
CIS 341: COMPILERS
Lecture 13



Announcements

• Midterm: March 3rd

– In class
– One-page, letter-sized, double-sided “cheat sheet” of notes permitted
– Coverage: interpreters / program transformers / x86 / calling conventions / 

IRs / LLVM / Lexing / Parsing
– See examples of previous exams on the web pages

• HW4: Compiling Oat v.1
– released soon(ish)
– due March 23rd
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LR GRAMMARS
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Bottom-up Parsing  (LR Parsers)
• LR(k) parser:  

– Left-to-right scanning
– Rightmost derivation
– k lookahead symbols

• LR grammars are more expressive than LL
– Can handle left-recursive (and right recursive) grammars; virtually all 

programming languages
– Easier to express programming language syntax (no left factoring)

• Technique:  “Shift-Reduce” parsers
– Work bottom up instead of top down
– Construct right-most derivation of a program in the grammar
– Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
– Better error detection/recovery
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LR(0) States
• An LR(0) state is a set of items keeping track of progress on possible 

upcoming reductions.
• An LR(0) item is a production from the language with an extra 

separator “.” somewhere in the right-hand-side

• Example items:     S ⟼ .( L )     or   S ⟼ (. L)    or    L ⟼ S.
• Intuition:

– Stuff before the ‘.’ is already on the stack
(beginnings of possible g’s to be reduced)

– Stuff after the ‘.’ is what might be seen next
– The prefixes a are represented by the state itself
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S ⟼ ( L )  |  id
L ⟼ S   |   L , S



Constructing the DFA: Start state & Closure

• First step:  Add a new production   
S’ ⟼ S$  to the grammar

• Start state of the DFA =  empty stack, 
so it contains the item:

S’ ⟼ .S$
• Closure of a state:

– Adds items for all productions whose LHS nonterminal occurs in an item 
in the state just after the ‘.’

– The added items have the ‘.’ located at the beginning (no symbols for 
those items have been added to the stack yet)

– Note that newly added items may cause yet more items to be added to the 
state… keep iterating until a fixed point is reached.

• Example:  CLOSURE({S’ ⟼ .S$})  =  {S’ ⟼ .S$, S ⟼ .(L), S⟼.id}

• Resulting “closed state” contains the set of all possible productions 
that might be reduced next.
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S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S



Example: Constructing the DFA

• First, we construct a state with the initial item S’ ⟼ .S$
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S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S

S’ ⟼ .S$



Example: Constructing the DFA

• Next, we take the closure of that state:
CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .( L ), S ⟼ .id}

• In the set of items, the nonterminal S appears after the ‘.’
• So we add items for each S production in the grammar
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S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S

S’ ⟼ .S$
S ⟼ .( L ) 
S ⟼ .id



Example: Constructing the DFA

• Next we add the transitions:
• First, we see what terminals and 

nonterminals can appear after the 
‘.’ in the source state.
– Outgoing edges have those label.

• The target state (initially) includes 
all items from the source state that 
have the edge-label symbol after 
the ‘.’, but we advance the ‘.’  (to 
simulate shifting the item onto the 
stack)
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S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S

S’ ⟼ .S$
S ⟼ .( L ) 
S ⟼ .id

S ⟼ (. L )

S ⟼ id.

S’ ⟼ S.$

id

S

(



Example: Constructing the DFA

• Finally, for each new state, we take the closure.
• Note that we have to perform two iterations to compute 

CLOSURE({S ⟼ ( . L )})
– First iteration adds L ⟼ .S and L ⟼ .L, S
– Second iteration adds S ⟼ .(L) and S ⟼ .id
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S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S

S’ ⟼ .S$
S ⟼ .( L ) 
S ⟼ .id

S ⟼ (. L )
L ⟼ .S 
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id.

S’ ⟼ S.$

id

S

(



Full DFA for the Example
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S’ ⟼ .S$
S ⟼ .( L ) 
S ⟼ .id

S ⟼ (. L )
L ⟼ .S 
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id. L ⟼ L, . S
S ⟼ .( L )
S ⟼ .id

L ⟼ L, S.

S ⟼ ( L .)
L ⟼ L . , S

S ⟼ ( L ).L ⟼ S.S’ ⟼ S.$

Done!
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Reduce state: ‘.’ at the 
end of the production

• Current state: run the
DFA on the stack.

• If a reduce state is 
reached, reduce

• Otherwise, if the next
token matches an 
outgoing edge, shift.

• If no such transition,
it is a parse error. 
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Using the DFA
• Run the parser stack through the DFA.
• The resulting state tells us which productions might be 

reduced next.
– If not in a reduce state, then shift the next symbol and transition 

according to DFA.
– If in a reduce state, X ⟼ g with stack ag, pop g and push X.

• Optimization: No need to re-run the DFA from beginning 
every step
– Store the state  with each symbol on the stack:  e.g. 1(3(3L5)6
– On a reduction X ⟼ g, pop stack to reveal the state too:

e.g.    From stack 1(3(3L5)6 reduce S ⟼ ( L ) to reach stack 1(3
– Next, push the reduction symbol: e.g. to reach stack 1(3S
– Then take just one step in the DFA to find next state: 1(3S7
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Implementing the Parsing Table
Represent the DFA as a table of shape: 

state * (terminals + nonterminals)
• Entries for the “action table” specify two kinds of actions:

– Shift and goto state n
– Reduce using reduction X ⟼ g

• First pop g off the stack to reveal the state
• Look up X in the “goto table” and goto that state
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Action
table

Goto
tableSt
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e

Terminal Symbols Nonterminal Symbols



Example Parse Table
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( ) id , $ S L

1 s3 s2 g4

2 S⟼id S⟼id S⟼id S⟼id S⟼id

3 s3 s2 g7 g5

4 DONE

5 s6 s8

6 S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L)

7 L ⟼ S L ⟼ S L ⟼ S L ⟼ S L ⟼ S

8 s3 s2 g9

9 L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S

sx = shift and goto state x
gx = goto state x



Example
• Parse the token stream:  (x, (y, z), w)$

Stack Stream Action (according to table)

e1 (x, (y, z), w)$ s3
e1(3 x, (y, z), w)$ s2
e1(3x2 , (y, z), w)$ Reduce: S⟼id
e1(3S , (y, z), w)$ g7   (from state 3 follow S) 
e1(3S7 , (y, z), w)$ Reduce: L⟼S
e1(3L , (y, z), w)$ g5   (from state 3 follow L)
e1(3L5 , (y, z), w)$ s8
e1(3L5,8 (y, z), w)$ s3

e1(3L5,8(3 y, z), w)$ s2

Zdancewic     CIS 341: Compilers    15



LR(0) Limitations
• An LR(0) machine only works if states with reduce actions 

have a single reduce action.
– In such states, the machine always reduces (ignoring lookahead)

• With more complex grammars, the DFA construction will 
yield states with shift/reduce and reduce/reduce conflicts:

OK shift/reduce reduce/reduce

• Such conflicts can often be resolved by using a look-ahead 
symbol: SLR(1) or LR(1)
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S ⟼ ( L ). S ⟼ ( L ).
L ⟼ .L , S

S ⟼ L ,S.
S ⟼ ,S.



Examples
• Consider the left associative and right associative “sum” grammars:

left right

• One is LR(0) the other isn’t…  which is which and why?
• What kind of conflict do you get?  Shift/reduce or Reduce/reduce?

• Ambiguities in associativity/precedence usually lead to shift/reduce 
conflicts. 
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S ⟼ S + E  |  E
E ⟼ number | ( S )

S ⟼ E + S  |  E
E ⟼ number | ( S )



SLR(1): “simple” LR(1) Parsers
• What conflicts are there in LR(0) parsing?

– reduce/reduce conflict:  an LR(0) state has two reduce actions 
– shift/reduce conflict: an LR(0) state mixes reduce and shift actions

• Can we use lookahead to disambiguate?

• SLR(1) – uses the same DFA construction as LR(0) 
– modifies the actions based on lookahead

• Suppose reducing nonterminal A is possible in some state:
– compute Follow(A) for the given grammar
– if the lookahead symbol is in Follow(A), then reduce, otherwise shift
– can disambiguate between reduce/reduce conflicts if the follow sets are 

disjoint
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Note: easiest LR variant to construct “by hand”.



LR(1) Parsing
• SLR parsing is a simple refinement of LR(0). We can do more.

• Algorithm is similar to LR(0) DFA construction:
– LR(1) state = set of LR(1) items
– An LR(1) item is an LR(0) item + a set of look-ahead symbols:

A ⟼ a.b ,  L

• LR(1) closure is a little more complex:
• Form the set of items just as for LR(0) algorithm.
• Whenever a new item C ⟼ .g is added because A ⟼ b.Cd , L is 

already in the set, we need to compute its look-ahead set M:
1. The look-ahead set M includes FIRST(d) 

(the set of terminals that may start strings derived from d)
2. If d is itself e or can derive e (i.e., it is nullable), then the look-ahead M

also contains L
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Example LR(1) Closure

• Start item:     S’ ⟼ .S$    ,   {}

• Since S is to the right of a ‘.’, add:   
S ⟼ .E + S    ,   {$} Note: {$} is FIRST($)
S ⟼ .E          ,   {$}

• Need to keep closing, since E appears to the right of a ‘.’ in
‘.E + S’:

E ⟼ .number ,   {+} Note: + added for reason 1
E ⟼ .( S )       ,   {+} FIRST(+ S) = {+}

• Because E also appears to the right of ‘.’ in ‘.E’ we get:
E ⟼ .number ,   {$} Note: $ added for reason 2
E ⟼ .( S )       ,   {$} d is e

• All items are distinct, so we’re done
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S’ ⟼ S$
S ⟼ E + S  |  E
E ⟼ number | ( S )



Using the DFA

• The behavior is determined if:
– There is no overlap among the

look-ahead sets for each reduce 
item, and

– None of the look-ahead symbols
appear to the right of a ‘.’
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S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+}
E ⟼ .( S ) {+}
E ⟼ .num {$}
E ⟼ .( S ) {$}

S ⟼ E .+ S {$}
S ⟼ E. {$}

E

1

+ $ E

1 g2

2 s3 S ⟼ E

2
+

Fragment of the Action & Goto tables

Choice between shift 
and reduce is resolved.



LR variants
• LR(1) gives maximal power out of a 1 look-ahead symbol parsing table

– DFA + stack is a push-down automaton (recall CIS 262)
• In practice, LR(1) tables are big.

– Modern implementations (e.g., menhir) directly generate code

• LALR(1)  = “Look-ahead LR”
– Merge any two LR(1) states whose items are identical except for the look-

ahead sets:

– Such merging can lead to nondeterminism (e.g., reduce/reduce conflicts), but
– Results in a much smaller parse table and works well in practice
– This is the usual technology for automatic parser generators: yacc, ocamlyacc

• GLR = “Generalized LR” parsing
– Efficiently compute the set of all parses for a given input
– Later passes should disambiguate based on other context
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S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+}
E ⟼ .( S ) {+}
E ⟼ .num {$}
E ⟼ .( S ) {$}

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+,$}
E ⟼ .( S ) {+,$}



Classification of Grammars
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LR(0)

SLR(1)

LALR(1)

LR(1)

LL(1)



MENHIR IN PRACTICE

Zdancewic     CIS 341: Compilers    24

Debugging parser conflicts.
Disambiguating grammars.



Practical Issues
• Dealing with source file location information

– In the lexer and parser
– In the abstract syntax  

– See range.ml, ast.ml

• Lexing comments / strings
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Menhir output
• You can get verbose ocamlyacc debugging information by doing:

– menhir --explain …
– or, if using dune, adding this stanza:

• The result is a <basename>.conflicts file that contains a description of 
the error
– The parser items of each state use the ‘.’ just as described above

• The flag --dump generates a full description of the automaton

• Example: see start-parser.mly
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(menhir
(modules parser)
(flags --explain --dump))



Precedence and Associativity Declarations
• Parser generators, like menhir often support precedence and 

associativity declarations.
– Hints to the parser about how to resolve conflicts.
– See: good-parser.mly

• Pros:
– Avoids having to manually resolve those ambiguities by manually 

introducing extra nonterminals (as seen in parser.mly)
– Easier to maintain the grammar

• Cons:
– Can’t as easily re-use the same terminal (if associativity differs)
– Introduces another level of debugging

• Limits:
– Not always easy to disambiguate the grammar based on just precedence 

and associativity.

Zdancewic     CIS 341: Compilers    27



Example Ambiguity in Real Languages

• Consider this grammar:
S ⟼ if (E) S
S ⟼ if (E) S else S
S ⟼ X = E
E ⟼ …

• Is this grammar OK?

• Consider how to parse:

if (E1) if (E2) S1
else S2

• This is known as the 
“dangling else” problem.

• What should the “right” 
answer be?

• How do we change the 
grammar?
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How to Disambiguate if-then-else
• Want to rule out:    

if (E1)  if (E2) S1 else S2

• Observation: An un-matched ‘if’ should not appear as the ‘then’ 
clause of a containing ‘if’.

S  ⟼ M  |  U // M = “matched”,  U = “unmatched”
U ⟼ if (E) S // Unmatched ‘if’
U ⟼ if (E) M else U // Nested if is matched
M ⟼ if (E) M else M // Matched ‘if’
M ⟼ X = E // Other statements

• See: else-resolved-parser.mly
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Alternative: Use { }
• Ambiguity arises because the ‘then’ branch is not well bracketed:

if (E1) { if (E2) { S1 } } else S2 // unambiguous
if (E1) { if (E2) { S1 } else S2 }  // unambiguous

• So: could just require brackets
– But requiring them for the else clause too leads to ugly code for chained 

if-statements:

So, compromise?  Allow unbracketed else
block only if the body is ‘if’:
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if (c1) { 
… 

} else {
if (c2) {

} else {
if (c3) {

} else {

}
}

}

if (c1) {

} else if (c2) {

} else if (c3) {

} else {

}

Benefits:
• Less ambiguous
• Easy to parse
• Enforces good style


