Lecture 11

CIS 341: COMPILERS

Announcements

« HW3: LLVM lite

— Available on the course web pages.
— Due: Weds., February 23 at 11:59:59pm

it is officially too late to

START EARLY!!

« Midterm: March 3
— Inclass
— One-page, letter-sized, double-sided “cheat sheet” of notes permitted

— Coverage: interpreters / program transformers / x86 / calling conventions /
IRs / LLVM / Lexing / Parsing

— See examples of previous exams on the web pages

Zdancewic CIS 341: Compilers 2

Source Code

(Character stream)
if (b==10) { a=1; }

Token stream:

if| (| b

I

I
o
~
~

Abstract Syntax Tree:

Intermediate code:

11:
gcnd = icmp eq i64 %b,

None 0

br il %cnd, label %12,
label %13
12:

store i64* %a, 1

br label %13
13:

Assembly Code
11:

cmpg %eax, $O
jeq 12 (
jmp 13

12:

Parsing: Finding Syntactic Structure

{
if (b == 0) a = b;
while (a != 1) {
print int(a);
a=a—1;

} Block

} Source input
While

Bop Bop Block

b == 0 a |= 1 \

Call
Abstract Syntax tree T

CIS 341: Compilers

CONTEXT FREE GRAMMARS

Zdancewic CIS 341: Compilers

Context-free Grammars

* Here is a specification of the language of balanced parens:

Note: Once again we

S — (S)S have to take care to
distinguish meta-language
elements (e.g. “S” and “+")

S > & from object-language
elements (e.g. “(“).*

e The definition is recursive — S mentions itself.

* lIdea: “derive” a string in the language by starting with S and rewriting
according to the rules:

— Example: S+ (S)S +— ((S)S)S — ((€)S)S — ((€)S)e — ((e)e)e = (())

* You can replace the “nonterminal” S by one of its definitions
anywhere

« A context-free grammar accepts a string iff there is a derivation from
the start symbol

* And, since we're writing this description in English, we are
CIS 341: Compilers careful distinguish the meta-meta-language (e.g. words) from the 6
meta-language and object-language (e.g. symbols) by using quotes.

CFGs Mathematically

* A Context-free Grammar (CFG) consists of
— A set of terminals (e.g., a lexical token or ¢)
— Aset of nonterminals (e.g., S and other syntactic variables)
— A designated nonterminal called the start symbol
— A set of productions: ~ LHS +— RHS

* LHS is a nonterminal
* RHS is a string of terminals and nonterminals

« Example: The balanced parentheses language:

S +—(S)S

S ¢

* How many terminals? How many nonterminals? Productions?

CIS 341: Compilers

Another Example: Sum Grammar

« A grammar that accepts parenthesized sums of numbers:

S — E+S E

E — number (S)

eg: (1+2+3+4)+5

* Note the vertical bar ‘| is shorthand for multiple productions:

e

S—E+S 4 productions

S— E 2 nonterminals: S, E

E — number 4 terminals: (,), +, number
E— (S) Start symbol: S

CIS 341: Compilers

Derivations in CFGs

« Example: derive (1 +2 + (3 +4)) + 5 S—E+S | E

e S+—E+S E +— number | (S)
= (8§ +5
— (E+S)+S For arbitrary strings a, B, y and

. production rule A +— B
DO a single step of the derivation is:
— (T+E+S)+S
— (1T+2+98 +S aAy — afy
— (1T+2+FE+S
— (1+2+(S)+S (substitute B for an occurrence of A)
—(1+2+E+S)+S
— (1+2+3+9)+S I - "
(1 +24G+E)+S n general, there are many possible
derivations for a given string

— (1+2+C+4)+S
— (1+2+3+4)+E Note: Underline indicates symbol
— (1+2+03+4)+5 being expanded.

CIS 341: Compilers

From Derivations to Parse Trees

Tree representation of the
derivation

| eaves of the tree are
terminals

— In-order traversal yields the
input sequence of tokens

Internal nodes: nonterminals

No information about the
order of the derivation steps

Parse Tree

(T+2+3+4)+5 |

S—E+S | E

E — number | (S
CIS 341: Compilers

4 10

From Parse Trees to Abstract Syntax

e Parse tree: >

“concrete syntax” E

TN

+ S
I

(§) E
I

5

TN
E + S
| AN

1 E
I
2

+

S
I
E
TN
(S)
TN
E + S
I I
3 E
I

CIS 341: Compilers 4

* Abstract syntax tree
(AST):

P

N

PN

3 4

* Hides, or abstracts,
unneeded information.

11

Derivation Orders

* Productions of the grammar can be applied in any order.

 There are two standard orders:

— Leftmost derivation: Find the left-most nonterminal and apply a
production to it.

— Rightmost derivation: Find the right-most nonterminal and apply a
production there.

* Note that both strategies (and any other) yield the same
parse tree!

— Parse tree doesn’t contain the information about what order the
productions were applied.

CIS 341: Compilers 12

Example: Left- and rightmost derivations

 Leftmost derivation: Rightmost derivation:
e S—E+S S—E+S
(E+S)+S — E+ 5 E — number | (S)
— (1T +S5)+S — (S) + 5
— (1T +E+S)+S — (E+9S) +5
—(1+2+8+S — (E+E+9 +5
— (1T +2+E+S — (E+E+FE +5
— (1T +2+(9)+S — (E+E+(5)+5
— (1T+2+(E+YS)) + — (E+E+(E+Y9)) +
—(1T+2+03+9)+S — (E+E+(E+E) +
— (1+2+B3+EF)+S — (E+ E+(E+4)) +
— (1+2+3+4)+S — (E+ E+ 3 +4)) +
— (1+2+3+4)+E — (E+2+ 3 +4))+
— (1+2+3+4)+5 (+2+(3+4))+5

CIS 341: Compilers

Loops and Termination

Some care is needed when defining CFGs

Consider:
S— E

E— S

— This grammar has nonterminal definitions that are “nonproductive”.
(i.e. they don’t mention any terminal symbols)

— There is no finite derivation starting from S, so the language is empty.
Consider: S+ (S)

— This grammar is productive, but again there is no finite derivation starting from
S, so the language is empty

Easily generalize these examples to a “cycle” of many nonterminals,
which can be harder to find in a large grammar

Upshot: be aware of “vacuously empty” CFG grammars.

— Every nonterminal should eventually rewrite to an alternative that contains
only terminal symbols.

Zdancewic CIS 341: Compilers 14

Associativity, ambiguity, and precedence.

GRAMMARS FOR
PROGRAMMING LANGUAGES

Zdancewic CIS 341: Compilers

Associativity

S—E+S | E
E +— number | (S)

Consider the input: 1 +2 + 3

Leftmost derivation: Rightmost derivation:

S E+S S E+$ AN
— 1 +8S — E+E+S E + S
— 1+E+S — E+E+E | AT\
—1+2+S — E+E+3 T E + S
— 1 +2+E — E+2+3 ; é
— 1T +2+3 — 1 +2+3 I
3
+ Parse Tree
RN
1 + AST
RN

CIS 341: Compilers 16

Associativity

 This grammar makes ‘+" right associative...

— i.e., the abstract syntax tree is the same for both
T+2+3and1+(2+3)

Note that the grammar is right recursive...

/ S refers to itself

S—E+S | E on the right of +
E +— number | (S)

» How would you make ‘+’ left associative?
* What are the trees for “1 + 2 + 3¢

Zdancewic CIS 341: Compilers

Ambiguity
 Consider this grammar:

S+— S+S | (S) | number

« Claim: it accepts the same set of strings as the previous one.
* What's the difference?
* Consider these two leftmost derivations:

- S$S—»S+S—1T+S—=1T+S+S—1T+2+S—1+2+3

- S$S—»S+S5—S8S+S+S—1T+S+S—1T+2+S—1+2+3

* One derivation gives left + +
associativity, the other gives N N
right associativity to '+’ + 3 1 +

— Which is which? N PN
1 2) 3
AST 1 AST 2

CIS 341: Compilers 18

Why do we care about ambiguity?

* The '+’ operation is associative, so it doesn’t matter which tree we
pick. Mathematically, x+(y+2z)=(x+vy)+z

— But, some operations aren’t associative. Examples?

— Some operations are only left (or right) associative. Examples?

* Moreover, if there are multiple operations, ambiguity in the grammar
leads to ambiguity in their precedence

« Consider:

S+— S+S | S*S | (S) | number

 Input:1+2*3 ” +
— Oneparse=(1+2)*3=9 P N
— Theother=1+(2*3)=7 + 3 VS, 1 *
/\ /\
1 2 2 3

CIS 341: Compilers 19

Eliminating Ambiguity

* We can often eliminate ambiguity by adding nonterminals and
allowing recursion only on the left (or right) .

* Higher-precedence operators go farther from the start symbol.
* Example:

S+— S+S | S*¥S | (S) | number

* To disambiguate:
— Decide (following math) to make ‘*" higher precedence than ‘+’
— Make ‘+’ left associative
— Make " right associative

So — Sp+ S S

- Note: | 0" 1

— S, corresponds to ‘atomic’ S1 > 5% 5 S
expressions S, — number (So)

CIS 341: Compilers 20

Context Free Grammars: Summary

» Context-free grammars allow concise specifications of
programming languages.
— An unambiguous CFG specifies how to parse: convert a token
stream to a (parse tree)

— Ambiguity can (often) be removed by encoding precedence and
associativity in the grammar.

* Even with an unambiguous CFG, there may be more than
one derivation

— Though all derivations correspond to the same abstract syntax tree.

» Still to come: finding a derivation

— But first: menhir

CIS 341: Compilers 21

parser.mly, lexer.mll, range.ml, ast.ml, main.ml

DEMO: BOOLEAN LOGIC

Zdancewic CIS 341: Compilers 22

Searching for derivations.

LL & LR PARSING

Zdancewic CIS 341: Compilers

23

CFGs Mathematically

* A Context-free Grammar (CFG) consists of
— A set of terminals (e.g., a token or g)
— Aset of nonterminals (e.g., S and other syntactic variables)
— A designated nonterminal called the start symbol
— A set of productions: ~ LHS +— RHS

* LHS is a nonterminal
* RHS is a string of terminals and nonterminals

« Example: The balanced parentheses language:

S +—(S)S

S ¢

* How many terminals? How many nonterminals? Productions?

CIS 341: Compilers

24

Consider finding left-most derivations

Look at only one input symbol at a time. S—E+S | E

E +— number | (S)

CIS 341: Compilers

Partly-derived String Look-ahead Parsed/Unparsed Input
S ((T+2+3+4)+5
— E+ S ((T+2+3+4)+5
— (8 + S 1 (T+2+3+4)+5
— (E+9S)+ S 1 (T+2+3+4)+5
—(1+8+S 2 (T+2+3+4)+5
— (1T+E+S)+S 2 (T+2+3+4)+5

+2+8)+S ((T+2+3+4)+5
+2+E+S ((T+2+3+4)+5
+24+(08)+S 3 (T+2+3+4)+5
+2+(E+S)+S 3 (T+2+3+4)+5

There is a problem

* We want to decide which production S—E+S | E
to apply based on the look-ahead symbol. E — number | (S)

« But, there is a choice:

(1) St— E|— (S) — (F) — (1)

M+2 [SL,E+S—S)+S—E+S—(1)+S—(1)+E
— (1) + 2

* Given the look-ahead symbol: ‘(" it isnt clear whether to pick
S—E or S—E+S first

CIS 341: Compilers

26

LL(1T) GRAMMARS

Zdancewic CIS 341: Compilers

Grammar is the problem

* Not all grammars can be parsed “top-down” with only a single
lookahead symbol.

« Top-down: starting from the start symbol (root of the parse tree) and
going down

e LL(T) means
— Left-to-right scanning
— Left-most derivation,
— 1 lookahead symbol

/

 This language isn’t “LL(1)’ S—E+S | E
s it LL(k) for some k? E — number | (S)

e What can we do?

CIS 341: Compilers

28

Making a grammar LL(1)

Problem: We can’t decide which S production to apply until we see
the symbol after the first expression.

Solution: “Left-factor” the grammar. There is a common S prefix for
each choice, so add a new non-terminal S’ at the decision point:

S—E+S | E S — EY
E+— number | (S) > § g
S"+— +S

E +— number | (S)

Also need to eliminate left-recursion somehow. Why?

Consider:

S—S+E | E
E — number | (S)

CIS 341: Compilers

LL(1) Parse of the input string

* Look at only one input symbol at a time. § s ES’
S"+— ¢
S"+— +S
E — number | (S

Partly-derived String Look-ahead Parsed/Unparsed Input

S ((1T+2+3+4)+5

— E S’ (1T+2+3+4)+5
— (S) § 1 T+2+3+4)+5
— (ES) S 1 1T+2+3+4)+5
— (185 + (1T+2+3+4)+5
— (1+9) 5 2 (1T+2+3+4)+5
— (1T +ES)S 2 (1T+2+B3+4)+5
— (1+28)5 + (1T+2+3+4)+5
— (1+2+9 Y ((1T+2+3+4)+5
— (1+2+ES)S ((1T+2+3+4)+5
— 3 (1 ()

1+2+(08S5)S +2+3+4)+

CIS 341: Compilers

Predictive Parsing

* Given an LL(T) grammar:

— For a given nonterminal, the lookahead symbol uniquely determines the
production to apply.

— Top-down parsing = predictive parsing T —S$

S — EY

S '+ &

S"— + S

E — number | (S

—m---

— Driven by a predictive parsing table:
nonterminal * input token — production

— S$
— E S —E S’

— + S — g — g
— num. — (S)

* Note: it is convenient to add a special end-of-file token $ and a start
symbol T (top-level) that requires $.

CIS 341: Compilers 31

How do we construct the parse table?

« Consider a given production: A 2>y
« Construct the set of all input tokens that may appear first in strings
that can be derived from vy
— Add the production = v to the entry (A, token) for each such token.

 If y can derive ¢ (the empty string), then we construct the set of all
input tokens that may fo/low the nonterminal A in the grammar.

— Add the production = v to the entry (A, token) for each such token.

* Note: if there are two different productions for a given entry, the
grammar is not LL(T)

CIS 341: Compilers 32

Example

* First(T) = First(S)
+ First(S) = First(E) g - Eg
e First(S) ={+} S s ¢
* First(E) = { number, ‘(* } S/ — + S
E +— number | (S)
* Follow(S’) = Follow(S) PN

Note: we want the least

* Follow(S) = { $, Y }1U Follow(S’) solution to this system of set

equations... a fixpoint
computation. More on
these later in the course.

> g > g

Zdancewic CIS 341: Compilers 33

Converting the table to code

* Define n mutually recursive functions
— one for each nonterminal A: parse_A
— The type of parse_A isunit -> ast if A is not an auxiliary nonterminal

— Parse functions for auxiliary nonterminals (e.g. S’) take extra ast’s as
inputs, one for each nonterminal in the “factored” prefix.

 Each function “peeks” at the lookahead token and then follows the
production rule in the corresponding entry.

— Consume terminal tokens from the input stream
— Call parse_X to create sub-tree for nonterminal X

— If the rule ends in an auxiliary nonterminal, call it with appropriate ast’s.

(The auxiliary rule is responsible for creating the ast after looking at more
Input.)

— Otherwise, this function builds the ast tree itself and returns it.

CIS 341: Compilers 34

_W---

— S$ —S$
— E S —E S’

— + S — g — g

— num. — (S)

Hand-generated LL(1) code for the table above.

DEMO: PARSER.ML

Zdancewic CIS 341: Compilers

35

LL(1) Summary

« Top-down parsing that finds the leftmost derivation.

« Language Grammar = LL(1) grammar = prediction table = recursive-
descent parser

* Problems:
— Grammar must be LL(1)
— Can extend to LL(k) (it just makes the table bigger)

— Grammar cannot be left recursive (parser functions will loop!)

* Is there a better way?

CIS 341: Compilers 36

LR GRAMMARS

Zdancewic CIS 341: Compilers

Bottom-up Parsing (LR Parsers)

* LR(k) parser:
— Left-to-right scanning
— Rightmost derivation
— k lookahead symbols

* LR grammars are more expressive than LL
— Can handle left-recursive (and right recursive) grammars; virtually all
programming languages
— Easier to express programming language syntax (no left factoring)

» Technique: “Shift-Reduce” parsers
— Work bottom up instead of top down
— Construct right-most derivation of a program in the grammar
— Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
— Better error detection/recovery

CIS 341: Compilers 38

Top-down vs. Bottom up

* Consider the left-
recursive grammar:

S—S+E | E
E +— number | (S)

e 1T+2+3+4)+5

* What part of the
tree must we
know after scanning

just “(1 + 2”2

* In top-down, must
be able to guess
which productions
to use...

CIS 341: Compilers

S
N
Note: ‘(* has S + E
been scanned I I
contumed. E5
e N
(1S)
TN
S + E
TN AN
S + E(§)
Il 1 AN
E 2 S5 + E
| |
1 E 4
I
3
Bottom-up

39

o

Rightmost derivation

Progress of Bottom-up Parsing

Reductions
1+2+3+4)+5
E 3+4)+5 «
S+2+(3+4)+5
(3 +4) +5 «

CIS 341: Compilers

Scanned

(

(

(

(

(T+2+@3
(T+2+@3
(T+2+3+4
(T+2+3+4
(T+2+3+4)
(T+2+3+4)
(T+2+3+4)
(T+2+3+4)
(T+2+3+4)+5

Input Remaining
(T+2+3+4)+5
1+2+3+4)+5
+2+3+4)+5

+(3+4)+5
+(3+4)+5
+4)+5
+4)+5

) + 5

) +5

)+ 5

)+ 5

+ 5

+ 5
S—S+E | E

E — number | (S)

40

Shift/Reduce Parsing

* Parser state: S—S+E | E
— Stack of terminals and nonterminals. E +— number | (S)
— Unconsumed input is a string of terminals
— Current derivation step is stack + input

 Parsing is a sequence of shift and reduce operations:
* Shift: move look-ahead token to the stack

» Reduce: Replace symbols y at top of stack with nonterminal X such
that X + y is a production. (pop v, push X)

Stack Input Action
1T+2+3+4)+5 shift (

(1+2+03+4)+5 shift 1

(1 +2+3+4)+5 reduce: E — number

(E +2+3+4)+5 reduce: S — E

(S +2+3+4)+5 shift +

(S + 2+3+4)+5 shift 2

(S+2 +(3+4)+5 reduce: E — number

CIS 341: Compilers 41

Simple LR parsing with no look ahead.

LR(0) GRAMMARS

Zdancewic CIS 341: Compilers

42

LR Parser States

* Goal: know what set of reductions are legal at any given point.
 ldea: Summarize all possible stack prefixes a as a finite parser state.

— Parser state is computed by a DFA that reads the stack .
— Accept states of the DFA correspond to unique reductions that apply.

« Example: LR(0) parsing
— Left-to-right scanning, Right-most derivation, zero look-ahead tokens
— Too weak to handle many language grammars (e.g. the “sum” grammar)
— But, helpful for understanding how the shift-reduce parser works.

CIS 341: Compilers

Example LR(0) Grammar: Tuples

« Example grammar for non-empty tuples and identifiers:

S— (L) | id
L—S | L,S
« Example strings:
X
X,Y)
X

x, (Y, z), W)

X, (y, (z, w)))

(
((()))
E (x, (y, 2), w)

CIS 341: Compilers

Parse tree for:

Shift/Reduce Parsing

* Parser state: S— (L) | id
— Stack of terminals and nonterminals. | — S | LS
— Unconsumed input is a string of terminals
— Current derivation step is stack + input

 Parsing is a sequence of shift and reduce operations:
 Shift: move look-ahead token to the stack: e.g.

Stack Input Action
(X/ (Y/ Z)/ W) shift (
(X, (y, z), w) shift x

* Reduce: Replace symbols y at top of stack with nonterminal X such
that X + vy is a production. (pop y, push X): e.g.

Stack Input Action
(x , (y, 2), w) reduce S — id
(S , (y, 2), w) reduce L — S

CIS 341: Compilers 45

Example Run

Stack Input Action
(x, (y, 2), w) shift (

(X, (y, z), w) shift x

(x , (Y, 2), w) reduce S — id

(S , y, 2), w) reduce L — S

(L , (y, 2), w) shift ,

(L, (y,), w) shift (

(L, (Y, Z), W) shift y

(L, (y L Z), W) reduce S — id

(L, (S L Z), W) reduce L — S

(L, (L L Z), W) shift ,

(L, (L, Z), W) shift z

(L, (L, z), W) reduce S — id

(L, (L, S), W) reduce L— L, S

(L, (L), W) shift)

(L, (L) . W) reduce S+— (L)

(L, S . W) reduce L— L, S
CIS 341] Compilers W) shift |

Action Selection Problem

« Given a stack o and a look-ahead symbol b, should the parser:
— Shift b onto the stack (new stack is ob)
— Reduce a production X +— y, assuming that = ay (new stack is aX)?

« Sometimes the parser can reduce but shouldn’t
— For example, X + ¢ can always be reduced

« Sometimes the stack can be reduced in different ways

* Main idea: decide what to do based on a prefix a of the stack plus the
look-ahead symbol.

— The prefix a is different for different possible reductions since in
productions X + y and Y + B, y and B might have different lengths.

Main goal: know what set of reductions are legal at any point.
— How do we keep track?

CIS 341: Compilers 47

LR(0) States

* An LR(0) state is a set of items keeping track of progress on possible
upcoming reductions.

* An LR(0) item is a production from the language with an extra

separator “.” somewhere in the right-hand-side
S— (L) | id
L—S | L,S

* Exampleitems: S+ (L) or S— (L) or LS.
* Intuition:

— Stuff before the ‘.’ is already on the stack
(beginnings of possible y’s to be reduced)

— Stuff after the ‘" is what might be seen next
— The prefixes a are represented by the state itself

CIS 341: Compilers

48

Constructing the DFA: Start state & Closure

* First step: Add a new production

S’ +— S$ to the grammar S’ +— S$
» Start state of the DFA = empty stack, S— (L) | id
so it contains the item:
>
i conta L—S | L,S

e Closure of a state:

— Adds items for all productions whose LHS nonterminal occurs in an item
in the state just after the ‘.’

— The added items have the ‘" located at the beginning (no symbols for
those items have been added to the stack yet)

— Note that newly added items may cause yet more items to be added to the
state... keep iterating until a fixed point is reached.

* Example: CLOSURE({S' + .S$}) = {S"+— .S§, S+— .(L), S+—.id}

« Resulting “closed state” contains the set of all possible productions
that might be reduced next.

CIS 341: Compilers 49

Example: Constructing the DFA

! S’ +— S$
S — .S$ S'—>(|_)|Id
L—S | L,S

First, we construct a state with the initial item S’ — .S$

CIS 341: Compilers 50

Example: Constructing the DFA
S+ S$

S (L) L—S | L,S
S+ .id

« Next, we take the closure of that state:
CLOSURE({S" +— .S$}) ={S"+— S$,S+— (L), S— .id}

* In the set of items, the nonterminal S appears after the ‘.
« So we add items for each S production in the grammar

CIS 341: Compilers 51

Example: Constructing the DFA
v d o

$'+—.S$ —— S id. S— (L) | id
S+ .(L) L—S | L,S

S — .id I

S— (. L) Next we add the transitions:

* First, we see what terminals and
nonterminals can appear after the
‘. in the source state.

— Outgoing edges have those label.

« The target state (initially) includes

all items from the source state that
S — S.$ have the edge-label symbol after
the *./, but we advance the ’” (to
simulate shifting the item onto the
stack)

CIS 341: Compilers 52

Example: Constructing the DFA

! S — S$
. :
S’ .5 —— > S id. S— (L) | id
S+ (L) L—S | L,S
S — .id _
1 's— (L)
7 L—.S
L— L, S
> S+ (L)
S — .id
! Finally, for each new state, we take the closure.
S +— S.$ « Note that we have to perform two iterations to compute

CLOSURE{S — (. L)})

— First iteration adds L — .Sand L— .L, S
— Second iteration adds S — .(L) and S — .id

CIS 341: Compilers 53

Full DFA for the Example

L . 2 , 8 9
id . id S
S+—S$§ —>S—id. =« L— L, .S >L— LS.
S— (L) S— (L)
S — .id - id S — .id
3 (Current state: run the
(S— (L) I DFA on the stack.
BN D /
L+— .S 5
L— L, S] S (L) *Ifa ridléce s(’]tlate is
S (S+ (L) >Ll—>L.,S reached, reduce
S+ .id » Otherwise, if the next
token matches an
4 outgoing edge, shift.
S'—35.% * If no such transition,
$l It is a parse error.
Done! Reduce state: ‘. at the

end of the production

CIS 341: Compilers 54

Using the DFA

* Run the parser stack through the DFA.

 The resulting state tells us which productions might be
reduced next.

— If not in a reduce state, then shift the next symbol and transition
according to DFA.

— If in a reduce state, X — y with stack ay, pop y and push X.

» Optimization: No need to re-run the DFA from beginning
every step
— Store the state with each symbol on the stack: e.g. {(5(;L5)¢

— On a reduction X + v, pop stack to reveal the state too:
e.g. From stack (3(;L5)¢ reduce S+ (L) to reach stack (3

— Next, push the reduction symbol: e.g. to reach stack ;(5S
— Then take just one step in the DFA to find next state: (355

CIS 341: Compilers 55

Implementing the Parsing Table

Represent the DFA as a table of shape:
state * (terminals + nonterminals)

 Entries for the “action table” specify two kinds of actions:
— Shift and goto state n

— Reduce using reduction X +— vy
« First pop y off the stack to reveal the state
* Look up X in the “goto table” and goto that state

Terminal Symbols Nonterminal Symbols

Goto

State

table

CIS 341: Compilers 56

Example Parse Table

I
I
&
il v
I

s3 s2

S—id S—id S—id S—id S—id

s3 s2 g7 g5
DONE

s6 s8

nSH(L) S (L) S— (L) S— (L) S (L)

L— S L— S L— S L— S L— S

“ s3 s2 g9
“ L—LS L—LS L—LS L—LS L—LS

sx = shift and goto state x
gx = goto state x

CIS 341: Compilers 57

Example

 Parse the token stream: (x, (y, z), w)$

Stack
€1

€13
€1(3X2
€1(35
€1(3S;
e1(5L
e1(sLs
e1(sL5,8

€1(5Ls,8(5

Stream

(x, (y, 2), w)$
X, (y, z), w)$

, (Y, 2), w)$
, (Y, 2), w)$
, (Y, 2), w)$
, (Y, 2), w)$
, (Y, 2), w)$
(y, z), w)$

Y,), W)$

Zdancewic CIS 341: Compilers

Action (according to table)
s3

s2

Reduce: S—id

g7 (from state 3 follow S)
Reduce: L—S

g5 (from state 3 follow L)
S8

s3

s2

LR(0) Limitations

* An LR(0) machine only works if states with reduce actions
have a single reduce action.
— In such states, the machine always reduces (ignoring lookahead)

* With more complex grammars, the DFA construction will
yield states with shift/reduce and reduce/reduce conflicts:

OK shift/reduce reduce/reduce
S+ (L). S+ (L). S— LS.
L— .L,S S— ,S.

* Such conflicts can often be resolved by using a look-ahead
symbol: LR(T)

CIS 341: Compilers 59

Examples

« Consider the left associative and right associative “sum” grammars:

left right
S—S+E | E S—E+S | E
E +— number | (S) E — number | (S)

* One is LR(0) the other isn't... which is which and why?
* What kind of conflict do you get? Shift/reduce or Reduce/reduce?

« Ambiguities in associativity/precedence usually lead to shift/reduce
conflicts.

CIS 341: Compilers 60

LR(1) Parsing

« Algorithm is similar to LR(0) DFA construction:
— LR(1) state = set of LR(1) items

— An LR(1) item is an LR(0) item + a set of look-ahead symbols:
A— afl, L

* LR(1) closure is a little more complex:
* Form the set of items just as for LR(0) algorithm.

 Whenever a new item C +— .y is added because A — B.Cé, £ s
already in the set, we need to compute its look-ahead set :

1. The look-ahead set % includes FIRST(d)
(the set of terminals that may start strings derived from 3)

2. If & can derive ¢ (it is nullable), then the look-ahead % also contains £

CIS 341: Compilers

61

Example Closure

S"+— S$
S—E+S | E
E — number | (S)

Start item: S — S$, {}

Since S is to the right of a ./, add:
S— .E+S , {$} Note: {$} is FIRST($)
S+— .E , {$}

Need to keep closing, since E appears to the right of a *." in
‘E+ S5
E+— .number, {+} Note: + added for reason 1
E— .(S) , {+}
Because E also appears to the right of *." in .E’ we get:
E— .number, {$} Note: $ added for reason 2

All items are distinct, so we're done

CIS 341: Compilers

S+— S$ {}

S— E+S {$}
S— .E {$}
E— .num {+}
E— (S) {+}
E— .num {$}
E— .(S) {$}

* The behavior is determined if:

Using the DFA

Choice between shift
and reduce is resolved.
2

>S+—E.+S {$) — >
S +— E. {$}

e s
% TN

— There is no overlap among the
look-ahead sets for each reduce

item, and

— None of the look-ahead symbols
appear to the right of a *”

CIS 341: Compilers

g2

Fragment of the Action & Goto tables

63

LR variants

* LR(1) gives maximal power out of a 1 look-ahead symbol parsing table

— DFA + stack is a push-down automaton (recall 262)
* In practice, LR(1) tables are big.

— Modern implementations (e.g. menhir) directly generate code

e LALR(1) = “Look-ahead LR”

— Merge any two LR(1) states whose items are identical except for the look-

ahead sets: S .S 0
S— E+S {$}
S+— .E {$}
E— .num {4}
E—.(S) {+}
Er— .num {$}
E—.(S) {$}

S +— .S$
S— E+S
S— .E

E— .num
E— .(S)

{}

{$}
{$}
{+$}
{+$}

— Such merging can lead to nondeterminism (e.g. reduce/reduce conflicts), but
— Results in @ much smaller parse table and works well in practice

— This is the usual technology for automatic parser generators: yacc, ocamlyacc
* GLR = “Generalized LR” parsing

— Efficiently compute the set of all parses for a given input
— Later passes should disambiguate based on other context

CIS 341: Compilers

Classification of Grammars

LR(T)

LALR(T)
LL(T)| SLR
>

CIS 341: Compilers

65

