Lecture 12

CIS 341: COMPILERS

Announcements

« Midterm: March 3
— Inclass
— One-page, letter-sized, double-sided “cheat sheet” of notes permitted

— Coverage: interpreters / program transformers / x86 / calling conventions /
IRs / LLVM / Lexing / Parsing

— See examples of previous exams on the web pages

« HW4: Compiling Oat v.1
— released soon(ish)
— due March 23

Zdancewic CIS 341: Compilers

LL(1T) GRAMMARS

Zdancewic CIS 341: Compilers

Predictive Parsing

* Given an LL(T) grammar:

— For a given nonterminal, the lookahead symbol uniquely determines the
production to apply.

— Top-down parsing = predictive parsing T —S$

S — EY

S '+ &

S"— + S

E — number | (S

—m---

— Driven by a predictive parsing table:
nonterminal * input token — production

— S$
— E S —E S’

— + S — g — g
— num. — (S)

* Note: it is convenient to add a special end-of-file token $ and a start
symbol T (top-level) that requires $.

CIS 341: Compilers 4

How do we construct the parse table?

« Consider a given production: A 2>y
« Construct the set of all input tokens that may appear first in strings
that can be derived from vy
— Add the production = v to the entry (A, token) for each such token.

 If y can derive ¢ (the empty string), then we construct the set of all
input tokens that may fo/low the nonterminal A in the grammar.

— Add the production = v to the entry (A, token) for each such token.

* Note: if there are two different productions for a given entry, the
grammar is not LL(T)

CIS 341: Compilers

Example

* First(T) = First(S)
+ First(S) = First(E) g - Eg
e First(S) ={+} S s ¢
* First(E) = { number, ‘(* } S/ — + S
E +— number | (S)
* Follow(S’) = Follow(S) PN

Note: we want the least

* Follow(S) = { $, Y }1U Follow(S’) solution to this system of set

equations... a fixpoint
computation. More on
these later in the course.

> g > g

Zdancewic CIS 341: Compilers

Converting the table to code

* Define n mutually recursive functions
— one for each nonterminal A: parse_A
— The type of parse_A isunit -> ast if A is not an auxiliary nonterminal

— Parse functions for auxiliary nonterminals (e.g. S’) take extra ast’s as
inputs, one for each nonterminal in the “factored” prefix.

 Each function “peeks” at the lookahead token and then follows the
production rule in the corresponding entry.

— Consume terminal tokens from the input stream
— Call parse_X to create sub-tree for nonterminal X

— If the rule ends in an auxiliary nonterminal, call it with appropriate ast’s.

(The auxiliary rule is responsible for creating the ast after looking at more
Input.)

— Otherwise, this function builds the ast tree itself and returns it.

CIS 341: Compilers

_W---

— S$ —S$
— E S —E S’

— + S — g — g

— num. — (S)

Hand-generated LL(1) code for the table above.

DEMO: HANDPARSER.ML

Zdancewic CIS 341: Compilers

LL(1) Summary

« Top-down parsing that finds the leftmost derivation.

« Language Grammar = LL(1) grammar = prediction table = recursive-
descent parser

* Problems:
— Grammar must be LL(1)
— Can extend to LL(k) (it just makes the table bigger)

— Grammar cannot be left recursive (parser functions will loop!)

* Is there a better way?

CIS 341: Compilers

LR GRAMMARS

Zdancewic CIS 341: Compilers

Bottom-up Parsing (LR Parsers)

* LR(k) parser:
— Left-to-right scanning
— Rightmost derivation
— k lookahead symbols

* LR grammars are more expressive than LL
— Can handle left-recursive (and right recursive) grammars; virtually all
programming languages
— Easier to express programming language syntax (no left factoring)

» Technique: “Shift-Reduce” parsers
— Work bottom up instead of top down
— Construct right-most derivation of a program in the grammar
— Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
— Better error detection/recovery

CIS 341: Compilers 11

Top-down vs. Bottom up

* Consider the left-
recursive grammar:

S—S+E | E
E +— number | (S)

e 1T+2+3+4)+5

* What part of the
tree must we
know after scanning

just “(1 + 2”2

* In top-down, must
be able to guess
which productions
to use...

CIS 341: Compilers

S
N
Note: ‘(* has S + E
been scanned I I
contumed. E5
e N
(1S)
TN
S + E
TN AN
S + E(§)
Il 1 AN
E 2 S5 + E
| |
1 E 4
I
3
Bottom-up

12

o

Rightmost derivation

Progress of Bottom-up Parsing

Reductions
1+2+3+4)+5
E 3+4)+5 «
S+2+(3+4)+5
(3 +4) +5 «

CIS 341: Compilers

Scanned

(

(

(

(

(T+2+@3
(T+2+@3
(T+2+3+4
(T+2+3+4
(T+2+3+4)
(T+2+3+4)
(T+2+3+4)
(T+2+3+4)
(T+2+3+4)+5

Input Remaining
(T+2+3+4)+5
1+2+3+4)+5
+2+3+4)+5

+(3+4)+5
+(3+4)+5
+4)+5
+4)+5

) + 5

) +5

)+ 5

)+ 5

+ 5

+ 5
S—S+E | E

E — number | (S)

13

Shift/Reduce Parsing

* Parser state: S—S+E | E
— Stack of terminals and nonterminals. E +— number | (S)
— Unconsumed input is a string of terminals
— Current derivation step is stack + input

 Parsing is a sequence of shift and reduce operations:
* Shift: move look-ahead token to the stack

» Reduce: Replace symbols y at top of stack with nonterminal X such
that X + y is a production. (pop v, push X)

Stack Input Action
1T+2+3+4)+5 shift (

(1+2+03+4)+5 shift 1

(1 +2+3+4)+5 reduce: E — number

(E +2+3+4)+5 reduce: S — E

(S +2+3+4)+5 shift +

(S + 2+3+4)+5 shift 2

(S+2 +(3+4)+5 reduce: E — number

CIS 341: Compilers 14

Simple LR parsing with no look ahead.

LR(0) GRAMMARS

Zdancewic CIS 341: Compilers

15

LR Parser States

* Goal: know what set of reductions are legal at any given point.
 ldea: Summarize all possible stack prefixes a as a finite parser state.

— Parser state is computed by a DFA that reads the stack .
— Accept states of the DFA correspond to unique reductions that apply.

« Example: LR(0) parsing
— Left-to-right scanning, Right-most derivation, zero look-ahead tokens
— Too weak to handle many language grammars (e.g. the “sum” grammar)
— But, helpful for understanding how the shift-reduce parser works.

CIS 341: Compilers 16

Example LR(0) Grammar: Tuples

« Example grammar for non-empty tuples and identifiers:

S— (L) | id S
L—S | L,S N
. (L)
« Example strings: PN
- X L , S
- (xy) AN
— ((((x)))) L S w
= (% 0y 2), W aetreetor 1 AN
- (x, (y, (z, W) R s (L)
AN
« L , S
l l
S z
I
Y

CIS 341: Compilers

Shift/Reduce Parsing

* Parser state: S— (L) | id
— Stack of terminals and nonterminals. | — S | LS
— Unconsumed input is a string of terminals
— Current derivation step is stack + input

 Parsing is a sequence of shift and reduce operations:
 Shift: move look-ahead token to the stack: e.g.

Stack Input Action
(X/ (Y/ Z)/ W) shift (
(X, (y, z), w) shift x

* Reduce: Replace symbols y at top of stack with nonterminal X such
that X + vy is a production. (pop y, push X): e.g.

Stack Input Action
(x , (y, 2), w) reduce S — id
(S , (y, 2), w) reduce L — S

CIS 341: Compilers 18

Example Run

Stack Input Action
(x, (y, 2), w) shift (

(X, (y, z), w) shift x

(x , y, 2), w) reduce S — id

(S , (y, 2), w) reduce L — S

(L , (y, 2), w) shift ,

(L, (y,), w) shift (

(L, (Y, Z), W) shift y

(L, (y L Z), W) reduce S — id

(L, (S L Z), W) reduceL— S

(L, (L L Z), W) shift ,

(L, (L, Z), W) shift z

(L, (L, z), W) reduce S — id

(L, (L, S), W) reduceL— L, S

(L, (L), W) shift)

(L, (L) , W) reduce S+— (L)

(L, S , W) reduce L— L, S
CIS 341] Compilers W) shift |

Action Selection Problem

« Given a stack o and a look-ahead symbol b, should the parser:
— Shift b onto the stack (new stack is ob)
— Reduce a production X +— y, assuming that = ay (new stack is aX)?

« Sometimes the parser can reduce but shouldn’t
— For example, X + ¢ can always be reduced

« Sometimes the stack can be reduced in different ways

* Main idea: decide what to do based on a prefix a of the stack plus the
look-ahead symbol.

— The prefix a is different for different possible reductions since in
productions X + y and Y + B, y and B might have different lengths.

Main goal: know what set of reductions are legal at any point.
— How do we keep track?

CIS 341: Compilers 20

LR(0) States

* An LR(0) state is a set of items keeping track of progress on possible
upcoming reductions.

* An LR(0) item is a production from the language with an extra

separator “.” somewhere in the right-hand-side
S— (L) | id
L—S | L,S

* Exampleitems: S+ (L) or S— (L) or LS.
* Intuition:

— Stuff before the ‘.’ is already on the stack
(beginnings of possible y’s to be reduced)

— Stuff after the ‘" is what might be seen next
— The prefixes a are represented by the state itself

CIS 341: Compilers

21

Constructing the DFA: Start state & Closure

* First step: Add a new production

S’ +— S$ to the grammar S’ +— S$
» Start state of the DFA = empty stack, S— (L) | id
so it contains the item:
>
i conta L—S | L,S

e Closure of a state:

— Adds items for all productions whose LHS nonterminal occurs in an item
in the state just after the ‘.’

— The added items have the ‘" located at the beginning (no symbols for
those items have been added to the stack yet)

— Note that newly added items may cause yet more items to be added to the
state... keep iterating until a fixed point is reached.

* Example: CLOSURE({S' + .S$}) = {S"+— .S§, S+— .(L), S+—.id}

« Resulting “closed state” contains the set of all possible productions
that might be reduced next.

CIS 341: Compilers 22

Example: Constructing the DFA

! S’ +— S$
S — .S$ S'—>(|_)|Id
L—S | L,S

First, we construct a state with the initial item S’ — .S$

CIS 341: Compilers 23

Example: Constructing the DFA
S+ S$

S (L) L—S | L,S
S+ .id

« Next, we take the closure of that state:
CLOSURE({S" +— .S$}) ={S"+— S$,S+— (L), S— .id}

* In the set of items, the nonterminal S appears after the ‘.
« So we add items for each S production in the grammar

CIS 341: Compilers 24

Example: Constructing the DFA
v d o

$'+—.S$ —— S id. S— (L) | id
S+ .(L) L—S | L,S

S — .id I

S— (. L) Next we add the transitions:

* First, we see what terminals and
nonterminals can appear after the
‘. in the source state.

— Outgoing edges have those label.

« The target state (initially) includes

all items from the source state that
S — S.$ have the edge-label symbol after
the *./, but we advance the ’” (to
simulate shifting the item onto the
stack)

CIS 341: Compilers 25

Example: Constructing the DFA

! S — S$
. :
S’ .5 —— > S id. S— (L) | id
S+ (L) L—S | L,S
S — .id _
1 's— (L)
7 L—.S
L— L, S
> S+ (L)
S — .id
! Finally, for each new state, we take the closure.
S +— S.$ « Note that we have to perform two iterations to compute

CLOSURE{S — (. L)})

— First iteration adds L — .Sand L— .L, S
— Second iteration adds S — .(L) and S — .id

CIS 341: Compilers 26

Full DFA for the Example

L . 2 , 8 9
id . id S
S+—S$§ —>S—id. =« L— L, .S >L— LS.
S— (L) S— (L)
S — .id - id S — .id
3 (Current state: run the
(S— (L) I DFA on the stack.
BN D /
L+— .S 5
L— L, S] S (L) *Ifa ridléce s(’]tlate is
S (S+ (L) >Ll—>L.,S reached, reduce
S+ .id » Otherwise, if the next
token matches an
4 outgoing edge, shift.
S'—35.% * If no such transition,
$l It is a parse error.
Done! Reduce state: ‘. at the

end of the production

CIS 341: Compilers 27

Using the DFA

* Run the parser stack through the DFA.

 The resulting state tells us which productions might be
reduced next.

— If not in a reduce state, then shift the next symbol and transition
according to DFA.

— If in a reduce state, X — y with stack ay, pop y and push X.

» Optimization: No need to re-run the DFA from beginning
every step
— Store the state with each symbol on the stack: e.g. {(5(;L5)¢

— On a reduction X + v, pop stack to reveal the state too:
e.g. From stack (3(;L5)¢ reduce S+ (L) to reach stack (3

— Next, push the reduction symbol: e.g. to reach stack ;(5S
— Then take just one step in the DFA to find next state: (355

CIS 341: Compilers 28

Implementing the Parsing Table

Represent the DFA as a table of shape:
state * (terminals + nonterminals)

 Entries for the “action table” specify two kinds of actions:
— Shift and goto state n

— Reduce using reduction X +— vy
« First pop y off the stack to reveal the state
* Look up X in the “goto table” and goto that state

Terminal Symbols Nonterminal Symbols

Goto

State

table

CIS 341: Compilers 29

Example Parse Table

I
I
&
il v
I

s3 s2

S—id S—id S—id S—id S—id

s3 s2 g7 g5
DONE

s6 s8

nSH(L) S (L) S— (L) S— (L) S (L)

L— S L— S L— S L— S L— S

“ s3 s2 g9
“ L—LS L—LS L—LS L—LS L—LS

sx = shift and goto state x
gx = goto state x

CIS 341: Compilers 30

Example

 Parse the token stream: (x, (y, z), w)$

Stack
€1

€13
€1(3X2
€1(35
€1(3S;
e1(5L
e1(sLs
e1(sL5,8

€1(5Ls,8(5

Stream

(x, (y, 2), w)$
X, (y, z), w)$

, (Y, 2), w)$
, (Y, 2), w)$
, (Y, 2), w)$
, (Y, 2), w)$
, (Y, 2), w)$
(y, z), w)$

Y,), W)$

Zdancewic CIS 341: Compilers

Action (according to table)
s3

s2

Reduce: S—id

g7 (from state 3 follow S)
Reduce: L—S

g5 (from state 3 follow L)
S8

s3

s2

LR(0) Limitations

* An LR(0) machine only works if states with reduce actions
have a single reduce action.
— In such states, the machine always reduces (ignoring lookahead)

* With more complex grammars, the DFA construction will
yield states with shift/reduce and reduce/reduce conflicts:

OK shift/reduce reduce/reduce
S+ (L). S+ (L). S— LS.
L— .L,S S— ,S.

* Such conflicts can often be resolved by using a look-ahead
symbol: LR(T)

CIS 341: Compilers 32

Examples

« Consider the left associative and right associative “sum” grammars:

left right
S—S+E | E S—E+S | E
E +— number | (S) E — number | (S)

* One is LR(0) the other isn't... which is which and why?
* What kind of conflict do you get? Shift/reduce or Reduce/reduce?

« Ambiguities in associativity/precedence usually lead to shift/reduce
conflicts.

CIS 341: Compilers

LR(1) Parsing

« Algorithm is similar to LR(0) DFA construction:
— LR(1) state = set of LR(1) items

— An LR(1) item is an LR(0) item + a set of look-ahead symbols:
A— afl, L

* LR(1) closure is a little more complex:
* Form the set of items just as for LR(0) algorithm.

 Whenever a new item C +— .y is added because A — B.Cé, £ s
already in the set, we need to compute its look-ahead set :

1. The look-ahead set % includes FIRST(d)
(the set of terminals that may start strings derived from 3)

2. 1f & is itself € or can derive ¢ (i.e. it is nullable), then the look-ahead 9/ also
contains L

CIS 341: Compilers 34

Example Closure

S"+— S$
S—E+S | E
E — number | (S)

Start item: S — S$, {}

Since S is to the right of a ./, add:

S— .E+S , {$} Note: {$} is FIRST($)
S+ .E , {$}

Need to keep closing, since E appears to the right of a *." in
‘E+ S5

E+— .number, {+} Note: + added for reason 1

Er— .(S) . {4+ FIRST(+ S) = {+}
Because E also appears to the right of *." in .E’ we get:

E— .number, {$} Note: $ added for reason 2

E— (S) . {$) dis e

All items are distinct, so we're done

CIS 341: Compilers

S+— S$ {}

S— E+S {$}
S— .E {$}
E— .num {+}
E— (S) {+}
E— .num {$}
E— .(S) {$}

* The behavior is determined if:

Using the DFA

Choice between shift
and reduce is resolved.
2

>S+—E.+S {$) — >
S +— E. {$}

e s
% TN

— There is no overlap among the
look-ahead sets for each reduce

item, and

— None of the look-ahead symbols
appear to the right of a *”

CIS 341: Compilers

g2

Fragment of the Action & Goto tables

36

LR variants

* LR(1) gives maximal power out of a 1 look-ahead symbol parsing table
— DFA + stack is a push-down automaton (recall CIS 262)

* In practice, LR(1) tables are big.

— Modern implementations (e.g. menhir) directly generate code

e LALR(1) = “Look-ahead LR”

— Merge any two LR(1) states whose items are identical except for the look-

ahead sets: S .S 0
S— E+S {$}
S+— .E {$}
E— .num {4}
E—.(S) {+}
Er— .num {$}
E—.(S) {$}

S +— .S$
S— E+S
S— .E

E— .num
E— .(S)

{}

{$}
{$}
{+$}
{+$}

— Such merging can lead to nondeterminism (e.g. reduce/reduce conflicts), but
— Results in @ much smaller parse table and works well in practice

— This is the usual technology for automatic parser generators: yacc, ocamlyacc
* GLR = “Generalized LR” parsing

— Efficiently compute the set of all parses for a given input
— Later passes should disambiguate based on other context

CIS 341: Compilers

Classification of Grammars

LR(T)

LALR(T)
LL(T)| SLR
>

CIS 341: Compilers

38

Debugging parser conflicts.
Disambiguating grammars.

MENHIR IN PRACTICE

Zdancewic CIS 341: Compilers 39

Practical Issues

Dealing with source file location information
— In the lexer and parser
— In the abstract syntax

— See range.ml, ast.ml

Lexing comments / strings

Zdancewic CIS 341: Compilers

40

Menhir output

You can get verbose ocamlyacc debugging information by doing:
— menhir --explain ..

— or, if using dune, adding this stanza:
(menhtir

(modules parser)
(flags --explain))

The result is a <basename>.conflicts file that contains a description of
the error

— The parser items of each state use the *." just as described above
The flag --dump generates a full description of the automaton

Example: see start-parser.mly

Zdancewic CIS 341: Compilers 41

Precedence and Associativity Declarations

Parser generators, like menhir often support precedence and
associativity declarations.

— Hints to the parser about how to resolve conflicts.
— See: good-parser.mly

Pros:

— Avoids having to manually resolve those ambiguities by manually
introducing extra nonterminals (as seen in parser.mly)

— Easier to maintain the grammar

Cons:
— Can't as easily re-use the same terminal (if associativity differs)
— Introduces another level of debugging

Limits:
— Not always easy to disambiguate the grammar based on just precedence
and associativity.

Zdancewic CIS 341: Compilers 42

Example Ambiguity in Real Languages

 Consider this grammar: Consider how to parse:
S— if (E) S
S— if (E) SelseS if .
_ (E) 1f (Ey) 5
>5— X=FE else S,
Er— ...
+ s this grammar OK? e This is known as the

“dangling else” problem.

* What should the “right”
answer be?

* How do we change the
grammare

CIS 341: Compilers 43

How to Disambiguate if-then-else

« Want to rule out:

if (El){ if (E,) Sl} else S,

* Observation: An un-matched ‘i£’ should not appear as the ‘then’
clause of a containing ‘if’.

S+— M| U // M = “matched”, U = “unmatched”
Ur— 1f (E) S // Unmatched ‘if’

U— 1f (E) MelseU // Nested if is matched

M— 1f (E) Melse M //Matched ‘if

M— X=E // Other statements

« See: else-resolved-parser.mly

CIS 341: Compilers

44

Alternative: Use {}

* Ambiguity arises because the ‘then’ branch is not well bracketed:

if (E;) { if (E,) { S; } } else s, // unambiguous
if (E;) { if (E,) { S; } else S, } // unambiguous

* So: could just require brackets

— But requiring them for the else clause too leads to ugly code for chained
if-statements:

if (cl) { .
So, compromise? Allow unbracketed else
b else { block only if the body is ‘if":
if (c2) {
if (cl) {
} else {
if (c3) { } else if (c2) {
peree Poetee (e l?eriifsl;[se;mbiguous
} } i eled * FEasy to parse
} } Enforces good style

Zdancewic CIS 341: Compilers 45

