Lecture 15

CIS 341: COMPILERS

Announcements

« HW4: OAT v. 1.0
— Parsing & basic code generation
— Due: Wednesday, March 23d

Zdancewic CIS 341: Compilers

UNTYPED LAMBDA CALCULUS

Zdancewic CIS 341: Compilers

(Untyped) Lambda Calculus

* The lambda calculus is a minimal programming language.
— Note: we're writing (fun x -> e) lambda-calculus notation: A x. e

Abstract syntax in OCaml:

type exp =
| Var of var (* variables *)
| Fun of var * exp (* functions: fun x -> e *)

| App of exp * exp (* function application *)

Concrete syntax:

exp =
X variables
fun x ->exp functions
exp; exp; function application
(exp) parentheses

CIS 341: Compilers

Operational Semantics

« Key operation: capture-avoiding substitution: ey{e;/x}
— replaces all free occurrences of x in e, by e,
— must respect scope and alpha equivalence (renaming)

* Reduction Strategies
Various ways of simplifying (or “reducing”) lambda calculus terms.

— call-by-value evaluation:
* simplify the function argument before substitution
* does not reduce under lambda (a.k.a. fun)

— call-by-name evaluation:
* does not simplify the argument before substitution
* does not reduce under lambda

— weak-head normalization:
* does not simplify the argument before substitution
* does not reduce under lambda A “normal form” is
» works on open terms, “suspending” reduction at variables one that has no

— normal order reduction: Sl;lzzfglue“?zstfﬁgre
* does reduce under lambda P 1€,

) L are no subterms of
* first does weak-head normalization and then

. : the form
recursively continues to reduce (fun x — el) e2
* works on open terms — guaranteed to find a “normal form” anvwhere
if such a form exists Y '

Zdancewic CIS 341: Compilers 5

CBV Operational Semantics

« This is call-by-value semantics:
function arguments are evaluated before substitution

viv

“Values evaluate to themselves”

exp; U (fun x—-exp;) exp, v expsiv/x} U w

exp; exp, 4w

“To evaluate function application: Evaluate the function to a value, evaluate the
argument to a value, and then substitute the argument for the function. ”

Zdancewic CIS 341: Compilers 6

CBN Operational Semantics

« This is call-by-name semantics:
function arguments are evaluated before substitution

viv

“Values evaluate to themselves”

exp; ¥ (fun x = exps) expsfexp,/x} ¥ w

exp; exp, I w

“To evaluate function application: Evaluate the function to a value,
substitute the argument into the function body, and then keep evaluating. ”

Zdancewic CIS 341: Compilers

See fun.ml

Examples of encoding Booleans, integers, conditionals, loops, etc., in
untyped lambda calculus.

IMPLEMENTING THE
INTERPRETER

Zdancewic CIS 341: Compilers 8

Adding Integers to Lambda Calculus

exp ::=

| n constant integers

| exp; + exp; binary arithmetic operation
val ::=

| fun x = exp functions are values

| n integers are values
n{v/x} =n constants have no free vars.
(e + e)){v/x} = (eq{v/x} + e,{v/x}) substitute everywhere

exp; ¥ n; exp2 4 n,

exp; +exp, U (n1 [+] n2)

T~

Object-level ‘+’ Meta-level '+’
Zdancewic CIS 341: Compilers

Scope, Types, and Context

STATIC ANALYSIS

Zdancewic CIS 341: Compilers 10

Scope-Checking Lambda Calculus

« Consider how to identify “well-scoped” lambda calculus terms
— Recall the free variable calculation
— Given: G, a set of variable identifiers, e, a term of the lambda calculus

— Judgment: G e means “the free variables of e are included in G”
fv(e) € G

fv(x) = {x}
fv(funx—=exp) = fv(exp) \ {x} (x"isa bound in exp)
fv(exp; exp,) = fv(exp;) U fv(exp,)
X € G
“the variable x is free”
GFXx
GF
= CFe “G contains the free variables of e, and e,”
GFre e
GU{x}Fe

“x is available in the function bodye”

GFfunx=-e

Zdancewic CIS 341: Compilers 11

Scope-checking Code

« Compare the OCaml code to the inference rules:
— structural recursion over syntax
— the check either “succeeds” or "fails"

let rec scope_check (g:VarSet.t) (e:exp) : unit =
begin match e with
| Var x -> if VarSet.member x g then () else faitlwith (x © "not in scope")
| App(el, e2) -> ignore (scope_check g el); scope_check g e2
| Fun(x, e) -> scope_check (VarSet.union g (VarSet.singleton x)) e
end

x €@ G F e GFre GU{x}Fe

G Fx GlFe e Grfunx-e

Zdancewic CIS 341: Compilers 12

Variable Scoping

« Consider the problem of determining whether a programmer-declared
variable is in scope.

e |ssues:

— Which variables are available at a given point in the program?
— Shadowing — is it permissible to re-use the same identifier, or is it an error?

« Example: The following program is syntactically correct but not well-
formed. (y and q are used without being defined anywhere)

int fact(int x) {
var acc = 1;

while (x > 0) { Q: Can we solve this problem
acc = acc * y; by changing the parser to rule
X =0q - 1; out such programs?

}

return acc;

}

Zdancewic CIS 341: Compilers 13

Contexts and Inference Rules

« Need to keep track of contextual information.
— What variables are in scope?
— What are their types?

* How do we describe this process?

— In the compiler there's a mapping from variables to information we know
about them.

— This is "contextual information”

« How do we use that information to implement a scope checker?

Zdancewic CIS 341: Compilers 14

Why Inference Rules?

« They are a compact, precise way of specifying language properties.
— e.g., ~20 pages for full Java vs. 100’s of pages of prose Java Language Spec.

 Inference rules correspond closely to the recursive AST traversal that
implements them

» Type checking (and type inference) is nothing more than attempting to
prove a different judgment (G;L e : t) by searching backwards through
the rules.

« Compiling in a context is nothing more than a collection of inference
rules specifying yet a different judgment (G I src = target)

— Moreover, the compilation judgment is similar to the typechecking judgment

« Strong mathematical foundations

— The “Curry-Howard correspondence”: Programming Language ~ Logic,
Program ~ Proof, Type ~ Proposition

— See CIS 500 next Fall if you're interested in type systems!

CIS 341: Compilers 15

Inference Rules

* We canread a judgment G;L - e:tas
“the expression e is well typed and has type t”

« For any environment G, expression e, and statements s;, s,
G;L;rt+ 1f (e)s; elses,

holdsif G;LFe:bool and Gj;L;rtrs; and G;L;rtrs,
all hold.

* More succinctly: we summarize these constraints as an inference rule:

gum—

Premises — G;L e : bool G;L;rt s, G;L;rt ks,

M

Conclusion— G;L;rt - 1if (e)s; elses,

_—

 This rule can be used for any substitution of the syntactic
metavariables G, e, s; and s,.

CIS 341: Compilers 16

Checking Derivations

* A derivation or proof tree has (instances of) judgments as its nodes and

edges that connect premises to a conclusion according to an inference
rule.

* Leaves of the tree are axioms (i.e. rules with no premises)
— Example: the INT rule is an axiom
* Goal of the type checker: verify that such a tree exists.

« Examplel: Find a tree for the following program using the inference
rules in oat-v1-defn.pdf:

var x1 = 0;
var x2 = x1 + x1;
x1 = x1 — x2;

return(xl);

Example2: There is no tree for this ill-scoped program:

var x2 = x1 + x1;
return(x2);

CIS 341: Compilers 17

Example Derivation

var x1 = 0;
var x2 = x1 + x1;
x1 = x1 — x2;

return(xl);

Dy Dy D3 Dy
Gg; - ;int Fvar x1 =0; var xp = x; + Xx1; X] = X1 - Xp; return x1; = -, X1:int,xp:int
- var x;1 =0; var xp =x7 + X1; X1 = X1 - Xp; return xq;

[STMTS]

[PROG]

Zdancewic CIS 341: Compilers 18

Example Derivation

[INT]

Go;-F0:int
[CONST]

Gp;- F0:int
Gop;-Hvarx; =0= -, x1:int

[DECL]

[SDECL)

Dy Gog; - ;int Fvar xy =0; = -, x1:int

X1:int € -, x1:1int X1:int € -, x7:int

|ADD| [VAR] [VAR]

- 4 : (int, int) — int Go;-,x1:int F xq : int Go;-,x1:int F xq : int

BOP
GO;-,xlzintI—xl + X1 : int []

DECL
Go;-,x1:int;int - var xp =x7 + x1; = -, X1:int,xp:int | |

SDECL
D, = Gp;-,x1:int;int - var xp = xq + x1; = -, x7:int,xp:int |]

Zdancewic CIS 341: Compilers 19

Example Derivation

X1:int € -, x7:int,xp:int ;

X1:int € -, x7:1int, x> :int Xp:int € -, x1:1int,xp:int

D3 [ADD|

- - : (int,int) — int

[VAR] [VAR]

Go;-,x1:int, xp:int F x7 : int Go;-,x1:int, xp:int F xp : int

BOP
Go;,Xx1:int, xp:int F x1 -xp : int [zor]

ASSN
Go;-,x1:int, xp:int;int F x1 = x1 -Xxp; = -, X1:int,xy:int []

X1:1int € -, x7:int, x> :int

VAR
Go;-,X1:int,xp:int F x7 : int []

RET
Dy, = Gg;-,x1:int,xp:int;int F return x7; = -, x1:int,xp:int [Re]

Zdancewic CIS 341: Compilers 20

Why Inference Rules?

« They are a compact, precise way of specifying language properties.
— E.g. ~20 pages for full Java vs. 100’s of pages of prose Java Language Spec.

* Inference rules correspond closely to the recursive AST traversal that
implements them

« Compiling in a context is nothing more an “interpretation” of the
inference rules that specify typechecking*: [C - e :]

— Compilation follows the typechecking judgment

 Strong mathematical foundations

— The “Curry-Howard correspondence”: Programming Language ~ Logic,
Program ~ Proof, Type ~ Proposition

— See CIS 500 next Fall if you're interested in type systems!

*Here (and later) we’ll write context C for G; L, the combination of the
CIS 341: Compilers global and local contexts. 21

Compilation As Translating Judgments

« Consider the source typing judgment for source expressions:

Cre:t

« How do we interpret this information in the target language?
[Cre:t]= ¢

* [t] is a target type

 [e] translates to a (potentially empty) sequence of instructions, that,
when run, computes the result into some operand

* INVARIANT: if [CFe:t] =ty operand, stream
then the type (at the target level) of the operand is ty=[[t]

Zdancewic CIS 341: Compilers 22

Example

e« C F341+5:int whatis [CF 341 +5:int] ¢
[+ 3471 :int] = (ie4, const 341, [1) [F 5 :int] = (i64, const 5, [1)
[[C < 341 : int]] = (i64, Const 341, []) [[C 5 int]] = (i64, Const 5, [])

[CH341T +5:Int] = (i64, %tmp, [%tmp = add i64 (Const 341) (Const 5)1])

Zdancewic CIS 341: Compilers 23

What about the Context?

« Whatis [C]?
 Source level C has bindings like: x:int, y:bool

— We think of it as a finite map from identifiers to types
« What is the interpretation of C at the target level?

 [[C] maps source identifiers, “x” to source types and [x]

« What is the interpretation of a variable [x] at the target level?
— How are the variables used in the type system?

x:t €L x:teL G;LEexp:t
TYP_VAR TYP__ASSN
G;LFx:t - G;L;rtFx=exp; = L -
as expressions as addresses
(which denote values) (which can be assigned)

Zdancewic CIS 341: Compilers 24

Interpretation of Contexts

« [[C] = a map from source identifiers to types and target identifiers

* |INVARIANT:
x:t € C means that

(1) lookup [C] x = (t, $id_x)
(2) the (target) type of $id_x is [t]* (a pointer to [[t])

Zdancewic CIS 341: Compilers

25

Interpretation of Variables

 Establish invariant for expressions:

x:t €L
G;LFx:t

as expressions

TYP_VAR

(which denote values)

= (%tmp, [%tmp = load i64* %id x])

where (164, $id_x) = lookup [L] x

« What about statements?

x:teL G;Lrexp:t

G;L;rtFx=exp; = L

as addresses

(which can be assigned)

Zdancewic CIS 341: Compilers

TYP_ASSN = stream @

[store [t] opn, [t]* %id x]

where (t, $id_x) = lookup [L] x
and [G;L F exp : t] = ([t], opn, stream)

26

Other Judgments?

Statement:
[C; rtstmt= C'] = [C'] , stream

Declaration:
[GLrFtx=exp= G;Lxt] = [G;L,x:t], stream

INVARIANT: stream is of the form:
stream’ @

[$1d x = alloca [t];
store [t] opn, [t]* %id x]
and [G;L Fexp:t] = ([t], opn, stream’)

Rest follow similarly

Zdancewic CIS 341: Compilers

27

COMPILING CONTROL

Zdancewic CIS 341: Compilers

Translating while

 Consider translating “while(e) s”:

— Test the conditional, if true jump to the body, else jump to the label after
the body.

[C;rt Fwhile(e) s = C'] = [C'],

lpre:

opn = [C F e : bool]

%test = icmp eq 11 opn, O

br %Stest, label %lpost, label %lbody
lbody:

[C;rt s = C']

br %lpre
lpost:

« Note: writing opn =[C F e : bool] ispun
— translating [[C e : bool] generates code that puts the result into opn
— In this notation there is implicit collection of the code

CIS 341: Compilers 29

Translating if-then-else

 Similar to while except that code is slightly more complicated because
if-then-else must reach a merge and the else branch is optional.

[C;rt H1f (eq) s; else s, = C'] = [CT]

opn = [C F e : bool]

%test = tcmp eq 11 opn, O

br Stest, label %else, label %then
then:

[[C;rt F Sq = C’]]

br %merge
else:

[C; rt s, = C']

br %merge
merge:

CIS 341: Compilers 30

Connecting this to Code

* Instruction streams:
— Must include labels, terminators, and “hoisted” global constants

* Must post-process the stream into a control-flow-graph

e See frontend.ml from HW4

Zdancewic CIS 341: Compilers

31

OPTIMIZING CONTROL

Zdancewic CIS 341: Compilers

Standard Evaluation

* Consider compiling the following program fragment:

Stmpl = tcmp Eq [yl, O ; Yy
tmp2 = and [x] [tmpl]
Stmp3 = tcmp Eq [w], O

: %tmp4 = or Stmp2, Stmp3

| |
lfz(f g.'y | W) %stmp5 = icmp Eq %tmp4, 0
S br %tmp4, label %else, label %then
else
z = 4; then:
return z; store [z], 3

br %merge

else:
store [z], 4
br %merge

merge:
%tmp5 = load [z]
ret Stmpbs

CIS 341: Compilers

Observation

Usually, we want the translation [e] to produce a value
— [C e : t] = (ty, operand, stream)
— eg [Cre +e:int] = (i64,%tmp, [Stmp =add [e;] [e,]])

But when the expression we’re compiling appears in a test, the
program jumps to one label or another after the comparison but

otherwise never uses the value.

In many cases, we can avoid “materializing” the value (i.e. storing it in
a temporary) and thus produce better code.

— This idea also lets us implement different functionality too:
e.g. short-circuiting boolean expressions

CIS 341: Compilers 34

Idea: Use a different translation for tests

Usual Expression translation:

[C - e : t] = (ty, operand, stream)
Conditional branch translation of booleans,

without materializing the value:

[C + e : bool@] ltrue Ifalse = stream

Notes:

e takes two extra
arguments: a “true”
branch label and a
“false” branch label.

e Doesn’t “return a value”

* Aside: this is a form of
continuation-passing
translation...

CIS 341: Compilers

[C, rt - if (e) then sT elses2 = C'] = [C],

1NsSns;y
then:

[s1]

br %merge
else:

[s>]

br %merge
merge:

where
[C, rt+s;=C'] =[C], insns,
[C, rt+s,= C"] =[C"], insns,
[C+ e :bool@] then else = insns;
35

Short Circuit Compilation: Expressions

* [C I e:bool@] ltrue Ifalse = insns

FALSE

[C + false : bool@] ltrue Ifalse = [br %lfalse]

TRUE

[C F true : bool@] Itrue Ifalse = [br S%ltrue]

[C F e : bool@] Ifalse Itrue = insns
NOT

[C F le : bool@] ltrue Ilfalse = insns

Zdancewic CIS 341: Compilers

36

Short Circuit Evaluation

Idea: build the logic into the translation

[C el : bool@] ltrue right = insns; [C F e2 : bool@] ltrue Ifalse = insns,

[C - el]|e2 : bool@] Itrue Ifalse = insns;
right:
insn,

[C el :bool@] right Ifalse = insns; [C F e2 : bool@] ltrue Ifalse = insns,

[C F el&e2 : bool@] Itrue Ifalse = 1nsns,
right:
1nsn,

where right is a fresh label
Zdancewic CIS 341: Compilers 37

Short-Circuit Evaluation

« Consider compiling the following program fragment:

Stmpl = icmp Eq [x], ©
br Stmpl, label %right2, label %rightl

rightil:
%tmp2 = icmp Eq [y], ©
if (x &y | 'w) br %tmp2, label %then, label %right2
z2 =3 lght2
rig :
else [> %tmp3 = icmp Eq [w], O
z = 4; br %tmp3, label %then, label %else
return z;
then:

store [z], 3
br Smerge

else:
store [z], 4
br Smerge

merge:
%tmp5 = load [z]
CIS 341: Compilers ret %tmp5

