) S’ 2 (1 + 2 + (3 + 4)) + 5
⟼ (1 + E S’) S’ 2 (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 S’) S’ + (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + S) S’ ( (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + E S’) S’ ( (1 + 2 + (3 + 4)) + 5
⟼ (1 + 2 + (S)S’) S’ 3 (1 + 2 + (3 + 4)) + 5
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S  ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E  ⟼ number | ( S )



Predictive Parsing
• Given an LL(1) grammar:

– For a given nonterminal, the lookahead symbol uniquely determines the 
production to apply.

– Top-down parsing = predictive parsing
– Driven by a predictive parsing table:  

nonterminal * input token → production

• Note: it is convenient to add a special end-of-file token $ and a start 
symbol T (top-level) that requires $.
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number + ( ) $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ ( S )

T  ⟼ S$
S  ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E  ⟼ number | ( S )



How do we construct the parse table?
• Consider a given production:   A à g
• Construct the set of all input tokens  that may appear first in strings 

that can be derived from g
– Add the production à g to the entry (A,token) for each such token.

• If g can derive e (the empty string), then we construct the set of all 
input tokens that may follow the nonterminal A in the grammar.
– Add the production à g to the entry (A, token) for each such token.

• Note: if there are two different productions for a given entry, the 
grammar is not LL(1)

CIS 341: Compilers 32



Example
• First(T) = First(S)
• First(S) = First(E)
• First(S’) = { + }
• First(E) = { number, ‘(‘ }

• Follow(S’) = Follow(S)
• Follow(S) = { $, ‘)’ } ∪ Follow(S’)
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number + ( ) $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ ( S )

T  ⟼ S$
S  ⟼ ES’
S’ ⟼ e
S’ ⟼ + S
E  ⟼ number | ( S )

Note: we want the least
solution to this system of set 
equations… a fixpoint
computation.  More on 
these later in the course.



Converting the table to code
• Define n mutually recursive functions

– one for each nonterminal A:  parse_A
– The type of parse_A is unit -> ast if A is not an auxiliary nonterminal
– Parse functions for auxiliary nonterminals (e.g. S’)  take extra ast’s as 

inputs, one for each nonterminal in the “factored” prefix.

• Each function “peeks” at the lookahead token and then follows the 
production rule in the corresponding entry.
– Consume terminal tokens from the input stream
– Call parse_X to create sub-tree for nonterminal X
– If the rule ends in an auxiliary nonterminal, call it with appropriate ast’s. 

(The auxiliary rule is responsible for creating the ast after looking at more 
input.)

– Otherwise, this function builds the ast tree itself and returns it.
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DEMO: PARSER.ML
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Hand-generated LL(1) code for the table above.

number + ( ) $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ e ⟼ e

E ⟼ num. ⟼ ( S )



LL(1) Summary
• Top-down parsing that finds the leftmost derivation.
• Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursive-

descent parser

• Problems: 
– Grammar must be LL(1)
– Can extend to LL(k)  (it just makes the table bigger)
– Grammar cannot be left recursive (parser functions will loop!)

• Is there a better way?
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LR GRAMMARS
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Bottom-up Parsing  (LR Parsers)
• LR(k) parser:  

– Left-to-right scanning
– Rightmost derivation
– k lookahead symbols

• LR grammars are more expressive than LL
– Can handle left-recursive (and right recursive) grammars; virtually all 

programming languages
– Easier to express programming language syntax (no left factoring)

• Technique:  “Shift-Reduce” parsers
– Work bottom up instead of top down
– Construct right-most derivation of a program in the grammar
– Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
– Better error detection/recovery
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Top-down vs. Bottom up
• Consider the left-

recursive grammar:

• (1 + 2 + (3 + 4)) + 5

• What part of the
tree must we 
know after scanning
just “(1 + 2” ?

• In top-down, must
be able to guess
which productions
to use…
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S

S   +   E

E 5

S   +   E

1

S   +   E

E 2

(    S    )

E 4

(    S    )

S   +   E

3
Top-down

S

S   +   E

E 5

S +   E

1

S   +   E

E 2

(    S    )

E 4

(    S    )

S   +   E

3

Bottom-up

Note: ‘(‘ has 
been scanned 
but not 
consumed.  
Processing it is 
still pending.

S ⟼ S + E  |  E
E ⟼ number | ( S )



Progress of Bottom-up Parsing
Reductions Scanned Input Remaining
(1 + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(E + 2 + (3 + 4)) + 5 ⟻ ( 1 + 2 + (3 + 4)) + 5
(S + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + E + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (E + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S + E)) + 5 ⟻ (1 + 2 + (3 + 4 )) + 5
(S + (S)) + 5 ⟻ (1 + 2 + (3 + 4 )) + 5
(S + E) + 5 ⟻ (1 + 2 + (3 + 4) ) + 5
(S) + 5 ⟻ (1 + 2 + (3 + 4) ) + 5
E + 5 ⟻ (1 + 2 + (3 + 4)) + 5 
S + 5 ⟻ (1 + 2 + (3 + 4)) + 5 
S + E⟻ (1 + 2 + (3 + 4)) + 5
S
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S ⟼ S + E  |  E
E ⟼ number | ( S )
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Shift/Reduce Parsing
• Parser state:

– Stack of terminals and nonterminals.
– Unconsumed input is a string of terminals
– Current derivation step is        stack + input

• Parsing is a sequence of shift and reduce operations:
• Shift: move look-ahead token to the stack
• Reduce: Replace symbols g at top of stack with nonterminal X such 

that X ⟼ g is a production.  (pop g, push X)
Stack Input Action

(1 + 2 + (3 + 4)) + 5 shift (
( 1 + 2 + (3 + 4)) + 5 shift 1
(1 + 2 + (3 + 4)) + 5 reduce: E ⟼ number
(E + 2 + (3 + 4)) + 5 reduce: S ⟼ E
(S + 2 + (3 + 4)) + 5 shift +
(S + 2 + (3 + 4)) + 5 shift 2
(S + 2 + (3 + 4)) + 5 reduce: E ⟼ number
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S ⟼ S + E  |  E
E ⟼ number | ( S )



LR(0) GRAMMARS
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Simple LR parsing with no look ahead.



LR Parser States
• Goal: know what set of reductions are legal at any given point.
• Idea: Summarize all possible stack prefixes a as a finite parser state.

– Parser state is computed by a DFA that reads the stack s.
– Accept states of the DFA correspond to unique reductions that apply.

• Example: LR(0) parsing
– Left-to-right scanning, Right-most derivation, zero look-ahead tokens
– Too weak to handle many language grammars (e.g. the “sum” grammar)
– But, helpful for understanding how the shift-reduce parser works.
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Example LR(0) Grammar: Tuples
• Example grammar for non-empty tuples and identifiers:

• Example strings:
x
(x,y)   
((((x))))
(x, (y, z), w)
(x, (y, (z, w)))
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S ⟼ ( L )  |  id
L ⟼ S   |   L , S

Parse tree for:
(x, (y, z), w)

(    L    )

L    ,    S

L    ,    S

(    L    )

L    ,    Sx

S

y

S z

w

S



Shift/Reduce Parsing
• Parser state:

– Stack of terminals and nonterminals.
– Unconsumed input is a string of terminals
– Current derivation step is        stack + input

• Parsing is a sequence of shift and reduce operations:
• Shift: move look-ahead token to the stack: e.g.

Stack Input Action
(x,  (y, z), w) shift (

( x,  (y, z), w) shift x

• Reduce: Replace symbols g at top of stack with nonterminal X such 
that X ⟼ g is a production.  (pop g, push X): e.g.

Stack Input Action
(x ,  (y, z), w) reduce S ⟼ id
(S ,  (y, z), w) reduce L ⟼ S

CIS 341: Compilers 45

S ⟼ ( L )  |  id
L ⟼ S   |   L , S



Example Run
Stack Input Action

(x,  (y, z), w) shift (
( x,  (y, z), w) shift x
(x ,  (y, z), w) reduce S ⟼ id
(S ,  (y, z), w) reduce L ⟼ S
(L ,  (y, z), w) shift ,
(L, (y, z), w) shift (
(L, ( y, z), w) shift y
(L, (y , z), w) reduce S ⟼ id
(L, (S , z), w) reduce L ⟼ S
(L, (L , z), w) shift ,
(L, (L, z), w) shift z
(L, (L, z ), w) reduce S ⟼ id
(L, (L, S ), w) reduce L ⟼ L, S
(L, (L ), w) shift )
(L, (L) , w) reduce S ⟼ ( L )
(L, S , w) reduce L ⟼ L, S
(L , w) shift ,
(L, w) shift w
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S ⟼ ( L )  |  id
L ⟼ S   |   L , S



Action Selection Problem
• Given a stack s and a look-ahead symbol b, should the parser:

– Shift b onto the stack (new stack is sb)
– Reduce a production X ⟼ g, assuming that s = ag (new stack is aX)?

• Sometimes the parser can reduce but shouldn’t
– For example, X ⟼ e can always be reduced

• Sometimes the stack can be reduced in different ways

• Main idea:  decide what to do based on a prefix a of the stack plus the 
look-ahead symbol.
– The prefix a is different for different possible reductions since in 

productions X ⟼ g and Y ⟼ b, g and b might have different lengths.

• Main goal: know what set of reductions are legal at any point.
– How do we keep track?
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LR(0) States
• An LR(0) state is a set of items keeping track of progress on possible 

upcoming reductions.
• An LR(0) item is a production from the language with an extra 

separator “.” somewhere in the right-hand-side

• Example items:     S ⟼ .( L )     or   S ⟼ (. L)    or    L ⟼ S.
• Intuition:

– Stuff before the ‘.’ is already on the stack
(beginnings of possible g’s to be reduced)

– Stuff after the ‘.’ is what might be seen next
– The prefixes a are represented by the state itself
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S ⟼ ( L )  |  id
L ⟼ S   |   L , S



Constructing the DFA: Start state & Closure

• First step:  Add a new production   
S’ ⟼ S$  to the grammar

• Start state of the DFA =  empty stack, 
so it contains the item:

S’ ⟼ .S$
• Closure of a state:

– Adds items for all productions whose LHS nonterminal occurs in an item 
in the state just after the ‘.’

– The added items have the ‘.’ located at the beginning (no symbols for 
those items have been added to the stack yet)

– Note that newly added items may cause yet more items to be added to the 
state… keep iterating until a fixed point is reached.

• Example:  CLOSURE({S’ ⟼ .S$})  =  {S’ ⟼ .S$, S ⟼ .(L), S⟼.id}

• Resulting “closed state” contains the set of all possible productions 
that might be reduced next.
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S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S



Example: Constructing the DFA

• First, we construct a state with the initial item S’ ⟼ .S$
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S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S

S’ ⟼ .S$



Example: Constructing the DFA

• Next, we take the closure of that state:
CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .( L ), S ⟼ .id}

• In the set of items, the nonterminal S appears after the ‘.’
• So we add items for each S production in the grammar
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S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S

S’ ⟼ .S$
S ⟼ .( L ) 
S ⟼ .id



Example: Constructing the DFA

• Next we add the transitions:
• First, we see what terminals and 

nonterminals can appear after the 
‘.’ in the source state.
– Outgoing edges have those label.

• The target state (initially) includes 
all items from the source state that 
have the edge-label symbol after 
the ‘.’, but we advance the ‘.’  (to 
simulate shifting the item onto the 
stack)
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S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S

S’ ⟼ .S$
S ⟼ .( L ) 
S ⟼ .id

S ⟼ (. L )

S ⟼ id.

S’ ⟼ S.$

id

S

(



Example: Constructing the DFA

• Finally, for each new state, we take the closure.
• Note that we have to perform two iterations to compute 

CLOSURE({S ⟼ ( . L )})
– First iteration adds L ⟼ .S and L ⟼ .L, S
– Second iteration adds S ⟼ .(L) and S ⟼ .id
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S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S

S’ ⟼ .S$
S ⟼ .( L ) 
S ⟼ .id

S ⟼ (. L )
L ⟼ .S 
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id.

S’ ⟼ S.$

id

S

(



Full DFA for the Example
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S’ ⟼ .S$
S ⟼ .( L ) 
S ⟼ .id

S ⟼ (. L )
L ⟼ .S 
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id. L ⟼ L, . S
S ⟼ .( L )
S ⟼ .id

L ⟼ L, S.

S ⟼ ( L .)
L ⟼ L . , S

S ⟼ ( L ).L ⟼ S.S’ ⟼ S.$

Done!

id id S

S

$

(

(

S
)

(

L

id

,

Reduce state: ‘.’ at the 
end of the production

• Current state: run the
DFA on the stack.

• If a reduce state is 
reached, reduce

• Otherwise, if the next
token matches an 
outgoing edge, shift.

• If no such transition,
it is a parse error. 

1 2

3

4

5

67

8 9



Using the DFA
• Run the parser stack through the DFA.
• The resulting state tells us which productions might be 

reduced next.
– If not in a reduce state, then shift the next symbol and transition 

according to DFA.
– If in a reduce state, X ⟼ g with stack ag, pop g and push X.

• Optimization: No need to re-run the DFA from beginning 
every step
– Store the state  with each symbol on the stack:  e.g. 1(3(3L5)6
– On a reduction X ⟼ g, pop stack to reveal the state too:

e.g.    From stack 1(3(3L5)6 reduce S ⟼ ( L ) to reach stack 1(3
– Next, push the reduction symbol: e.g. to reach stack 1(3S
– Then take just one step in the DFA to find next state: 1(3S7
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Implementing the Parsing Table
Represent the DFA as a table of shape: 

state * (terminals + nonterminals)
• Entries for the “action table” specify two kinds of actions:

– Shift and goto state n
– Reduce using reduction X ⟼ g

• First pop g off the stack to reveal the state
• Look up X in the “goto table” and goto that state

CIS 341: Compilers 56

Action
table

Goto
tableSt

at
e

Terminal Symbols Nonterminal Symbols



Example Parse Table

CIS 341: Compilers 57

( ) id , $ S L

1 s3 s2 g4

2 S⟼id S⟼id S⟼id S⟼id S⟼id

3 s3 s2 g7 g5

4 DONE

5 s6 s8

6 S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L)

7 L ⟼ S L ⟼ S L ⟼ S L ⟼ S L ⟼ S

8 s3 s2 g9

9 L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S

sx = shift and goto state x
gx = goto state x



Example
• Parse the token stream:  (x, (y, z), w)$

Stack Stream Action (according to table)

e1 (x, (y, z), w)$ s3
e1(3 x, (y, z), w)$ s2
e1(3x2 , (y, z), w)$ Reduce: S⟼id
e1(3S , (y, z), w)$ g7   (from state 3 follow S) 
e1(3S7 , (y, z), w)$ Reduce: L⟼S
e1(3L , (y, z), w)$ g5   (from state 3 follow L)
e1(3L5 , (y, z), w)$ s8
e1(3L5,8 (y, z), w)$ s3

e1(3L5,8(3 y, z), w)$ s2

Zdancewic     CIS 341: Compilers    58



LR(0) Limitations
• An LR(0) machine only works if states with reduce actions 

have a single reduce action.
– In such states, the machine always reduces (ignoring lookahead)

• With more complex grammars, the DFA construction will 
yield states with shift/reduce and reduce/reduce conflicts:

OK shift/reduce reduce/reduce

• Such conflicts can often be resolved by using a look-ahead 
symbol:  LR(1)
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S ⟼ ( L ). S ⟼ ( L ).
L ⟼ .L , S

S ⟼ L ,S.
S ⟼ ,S.



Examples
• Consider the left associative and right associative “sum” grammars:

left right

• One is LR(0) the other isn’t…  which is which and why?
• What kind of conflict do you get?  Shift/reduce or Reduce/reduce?

• Ambiguities in associativity/precedence usually lead to shift/reduce 
conflicts. 

CIS 341: Compilers 60

S ⟼ S + E  |  E
E ⟼ number | ( S )

S ⟼ E + S  |  E
E ⟼ number | ( S )



LR(1) Parsing
• Algorithm is similar to LR(0) DFA construction:

– LR(1) state = set of LR(1) items
– An LR(1) item is an LR(0) item + a set of look-ahead symbols:

A ⟼ a.b ,  L

• LR(1) closure is a little more complex:
• Form the set of items just as for LR(0) algorithm.
• Whenever a new item C ⟼ .g is added because A ⟼ b.Cd , L is 

already in the set, we need to compute its look-ahead set M:
1. The look-ahead set M includes FIRST(d) 

(the set of terminals that may start strings derived from d)
2. If d can derive e (it is nullable), then the look-ahead M also contains L
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Example Closure

• Start item:     S’ ⟼ .S$    ,   {}

• Since S is to the right of a ‘.’, add:   
S ⟼ .E + S    ,   {$} Note: {$} is FIRST($)
S ⟼ .E          ,   {$}

• Need to keep closing, since E appears to the right of a ‘.’ in
‘.E + S’:

E ⟼ .number ,   {+} Note: + added for reason 1
E ⟼ .( S )       ,   {+}

• Because E also appears to the right of ‘.’ in ‘.E’ we get:
E ⟼ .number ,   {$} Note: $ added for reason 2
E ⟼ .( S )       ,   {$}

• All items are distinct, so we’re done
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S’ ⟼ S$
S ⟼ E + S  |  E
E ⟼ number | ( S )



Using the DFA

• The behavior is determined if:
– There is no overlap among the

look-ahead sets for each reduce 
item, and

– None of the look-ahead symbols
appear to the right of a ‘.’
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S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+}
E ⟼ .( S ) {+}
E ⟼ .num {$}
E ⟼ .( S ) {$}

S ⟼ E .+ S {$}
S ⟼ E. {$}

E

1

+ $ E

1 g2

2 s3 S ⟼ E

2
+

Fragment of the Action & Goto tables

Choice between shift 
and reduce is resolved.



LR variants
• LR(1) gives maximal power out of a 1 look-ahead symbol parsing table

– DFA + stack is a push-down automaton (recall 262)
• In practice, LR(1) tables are big.

– Modern implementations (e.g. menhir) directly generate code

• LALR(1)  = “Look-ahead LR”
– Merge any two LR(1) states whose items are identical except for the look-

ahead sets:

– Such merging can lead to nondeterminism (e.g. reduce/reduce conflicts), but
– Results in a much smaller parse table and works well in practice
– This is the usual technology for automatic parser generators: yacc, ocamlyacc

• GLR = “Generalized LR” parsing
– Efficiently compute the set of all parses for a given input
– Later passes should disambiguate based on other context
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S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+}
E ⟼ .( S ) {+}
E ⟼ .num {$}
E ⟼ .( S ) {$}

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+,$}
E ⟼ .( S ) {+,$}



Classification of Grammars
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LR(0)

SLR

LALR(1)

LR(1)

LL(1)


