
CIS 341: COMPILERS
Lecture 13

Announcements

• Midterm: March 3rd

– In class
– One-page, letter-sized, double-sided “cheat sheet” of notes permitted
– Coverage: interpreters / program transformers / x86 / calling conventions /

IRs / LLVM / Lexing / Parsing
– See examples of previous exams on the web pages

• HW4: Compiling Oat v.1
– released soon(ish)
– due March 23rd

Zdancewic CIS 341: Compilers 2

LR GRAMMARS

Zdancewic CIS 341: Compilers 3

Bottom-up Parsing (LR Parsers)
• LR(k) parser:

– Left-to-right scanning
– Rightmost derivation
– k lookahead symbols

• LR grammars are more expressive than LL
– Can handle left-recursive (and right recursive) grammars; virtually all

programming languages
– Easier to express programming language syntax (no left factoring)

• Technique: “Shift-Reduce” parsers
– Work bottom up instead of top down
– Construct right-most derivation of a program in the grammar
– Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
– Better error detection/recovery

CIS 341: Compilers 4

LR(0) States
• An LR(0) state is a set of items keeping track of progress on possible

upcoming reductions.
• An LR(0) item is a production from the language with an extra

separator “.” somewhere in the right-hand-side

• Example items: S ⟼ .(L) or S ⟼ (. L) or L ⟼ S.
• Intuition:

– Stuff before the ‘.’ is already on the stack
(beginnings of possible g’s to be reduced)

– Stuff after the ‘.’ is what might be seen next
– The prefixes a are represented by the state itself

CIS 341: Compilers 5

S ⟼ (L) | id
L ⟼ S | L , S

Constructing the DFA: Start state & Closure

• First step: Add a new production
S’ ⟼ S$ to the grammar

• Start state of the DFA = empty stack,
so it contains the item:

S’ ⟼ .S$
• Closure of a state:

– Adds items for all productions whose LHS nonterminal occurs in an item
in the state just after the ‘.’

– The added items have the ‘.’ located at the beginning (no symbols for
those items have been added to the stack yet)

– Note that newly added items may cause yet more items to be added to the
state… keep iterating until a fixed point is reached.

• Example: CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .(L), S⟼.id}

• Resulting “closed state” contains the set of all possible productions
that might be reduced next.

CIS 341: Compilers 6

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

Example: Constructing the DFA

• First, we construct a state with the initial item S’ ⟼ .S$

CIS 341: Compilers 7

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$

Example: Constructing the DFA

• Next, we take the closure of that state:
CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .(L), S ⟼ .id}

• In the set of items, the nonterminal S appears after the ‘.’
• So we add items for each S production in the grammar

CIS 341: Compilers 8

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

Example: Constructing the DFA

• Next we add the transitions:
• First, we see what terminals and

nonterminals can appear after the
‘.’ in the source state.
– Outgoing edges have those label.

• The target state (initially) includes
all items from the source state that
have the edge-label symbol after
the ‘.’, but we advance the ‘.’ (to
simulate shifting the item onto the
stack)

CIS 341: Compilers 9

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)

S ⟼ id.

S’ ⟼ S.$

id

S

(

Example: Constructing the DFA

• Finally, for each new state, we take the closure.
• Note that we have to perform two iterations to compute

CLOSURE({S ⟼ (. L)})
– First iteration adds L ⟼ .S and L ⟼ .L, S
– Second iteration adds S ⟼ .(L) and S ⟼ .id

CIS 341: Compilers 10

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)
L ⟼ .S
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id.

S’ ⟼ S.$

id

S

(

Full DFA for the Example

CIS 341: Compilers 11

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)
L ⟼ .S
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id. L ⟼ L, . S
S ⟼ .(L)
S ⟼ .id

L ⟼ L, S.

S ⟼ (L .)
L ⟼ L . , S

S ⟼ (L).L ⟼ S.S’ ⟼ S.$

Done!

id id S

S

$

(

(

S
)

(

L

id

,

Reduce state: ‘.’ at the
end of the production

• Current state: run the
DFA on the stack.

• If a reduce state is
reached, reduce

• Otherwise, if the next
token matches an
outgoing edge, shift.

• If no such transition,
it is a parse error.

1 2

3

4

5

67

8 9

Using the DFA
• Run the parser stack through the DFA.
• The resulting state tells us which productions might be

reduced next.
– If not in a reduce state, then shift the next symbol and transition

according to DFA.
– If in a reduce state, X ⟼ g with stack ag, pop g and push X.

• Optimization: No need to re-run the DFA from beginning
every step
– Store the state with each symbol on the stack: e.g. 1(3(3L5)6
– On a reduction X ⟼ g, pop stack to reveal the state too:

e.g. From stack 1(3(3L5)6 reduce S ⟼ (L) to reach stack 1(3
– Next, push the reduction symbol: e.g. to reach stack 1(3S
– Then take just one step in the DFA to find next state: 1(3S7

CIS 341: Compilers 12

Implementing the Parsing Table
Represent the DFA as a table of shape:

state * (terminals + nonterminals)
• Entries for the “action table” specify two kinds of actions:

– Shift and goto state n
– Reduce using reduction X ⟼ g

• First pop g off the stack to reveal the state
• Look up X in the “goto table” and goto that state

CIS 341: Compilers 13

Action
table

Goto
tableSt

at
e

Terminal Symbols Nonterminal Symbols

Example Parse Table

CIS 341: Compilers 14

() id , $ S L

1 s3 s2 g4

2 S⟼id S⟼id S⟼id S⟼id S⟼id

3 s3 s2 g7 g5

4 DONE

5 s6 s8

6 S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L)

7 L ⟼ S L ⟼ S L ⟼ S L ⟼ S L ⟼ S

8 s3 s2 g9

9 L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S

sx = shift and goto state x
gx = goto state x

Example
• Parse the token stream: (x, (y, z), w)$

Stack Stream Action (according to table)

e1 (x, (y, z), w)$ s3
e1(3 x, (y, z), w)$ s2
e1(3x2 , (y, z), w)$ Reduce: S⟼id
e1(3S , (y, z), w)$ g7 (from state 3 follow S)
e1(3S7 , (y, z), w)$ Reduce: L⟼S
e1(3L , (y, z), w)$ g5 (from state 3 follow L)
e1(3L5 , (y, z), w)$ s8
e1(3L5,8 (y, z), w)$ s3

e1(3L5,8(3 y, z), w)$ s2

Zdancewic CIS 341: Compilers 15

LR(0) Limitations
• An LR(0) machine only works if states with reduce actions

have a single reduce action.
– In such states, the machine always reduces (ignoring lookahead)

• With more complex grammars, the DFA construction will
yield states with shift/reduce and reduce/reduce conflicts:

OK shift/reduce reduce/reduce

• Such conflicts can often be resolved by using a look-ahead
symbol: SLR(1) or LR(1)

CIS 341: Compilers 16

S ⟼ (L). S ⟼ (L).
L ⟼ .L , S

S ⟼ L ,S.
S ⟼ ,S.

Examples
• Consider the left associative and right associative “sum” grammars:

left right

• One is LR(0) the other isn’t… which is which and why?
• What kind of conflict do you get? Shift/reduce or Reduce/reduce?

• Ambiguities in associativity/precedence usually lead to shift/reduce
conflicts.

CIS 341: Compilers 17

S ⟼ S + E | E
E ⟼ number | (S)

S ⟼ E + S | E
E ⟼ number | (S)

SLR(1): “simple” LR(1) Parsers
• What conflicts are there in LR(0) parsing?

– reduce/reduce conflict: an LR(0) state has two reduce actions
– shift/reduce conflict: an LR(0) state mixes reduce and shift actions

• Can we use lookahead to disambiguate?

• SLR(1) – uses the same DFA construction as LR(0)
– modifies the actions based on lookahead

• Suppose reducing nonterminal A is possible in some state:
– compute Follow(A) for the given grammar
– if the lookahead symbol is in Follow(A), then reduce, otherwise shift
– can disambiguate between reduce/reduce conflicts if the follow sets are

disjoint

Zdancewic CIS 341: Compilers 18

Note: easiest LR variant to construct “by hand”.

LR(1) Parsing
• SLR parsing is a simple refinement of LR(0). We can do more.

• Algorithm is similar to LR(0) DFA construction:
– LR(1) state = set of LR(1) items
– An LR(1) item is an LR(0) item + a set of look-ahead symbols:

A ⟼ a.b , L

• LR(1) closure is a little more complex:
• Form the set of items just as for LR(0) algorithm.
• Whenever a new item C ⟼ .g is added because A ⟼ b.Cd , L is

already in the set, we need to compute its look-ahead set M:
1. The look-ahead set M includes FIRST(d)

(the set of terminals that may start strings derived from d)
2. If d is itself e or can derive e (i.e., it is nullable), then the look-ahead M

also contains L

CIS 341: Compilers 19

Example LR(1) Closure

• Start item: S’ ⟼ .S$, {}

• Since S is to the right of a ‘.’, add:
S ⟼ .E + S , {$} Note: {$} is FIRST($)
S ⟼ .E , {$}

• Need to keep closing, since E appears to the right of a ‘.’ in
‘.E + S’:

E ⟼ .number , {+} Note: + added for reason 1
E ⟼ .(S) , {+} FIRST(+ S) = {+}

• Because E also appears to the right of ‘.’ in ‘.E’ we get:
E ⟼ .number , {$} Note: $ added for reason 2
E ⟼ .(S) , {$} d is e

• All items are distinct, so we’re done

CIS 341: Compilers 20

S’ ⟼ S$
S ⟼ E + S | E
E ⟼ number | (S)

Using the DFA

• The behavior is determined if:
– There is no overlap among the

look-ahead sets for each reduce
item, and

– None of the look-ahead symbols
appear to the right of a ‘.’

CIS 341: Compilers 21

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+}
E ⟼ .(S) {+}
E ⟼ .num {$}
E ⟼ .(S) {$}

S ⟼ E .+ S {$}
S ⟼ E. {$}

E

1

+ $ E

1 g2

2 s3 S ⟼ E

2
+

Fragment of the Action & Goto tables

Choice between shift
and reduce is resolved.

LR variants
• LR(1) gives maximal power out of a 1 look-ahead symbol parsing table

– DFA + stack is a push-down automaton (recall CIS 262)
• In practice, LR(1) tables are big.

– Modern implementations (e.g., menhir) directly generate code

• LALR(1) = “Look-ahead LR”
– Merge any two LR(1) states whose items are identical except for the look-

ahead sets:

– Such merging can lead to nondeterminism (e.g., reduce/reduce conflicts), but
– Results in a much smaller parse table and works well in practice
– This is the usual technology for automatic parser generators: yacc, ocamlyacc

• GLR = “Generalized LR” parsing
– Efficiently compute the set of all parses for a given input
– Later passes should disambiguate based on other context

CIS 341: Compilers 22

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+}
E ⟼ .(S) {+}
E ⟼ .num {$}
E ⟼ .(S) {$}

S’ ⟼ .S$ {}
S ⟼ .E + S {$}
S ⟼ .E {$}
E ⟼ .num {+,$}
E ⟼ .(S) {+,$}

Classification of Grammars

CIS 341: Compilers 23

LR(0)

SLR(1)

LALR(1)

LR(1)

LL(1)

MENHIR IN PRACTICE

Zdancewic CIS 341: Compilers 24

Debugging parser conflicts.
Disambiguating grammars.

Practical Issues
• Dealing with source file location information

– In the lexer and parser
– In the abstract syntax

– See range.ml, ast.ml

• Lexing comments / strings

Zdancewic CIS 341: Compilers 25

Menhir output
• You can get verbose ocamlyacc debugging information by doing:

– menhir --explain …
– or, if using dune, adding this stanza:

• The result is a <basename>.conflicts file that contains a description of
the error
– The parser items of each state use the ‘.’ just as described above

• The flag --dump generates a full description of the automaton

• Example: see start-parser.mly

Zdancewic CIS 341: Compilers 26

(menhir
(modules parser)
(flags --explain --dump))

Precedence and Associativity Declarations
• Parser generators, like menhir often support precedence and

associativity declarations.
– Hints to the parser about how to resolve conflicts.
– See: good-parser.mly

• Pros:
– Avoids having to manually resolve those ambiguities by manually

introducing extra nonterminals (as seen in parser.mly)
– Easier to maintain the grammar

• Cons:
– Can’t as easily re-use the same terminal (if associativity differs)
– Introduces another level of debugging

• Limits:
– Not always easy to disambiguate the grammar based on just precedence

and associativity.

Zdancewic CIS 341: Compilers 27

Example Ambiguity in Real Languages

• Consider this grammar:
S ⟼ if (E) S
S ⟼ if (E) S else S
S ⟼ X = E
E ⟼ …

• Is this grammar OK?

• Consider how to parse:

if (E1) if (E2) S1
else S2

• This is known as the
“dangling else” problem.

• What should the “right”
answer be?

• How do we change the
grammar?

CIS 341: Compilers 28

How to Disambiguate if-then-else
• Want to rule out:

if (E1) if (E2) S1 else S2

• Observation: An un-matched ‘if’ should not appear as the ‘then’
clause of a containing ‘if’.

S ⟼ M | U // M = “matched”, U = “unmatched”
U ⟼ if (E) S // Unmatched ‘if’
U ⟼ if (E) M else U // Nested if is matched
M ⟼ if (E) M else M // Matched ‘if’
M ⟼ X = E // Other statements

• See: else-resolved-parser.mly

CIS 341: Compilers 29

Alternative: Use { }
• Ambiguity arises because the ‘then’ branch is not well bracketed:

if (E1) { if (E2) { S1 } } else S2 // unambiguous
if (E1) { if (E2) { S1 } else S2 } // unambiguous

• So: could just require brackets
– But requiring them for the else clause too leads to ugly code for chained

if-statements:

So, compromise? Allow unbracketed else
block only if the body is ‘if’:

Zdancewic CIS 341: Compilers 30

if (c1) {
…

} else {
if (c2) {

} else {
if (c3) {

} else {

}
}

}

if (c1) {

} else if (c2) {

} else if (c3) {

} else {

}

Benefits:
• Less ambiguous
• Easy to parse
• Enforces good style

