Lecture 16

CIS 341: COMPILERS

Announcements

« HW4: OAT v. 1.0

— Parsing & basic code generation
— Due: Wednesday, March 23

* HWS5: OAT v. 2.0

— Available Thursday or Friday
— Records, function pointers, type checking, array-bounds checks, etc.
— Due: Wednesday, April 13t

Zdancewic CIS 341: Compilers

* Average: 64/90 = 71.6%
* Median: 62/90 = 69%

o Std. Dev.: = 13%
1.5+
1__
0.5
(O ——
0 20

Zdancewic CIS 341: Compilers

See cc.ml

CLOSURE CONVERSION

Zdancewic CIS 341: Compilers

Closure Conversion Summary

A closure is a pair of an environment and a code pointer
— the environment is a map data structure binding variables to values
— environment could just be a list of the values (with known indices)

Building a closure value:

— code pointer is a function that takes an extra argument for the
environment: A —- B becomes (Env * A — B)

— body of the closure “projects out” then variables from the environment
— creates the environment map by bundling the free variables

Applying a closure:

— project out the environment, invoke the function (pointer) with the
environment and its “real” argument

Hoisting:
— Once closure converted, all functions can be lifted to the top level

Zdancewic CIS 341: Compilers

Scope, Types, and Context

STATIC ANALYSIS

Zdancewic CIS 341: Compilers 6

Variable Scoping

« Consider the problem of determining whether a programmer-declared
variable is in scope.

e |ssues:

— Which variables are available at a given point in the program?
— Shadowing — is it permissible to re-use the same identifier, or is it an error?

« Example: The following program is syntactically correct but not well-
formed. (y and q are used without being defined anywhere)

int fact(int x) {
var acc = 1;

while (x > 0) { Q: Can we solve this problem
acc = acc * y; by changing the parser to rule
X =0q - 1; out such programs?

}

return acc;

}

Zdancewic CIS 341: Compilers 7

Inference Rules

* We canread a judgmentG e as
“the expression e is well scoped and has free variables in G”

« For any environment G, expression e, and statements s;, s,
G + 1f (e)s; elses,

holdsif Gre and G ks; and G ks, all hold.
* More succinctly: we summarize these constraints as an inference rule:

gum—

Premises - GFe Gk sy Gk s,

M\

“—

* Such a rule can be used for any substitution of the syntactic
metavariables G, e, s; and s,.

CIS 341: Compilers

one

Judgments

A judgment is a (meta-syntactic) notation that names a relation among

or more sets.

The sets are usually built from object-language syntax elements and other
“math” sets (e.g., integers, natural numbers, etc.)

We usually describe them using metavariables that range over the sets.
Often use domain-specific notation to ease reading.

The meaning of judgments, i.e., which sets they represent, is defined by
(collections of) inference rules

« Example: When wesay “G ke isa judgment where G is a context of
variables and e is a term, defined by these [...] inference rules” that is
shorthand for this “math speak”:

Zdancewic

Let Var be the set of all (syntactic) variables
Let Exp be the set {e | e is a term of the untyped lambda calculus}
Let P(Var) be the (finite) powerset of variables (set of all finite sets)

Define weff-scopecfg (P(Var), Exp) to be a relation satisfying the properties
defined by the associated inference rules [...]

Then “G F e” is notation that means that (G, e) € we[f-scoyecf

CIS 341: Compilers

Scope-Checking Lambda Calculus

« Consider how to identify “well-scoped” lambda calculus terms
— Given: G, a set of variable identifiers, e, a term of the lambda calculus
— Judgment: G e “the free variables of e are included in G”

x € G . . .
“the variable x is free, but in scope”
G F X
GFre GFre : :
1 2 “G contains the free variables of e; and e,”
GFre e
GU{x}Fe

“x is available in the function body e”
Grfunx-e

Zdancewic CIS 341: Compilers

Scope-checking Code

« Compare the OCaml code to the inference rules:
— structural recursion over syntax
— the check either “succeeds” or "fails"

let rec scope_check (g:VarSet.t) (e:exp) : unit =
begin match e with

| Var x -> if VarSet.member x g then () else fatlwith (x © "not in scope")
| App(el, e2) -> ignore (scope_check g el); scope_check g e2

| Fun(x, e) -> scope_check (VarSet.union g (VarSet.singleton x)) e
end
x € QG G F e GFe GU{x}Fe
G Fx GtFe; e GFfunx~-e
VAR APP FUN

The inference rules are a specification of the intended behavior of this
scope checking code.

— they don't specify the order in which the premises are checked

Zdancewic CIS 341: Compilers 11

Example Derivation Tree

VARl X E XV} Tx] Y E Xyl
X, Y1 X X, yr Fy
APP
FUN X, ytExy VAR z € {z}
- X} Ffuny->xy — (7} - 7
o Uk (fun x ->funy ->xy) - (fun z -> 2)

N (fun x ->

funy ->xvy) (fun z -> z)

« Note: the OCaml function scope_check verifies the existence of
this tree. The structure of the recursive calls when running
scope_check is the same shape as this tree!

* Note that x € E is implemented by the function VarSet.mem

CIS 341

: Compilers

12

Example Fai

led Derivation

z € {x,y} el YE Xyl
X, Y1z X, yr Fy
APP
FUN X, ytkzy VAR z € {z}
- X} Ffuny->zy — (7} - 7
o Uk (funx->funy->zy) - (fun z -> 2)

N (fun x ->

funy ->zvy) (fun z -> z)

* This program is not well scoped

— The variable z is not bound in the body of the left function.

— The typing derivation fails because the VAR rule cannot succeed

— (The other parts of the derivation are OK, though!)

CIS 341: Compilers

13

Uses of the inference rules

* We can do proofs by induction on the structure of the derivation.
* For example:

Lemma: If G I e then fv(e) € G.

Proof.

By induction on the derivation that G + e. X €G

— case: VAR then we have e = x (for some variable x) and G F x
x € G. But fv(e) = fv(x) = {x}, but then {x} € G.

GrFe GFe
— case: APP then we have e = e, e, (for some e e,) and, L 2

by induction, we have fv(e;) € G and fv(e,) € G, so Gre e
fv(e; e,) = fv(e;) U fv(e,) € G

G U {x} F e

— case: FUN then we have e = (fun x -> e;) for some x, e; and, G+ funx- e,
by induction, we have fv(e;) € G U {x}, but then we also
have fv(fun x -> e;) = fv(e;) \ {x} € (G U {x}) \ {x}) € G

fv(x)
fv(fun x = exp)
fv(exp; exp,)

X}
fviexp) \ {x} (x”is a bound in exp)
fv(exp;) U fv(exp,) 14

See tc.ml

STATICALLY RULING OUT
PARTIALITY: TYPE CHECKING

Zdancewic CIS 341: Compilers

Adding Integers to Lambda Calculus

exp :

| e Xp1 + exp;

val ::
fun x ->exp
n

n{v/x} = n
(e + e)){v/x} = (eq{v/x} + e,{v/x})

constant integers
binary arithmetic operation

functions are values
integers are values

constants have no free vars.
substitute everywhere

exp; 4 n; exp2 4 n,

exp; + exp, U (n1 [+] n2)

N T~

NOTE: there are no rules for
the case where exp1 or
exp2 evaluate to functions!
The semantics is undefined
in those cases.

Object-level ‘+’ Meta-level '+’

Zdancewic CIS 341: Compilers

16

Type Checking / Static Analysis

 Recall the interpreter from the Eval3 module:

let rec eval env e =
match e with

| .
| Add (el, e2) ->
(match (eval env el, eval env e2) with
| (IntV 11, IntV 12) -> IntV (11 + 12)
| _ -> fatlwith "tried to add non-integers")
| .
* The interpreter might fail at runtime.

— Not all operations are defined for all values (e.g., 3/0, 3 + true, ...)
* A compiler can’t generate sensible
code for this case.

— A naive implementation might “add” an integer and a function pointer

CIS 341: Compilers

Type Judgments

* Inthe judgment: EFe:t
— Eis a typing environment or a type context

— E maps variables to types. It is just a set of bindings of the form:
X1:4, X1, .., X, 0

* Forexample: x:int, b:bool I if (b) 3 else x : int

* What do we need to know to decide whether “if (b) 3 else x” has type
int in the environment x : int, b : bool?

— b must be a bool i.e. x :int, b : bool + b : bool
— 3 must be an int i.e. X :int, b : bool F 3 : int
— X must be an int i.e. X :int, b : bool F x : int

CIS 341: Compilers 18

Simply-typed Lambda Calculus

 For the language in “tc.m|” we have five inference rules:

INT VAR ADD
x:T € E EFe :int EFe:int
EF1:int EFx:T Ee +e,:int
FUN APP
E,x:Tre:S Ere :T->S Ere:T
Erfun (x:T)->e : T ->S Ee e :S

* Note how these rules correspond to the code.

CIS 341: Compilers

19

Type Checking Derivations

» A derivation or proof tree has (instances of) judgments as its nodes and

edges that connect premises to a conclusion according to an inference
rule.

* Leaves of the tree are axioms (i.e. rules with no premises)
— Example: the INT rule is an axiom

* Goal of the typechecker: verify that such a tree exists.

« Example: Find a tree for the following program using the inference
rules on the previous slide:

F (fun (x:int) -> x + 3) 5 :int

CIS 341: Compilers 20

Example Derivation Tree

X:int € x:int
VAR INT
X:intk X :int X:intkF3 :int
ADD
X:intkF X+ 3:int
FUN INT
F (fun (x:int) -=> x + 3) : int -> int 5 :int

APP

F (fun (x:int) ->x +3)5 :int

Note: the OCaml function typecheck verifies the existence of this
tree. The structure of the recursive calls when running typecheck is
the same shape as this tree!

Note that x :int € E is implemented by the function Lookup

CIS 341: Compilers

21

Notes about this Typechecker

The interpreter evaluates the body of a function only when it's applied.

The typechecker always checks the body of the function

— even if it's never applied

— We assume the input has some type (say t;) and reflect this in the type of the
function (t; => t,).

Dually, at a call site (e e,), we don't know what closure we're going
to get.

— But we can calculate e;'s type, check that e, is an argument of the right
type, and determine what type e; will return.

Question: Why is this an approximation?
Question: What if well_typed always returns false?

oat.pdf

TYPECHECKING OAT

Zdancewic CIS 341: Compilers

Checking Derivations

* A derivation or proof tree has (instances of) judgments as its nodes and
edges that connect premises to a conclusion according to an inference

rule.
* Leaves of the tree are axioms (i.e. rules with no premises)
— Example: the INT rule is an axiom

* Goal of the type checker: verify that such a tree exists.

« Examplel: Find a tree for the following program using the inference
rules in oat.pdf:
var x1 = 0;
var x2 = x1 + x1;
x1l = x1 - x2;
return(x1);

Example2: There is no tree for this ill-scoped program:

var x2 = x1 + x1;
return(x2);

CIS 341: Compilers 24

Example Derivation

var x1 = 0;

var x2 = x1 + x1;
x1l = x1 - x2;
return(x1);

Dy Dy D3 Dy

STMTS
Gg; - ;int Fvar x1 =0; var xp = x; + Xx1; X] = X1 - Xp; return x1; = -, X1:int,xp:int []

[PROG]
- var x;1 =0; var xp =x7 + X1; X1 = X1 - Xp; return xq;

Zdancewic CIS 341: Compilers 25

Example Derivation

[INT]

Go;-F0:int
[CONST]

Gp;- F0:int
Gop;-Hvarx; =0= -, x1:int

[DECL]

[SDECL)

Dy Gog; - ;int Fvar xy =0; = -, x1:int

X1:int € -, x1:1int X1:int € -, x7:int

|ADD| [VAR] [VAR]

- 4 : (int, int) — int Go;-,x1:int F xq : int Go;-,x1:int F xq : int

BOP
GO;-,xlzintI—xl + X1 : int []

DECL
Go;-,x1:int;int - var xp =x7 + x1; = -, X1:int,xp:int | |

SDECL
D, = Gp;-,x1:int;int - var xp = xq + x1; = -, x7:int,xp:int |]

Zdancewic CIS 341: Compilers 26

Example Derivation

X1:int € -, x7:int,xp:int ;

X1:int € -, x7:1int, x> :int Xp:int € -, x1:1int,xp:int

D3 [ADD|

- - : (int,int) — int

[VAR] [VAR]

Go;-,x1:int, xp:int F x7 : int Go;-,x1:int, xp:int F xp : int

BOP
Go;,Xx1:int, xp:int F x1 -xp : int [zor]

ASSN
Go;-,x1:int, xp:int;int F x1 = x1 -Xxp; = -, X1:int,xy:int []

X1:1int € -, x7:int, x> :int

VAR
Go;-,X1:int,xp:int F x7 : int []

RET
Dy, = Gg;-,x1:int,xp:int;int F return x7; = -, x1:int,xp:int [Re]

Zdancewic CIS 341: Compilers 27

Type Safety

"Well typed programs do not go wrong."
— Robin Milner, 1978

Theorem: (simply typed lambda calculus with integers)

If F e:t then there exists a value v suchthat e U v.

* Note: this is a very strong property.

— Well-typed programs cannot "go wrong" by trying to execute undefined
code (such as 3 + (fun x -> 2))

— Simply-typed lambda calculus is guaranteed to terminate!
(i.e. it isn't Turing complete)

Zdancewic CIS 341: Compilers 28

Type Safety For General Languages

Theorem: (Type Safety)

If ~P:t isa well-typed program, then either:
(@) the program terminates in a well-defined way, or
(b) the program continues computing forever

* Well-defined termination could include:
— halting with a return value
— raising an exception

« Type safety rules out undefined behaviors:
— abusing "unsafe" casts: converting pointers to integers, etc.
— treating non-code values as code (and vice-versa)
— breaking the type abstractions of the language

* What is "defined" depends on the language semantics...

Zdancewic CIS 341: Compilers

29

COMPILING

Zdancewic CIS 341: Compilers 30

Compilation As Translating Judgments

« Consider the source typing judgment for source expressions:

Cre:t

« How do we interpret this information in the target language?
[Cre:t]= ¢

« [C] translates contexts
* [t] is a target type

 [e] translates to a (potentially empty) stream of instructions, that, when
run, computes the result into some operand

* INVARIANT: if [CFe:t] =ty operand, stream
then the type (at the target level) of the operand is ty=[[t]

Zdancewic CIS 341: Compilers 31

Example

e« C F341+5:int whatis [CF 341 +5:int] ¢
[+ 3471 :int] = (164, Const 341, []) [F 5 :int] = (ie4, const 5, [1)
[C F 341 : Int] = (i64, Const 341, [1) [C =5 :int] = (i64, const 5, [1)

[CH341T +5:Int] = (164, %tmp, [%tmp = add 164 (Const 341) (Const 5)])

Zdancewic CIS 341: Compilers 32

What about the Context?

« Whatis [C]?
 Source level C has bindings like: x:int, y:bool

— We think of it as a finite map from identifiers to types
« What is the interpretation of C at the target level?

 [[C] maps source identifiers, “x” to source types and [x]

« What is the interpretation of a variable [x] at the target level?
— How are the variables used in the type system?

x:t €L x:teL G;LEexp:t
TYP_VAR TYP__ASSN
G;LFx:t - G;L;rtFx=exp; = L -
as expressions as addresses
(which denote values) (which can be assigned)

Zdancewic CIS 341: Compilers 33

Interpretation of Contexts

« [[C] = a map from source identifiers to types and target identifiers

* |INVARIANT:
x:t € C means that

(1) lookup [C] x = (t, s1d_X)
(2) the (target) type of S1d_X is [t]* (a pointer to [t])

Zdancewic CIS 341: Compilers

34

Interpretation of Variables

 Establish invariant for expressions:

x:t €L
G;LFx:t

as expressions

TYP_VAR

(which denote values)

= (%tmp, [%tmp = load i164* %id_x])

where (164, %1d_X) = lookup [L] x

« What about statements?

x:t€L G;Lbtexp:t

G;L;rtFx=exp; = L

as addresses

(which can be assigned)

Zdancewic CIS 341: Compilers

TYP_ASSN = stream @

[store [t] opn, [tl* %id_x]

where (t, %1d_X) = lookup [L] x
and [G;L F exp : t] = ([t], opn, stream)

35

Other Judgments?

Statement:
[C; rtstmt= C'] = [C'] , stream

Declaration:
[GLrFtx=exp= G;Lxt] = [G;L,x:t], stream

INVARIANT: stream is of the form:
stream’ @
[%$1d_x = alloca [t];
store [t] opn, [tl* %id_x]

and [G;L Fexp:t] =([t], opn, stream’)

Rest follow similarly

Zdancewic CIS 341: Compilers

36

COMPILING CONTROL

Zdancewic CIS 341: Compilers

Translating while

 Consider translating “while(e) s”:

— Test the conditional, if true jump to the body, else jump to the label after
the body.

[C;rt Fwhile(e) s = C'] = [C'],

lpre:

opn = [C F e : bool]

%test = icmp eq 11 opn, O

br %Stest, label %lpost, label %lbody
lbody:

[C;rt s = C']

br %lpre
lpost:

« Note: writing opn =[C F e : bool] ispun
— translating [[C e : bool] generates code that puts the result into opn
— In this notation there is implicit collection of the code

CIS 341: Compilers

Translating if-then-else

 Similar to while except that code is slightly more complicated because
if-then-else must reach a merge and the else branch is optional.

[C;rt H1f (eq) s; else s, = C'] = [CT]

opn = [C F e : bool]

%test = tcmp eq 11 opn, O

br Stest, label %else, label %then
then:

[[C;rt F Sq = C’]]

br %merge
else:

[C; rt s, = C']

br %merge
merge:

CIS 341: Compilers 39

Connecting this to Code

* Instruction streams:
— Must include labels, terminators, and “hoisted” global constants

* Must post-process the stream into a control-flow-graph

e See frontend.ml from HW4

Zdancewic CIS 341: Compilers

40

OPTIMIZING CONTROL

Zdancewic CIS 341: Compilers

Standard Evaluation

* Consider compiling the following program fragment:

Stmpl = tcmp Eq [yl, O ; Yy
tmp2 = and [x] [tmpl]
Stmp3 = tcmp Eq [w], O

: %tmp4 = or Stmp2, Stmp3

| |
lfz(f g.'y | W) %stmp5 = icmp Eq %tmp4, 0
S br %tmp4, label %else, label %then
else
z = 4; then:
return z; store [z], 3

br %merge

else:
store [z], 4
br %merge

merge:
%tmp5 = load [z]
ret Stmpbs

CIS 341: Compilers “z

Observation

Usually, we want the translation [e] to produce a value
— [C e : t] = (ty, operand, stream)
— eg [Cre +e:int] = (i64,%tmp, [Stmp =add [e;] [e,]])

But when the expression we’re compiling appears in a test, the
program jumps to one label or another after the comparison but

otherwise never uses the value.

In many cases, we can avoid “materializing” the value (i.e. storing it in
a temporary) and thus produce better code.

— This idea also lets us implement different functionality too:
e.g. short-circuiting boolean expressions

CIS 341: Compilers 43

Idea: Use a different translation for tests

Usual Expression translation:

[C - e : t] = (ty, operand, stream)
Conditional branch translation of booleans,

without materializing the value:

[C + e : bool@] ltrue Ifalse = stream

Notes:

e takes two extra
arguments: a “true”
branch label and a
“false” branch label.

e Doesn’t “return a value”

* Aside: this is a form of
continuation-passing
translation...

CIS 341: Compilers

[C, rt - if (e) then sT elses2 = C'] = [C],

1NsSns;y
then:

[s1]

br %merge
else:

[s>]

br %merge
merge:

where
[C, rt+s;=C'] =[C], insns,
[C, rt+s,= C"] =[C"], insns,
[C+ e :bool@] then else = insns;
44

Short Circuit Compilation: Expressions

* [C I e:bool@] ltrue Ifalse = insns

FALSE

[C + false : bool@] ltrue Ifalse = [br %lfalse]

TRUE

[C F true : bool@] Itrue Ifalse = [br S%ltrue]

[C F e : bool@] Ifalse Itrue = insns
NOT

[C F le : bool@] ltrue Ilfalse = insns

Zdancewic CIS 341: Compilers

45

Short Circuit Evaluation

Idea: build the logic into the translation

[C el : bool@] ltrue right = insns; [C F e2 : bool@] ltrue Ifalse = insns,

[C - el]|e2 : bool@] Itrue Ifalse = insns;
right:
insn,

[C el :bool@] right Ifalse = insns; [C F e2 : bool@] ltrue Ifalse = insns,

[C F el&e2 : bool@] Itrue Ifalse = 1nsns,
right:
1nsn,

where right is a fresh label
Zdancewic CIS 341: Compilers 46

Short-Circuit Evaluation

« Consider compiling the following program fragment:

Stmpl = icmp Eq [x], ©
br Stmpl, label %right2, label %rightl

rightil:
%tmp2 = icmp Eq [y], ©
if (x &y | 'w) br %tmp2, label %then, label %right2
z2 =3 lght2
rig :
else [> %tmp3 = icmp Eq [w], O
z = 4; br %tmp3, label %then, label %else
return z;
then:

store [z], 3
br Smerge

else:
store [z], 4
br Smerge

merge:
%tmp5 = load [z]
CIS 341: Compilers ret %tmp5

Why Inference Rules?

They are a compact, precise way of specifying language properties.
— E.g. ~20 pages for full Java vs. 100’s of pages of prose Java Language Spec.

Inference rules correspond closely to the recursive AST traversal that
implements them

Type checking (and type inference) is nothing more than attempting to
prove a different judgment (E - e : t) by searching backwards through the
rules.

Compiling in a context is nothing more than a collection of inference
rules specifying yet a different judgment (G I src = target)

— Moreover, the compilation rules are very similar in structure to the
typechecking rules

Strong mathematical foundations

— The “Curry-Howard correspondence”: Programming Language ~ Logic,
Program ~ Proof, Type ~ Proposition

— See CIS 500 if you're interested in type systems!

CIS 341: Compilers 48

Beyond describing “structure”... describing “properties”
Types as sets
Subsumption

TYPES, MORE GENERALLY

Zdancewic CIS 341: Compilers

49

Arrays

 Array constructs are not hard
* First: add a new type constructor: T[]

NEW E e :int ErFe, : T e, is the size of the newly
allocated array. e,

initializes the elements of

E + new Tlel(ey) : T]] the array.

NDEX] Ere :T[l Ere,:int

EFele)] T Note: These rules don't
ensure that the array index
UPDATE is in bounds — that should
EFe; :T[]] EFe,:int EFe;: T bechecked dynamically.

E e le,] =e; ok

CIS 341: Compilers 50

Tuples

« ML-style tuples with statically known number of products:

 First: add a new type constructor: T; * ... *T,

TUPLE EFe, : T, ... Ere,: T,
E-(eq,....,e) :T{*... %1,
PRO) Fre:T,*...*T. 1<i<n

El—#ie:Ti

CIS 341: Compilers

51

References

« ML-style references (note that ML uses only expressions)

* First, add a new type constructor: T ref

REF

DEREF

ASSIGN

Ere:T

Frrefe:Tref

Fre:Tref

Erle : T

Ere, :Tref Ere,:T

CIS 341: Compilers

Ere =€, :unit

Note the similarity with the
rules for arrays...

52

