Lecture 17

CIS 341: COMPILERS

Announcements

- HW5: OAT v. 2.0
 - records, function pointers, type checking, array-bounds checks, etc.
 - Due: Friday, April 23rd
 - Available soon afternoon
 - Start Early!

Simply-typed Lambda Calculus

- Consider how to identify "well-scoped" lambda calculus terms
 - Recall the free variable calculation
 - Given: G, a map of variable identifiers to types, e, a term of the lambda calculus
 - Judgment: $G \vdash e : T$ means "the expression e computes a value of type T, assuming its free variables have the types given in G"

$$x:T ∈ G$$

"the variable x has type T an is in scope"

$$G \vdash e_1 : T \to S \qquad G \vdash e_2 : T$$

$$G \vdash e_1 e_2 : S$$

" e_1 is a function from T2 to T and e_2 is an expression of type T2"

$$G, x : T \vdash e : S$$

$$G \vdash fun (x:T) \rightarrow e : T \rightarrow S$$

"Given an input of type T, this function computes a result of type S"

Adding Integers

For the language in "tc.ml" we have five inference rules:

INT

$$x:T \in G$$

ADD

$$G \vdash e_1 : int \qquad G \vdash e_2 : int$$

$$G \vdash e_2 : int$$

 $G \vdash i : int$

$$G \vdash x : T$$

$$E \vdash e_1 + e_2 : int$$

FUN

$$G, x : T \vdash e : S$$

APP

$$G \vdash e_1 : T \rightarrow S \quad G \vdash e_2 : T$$

$$G \vdash fun (x:T) \rightarrow e : T \rightarrow S$$

$$G \vdash e_1 e_2 : S$$

Note how these rules correspond to the code.

Type Checking Derivations

- A derivation or proof tree has (instances of) judgments as its nodes and edges that connect premises to a conclusion according to an inference rule.
- Leaves of the tree are *axioms* (i.e. rules with no premises)
 - Example: the INT rule is an axiom
- Goal of the typechecker: verify that such a tree exists.
- Example: Find a tree for the following program using the inference rules on the previous slide:

 \vdash (fun (x:int) \rightarrow x + 3) 5 : int

Example Derivation Tree

```
x : int \in x : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int

x : int \vdash x + 3 : int
```

- Note: the OCaml function typecheck verifies the existence of this tree. The structure of the recursive calls when running typecheck is the same shape as this tree!
- Note that x : int ∈ E is implemented by the function lookup

Ill-typed Programs

Programs without derivations are ill-typed

```
Example: There is no type T such that \vdash (fun (x:int) \rightarrow x 3) 5 : T
```

```
x : int \rightarrow T \notin x : int

x : int \vdash x : int \rightarrow T

x : int \vdash x : int \vdash 3 : int

x : int \vdash x : int \vdash x : int \vdash x : int

x : int \vdash x : int \vdash x : int

x : int \vdash x : int \vdash x : int

x : int \vdash x : int \vdash x : int

x : int \vdash x : int \vdash x : int

x : int \vdash x : int \vdash x : int

x : int \vdash x : int \vdash x : int

x : int \vdash x : int
```

Type Safety

"Well typed programs do not go wrong."

– Robin Milner, 1978

Theorem: (simply typed lambda calculus with integers)

If \vdash e:t then there exists a value v such that e \Downarrow v.

- Note: this is a very strong property.
 - Well-typed programs cannot "go wrong" by trying to execute undefined code (such as $3 + (\text{fun } x \rightarrow 2)$)
 - Simply-typed lambda calculus is guaranteed to terminate!
 (i.e. it isn't Turing complete)

Notes about this Typechecker

- The interpreter evaluates the body of a function only when it's applied.
- The typechecker always checks the body of the function
 - even if it's never applied
 - We assume the input has some type (say t_1) and reflect this in the type of the function ($t_1 \rightarrow t_2$).
- Dually, at a call site $(e_1 e_2)$, we don't know what *closure* we're going to get.
 - But we can calculate e_1 's type, check that e_2 is an argument of the right type, and determine what type e_1 will return.
- Question: Why is this an approximation?
- Question: What if well_typed always returns false?

oat.pdf

TYPECHECKING OAT

Zdancewic CIS 341: Compilers

Checking Derivations

- A derivation or proof tree has (instances of) judgments as its nodes and edges that connect premises to a conclusion according to an inference rule.
- Leaves of the tree are *axioms* (i.e. rules with no premises)
 - Example: the INT rule is an axiom
- Goal of the type checker: verify that such a tree exists.
- Example1: Find a tree for the following program using the inference rules in oat.pdf:

```
var x1 = 0;
var x2 = x1 + x1;
x1 = x1 - x2;
return(x1);
```

Example2: There is no tree for this ill-scoped program:

```
var x2 = x1 + x1;
return(x2);
```

Example Derivation

```
var x1 = 0;
var x2 = x1 + x1;
x1 = x1 - x2;
return(x1);
```

$$\frac{\mathcal{D}_{1} \quad \mathcal{D}_{2} \quad \mathcal{D}_{3} \quad \mathcal{D}_{4}}{G_{0}; \cdot ; \text{int} \vdash \text{var } x_{1} = 0; \text{var } x_{2} = x_{1} + x_{1}; x_{1} = x_{1} - x_{2}; \text{return } x_{1}; \Rightarrow \cdot, x_{1} : \text{int}, x_{2} : \text{int}}{\vdash \text{var } x_{1} = 0; \text{var } x_{2} = x_{1} + x_{1}; x_{1} = x_{1} - x_{2}; \text{return } x_{1};} \quad [PROG]$$

Example Derivation

$$\frac{\overline{G_0;\cdot\vdash 0:\mathrm{int}}}{\overline{G_0;\cdot\vdash 0:\mathrm{int}}} \begin{bmatrix} \mathrm{INT} \end{bmatrix} \\ \frac{\overline{G_0;\cdot\vdash 0:\mathrm{int}}}{\overline{G_0;\cdot\vdash \mathrm{var}} x_1 = 0 \Rightarrow \cdot, x_1:\mathrm{int}} \begin{bmatrix} \mathrm{DECL} \end{bmatrix} \\ \overline{G_0;\cdot;\mathrm{int}\vdash \mathrm{var}} x_1 = 0; \Rightarrow \cdot, x_1:\mathrm{int}} \begin{bmatrix} \mathrm{SDECL} \end{bmatrix}$$

Example Derivation

$$\mathcal{D}_3 = rac{ \left[egin{array}{c} egin{array} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{$$

$$D_4 = \frac{x_1 : \text{int} \in \cdot, x_1 : \text{int}, x_2 : \text{int}}{G_0; \cdot, x_1 : \text{int}, x_2 : \text{int} \vdash x_1 : \text{int}} [\text{VAR}]$$

$$C_4 = \frac{G_0; \cdot, x_1 : \text{int}, x_2 : \text{int} \vdash \text{return}}{G_0; \cdot, x_1 : \text{int}, x_2 : \text{int}} [\text{Return}]$$

Type Safety For General Languages

Theorem: (Type Safety)

```
If \vdash P: t is a well-typed program, then either:
```

- (a) the program terminates in a well-defined way, or
- (b) the program continues computing forever
- Well-defined termination could include:
 - halting with a return value
 - raising an exception
- Type safety rules out undefined behaviors:
 - abusing "unsafe" casts: converting pointers to integers, etc.
 - treating non-code values as code (and vice-versa)
 - breaking the type abstractions of the language
- What is "defined" depends on the language semantics...

Why Inference Rules?

- They are a compact, precise way of specifying language properties.
 - E.g. ~20 pages for full Java vs. 100's of pages of prose Java Language Spec.
- Inference rules correspond closely to the recursive AST traversal that implements them
- Type checking (and type inference) is nothing more than attempting to prove a different judgment ($E \vdash e : t$) by searching backwards through the rules.
- Compiling in a context is nothing more than a collection of inference rules specifying yet a different judgment ($G \vdash src \Rightarrow target$)
 - Moreover, the compilation rules are very similar in structure to the typechecking rules
- Strong mathematical foundations
 - The "Curry-Howard correspondence": Programming Language ~ Logic, Program ~ Proof, Type ~ Proposition
 - See CIS 500 if you're interested in type systems!

COMPILING

Zdancewic CIS 341: Compilers

Compilation As Translating Judgments

Consider the source typing judgment for source expressions:

$$C \vdash e : t$$

• How do we interpret this information in the target language? $[C \vdash e : t] = ?$

- **[C]** translates contexts
- [t] is a target type
- [e] translates to a (potentially empty) stream of instructions, that, when run, computes the result into some operand
- INVARIANT: if [[C ⊢ e : t]] = ty, operand, stream
 then the type (at the target level) of the operand is ty=[[t]]

Example

• $C \vdash 341 + 5 : int$ what is $[C \vdash 341 + 5 : int]$?

What about the Context?

- What is [C]?
- Source level C has bindings like: x:int, y:bool
 - We think of it as a finite map from identifiers to types
- What is the interpretation of C at the target level?
- [C] maps source identifiers, "x" to source types and [x]
- What is the interpretation of a variable [x] at the target level?
 - How are the variables used in the type system?

$$\frac{x:t \in L}{G;L \vdash x:t}$$
 TYP_VAR as expressions (which denote values)

$$\frac{x:t \in L \quad G; L \vdash exp:t}{G; L; rt \vdash x = exp; \Rightarrow L}$$
as addresses
(which can be assigned)

Interpretation of Contexts

[C] = a map from source identifiers to types and target identifiers

INVARIANT:

 $x:t \in C$ means that

- (1) $lookup [C] x = (t, %id_x)$
- (2) the (target) type of %id_x is [[t]]* (a pointer to [[t]])

Interpretation of Variables

Establish invariant for expressions:

What about statements?

$$\boxed{ \begin{array}{c} x : t \in L \quad G ; L \vdash exp : t \\ \hline G ; L ; rt \vdash x = exp ; \Rightarrow L \\ \text{as addresses} \\ \text{(which can be assigned)} \end{array} } = \begin{array}{c} \text{TYP_ASSN} \\ \text{[store [t] opn, [t]* %id_x]} \\ \text{where } (t, \% \text{id_x}) = \text{lookup [L] } x \\ \text{and [G; L} \vdash exp : t] = ([t], \text{opn, stream)} \end{array}$$

Other Judgments?

• Statement: $[C; rt \vdash stmt \Rightarrow C'] = [C'], stream$

Rest follow similarly

COMPILING CONTROL

Zdancewic CIS 341: Compilers 24

Translating while

- Consider translating "while(e) s":
 - Test the conditional, if true jump to the body, else jump to the label after the body.

```
[C; rt \vdash while(e) s \Rightarrow C'] = [C'],
```

```
lpre:
    opn = [C ⊢ e : bool]
    %test = icmp eq i1 opn, 0
    br %test, label %lpost, label %lbody
lbody:
    [C;rt ⊢ s ⇒ C']
    br %lpre
lpost:
```

- Note: writing $opn = [C \vdash e : bool]$ is pun
 - translating [C ⊢ e : bool] generates code that puts the result into opn
 - In this notation there is implicit collection of the code

Translating if-then-else

• Similar to while except that code is slightly more complicated because if-then-else must reach a merge and the else branch is optional.

```
[\![C; rt \vdash if (e_1) s_1 else s_2 \Rightarrow C']\!] = [\![C']\!]
```

```
opn = [C ⊢ e : bool]
  %test = icmp eq i1 opn, 0
  br %test, label %else, label %then
then:
    [C;rt ⊢ s₁ → C']
    br %merge
else:
    [C; rt s₂ → C']
    br %merge
merge:
```

Connecting this to Code

- Instruction streams:
 - Must include labels, terminators, and "hoisted" global constants
- Must post-process the stream into a control-flow-graph
- See frontend.ml from HW4

OPTIMIZING CONTROL

Zdancewic CIS 341: Compilers 28

Standard Evaluation

Consider compiling the following program fragment:

```
if (x & !y | !w)
  z = 3;
else
 z = 4;
return z;
```

```
%tmp1 = icmp Eq [y], 0
                                ; !y
   %tmp2 = and [x] [tmp1]
   %tmp3 = icmp Eq [w], 0
   %tmp4 = or %tmp2, %tmp3
   %tmp5 = icmp Eq %tmp4, 0
   br %tmp4, label %else, label %then
then:
   store [z], 3
   br %merge
else:
   store [z], 4
   br %merge
merge:
   tmp5 = load [z]
   ret %tmp5
```

Observation

- Usually, we want the translation [e] to produce a value
 - $[C \vdash e : t] = (ty, operand, stream)$
 - e.g. $[C \vdash e_1 + e_2 : int] = (i64, %tmp, [%tmp = add <math>[e_1] [e_2]])$
- But when the expression we're compiling appears in a test, the program jumps to one label or another after the comparison but otherwise never uses the value.
- In many cases, we can avoid "materializing" the value (i.e. storing it in a temporary) and thus produce better code.
 - This idea also lets us implement different functionality too:
 e.g. short-circuiting boolean expressions

Idea: Use a different translation for tests

Usual Expression translation:

```
[\![C \vdash e : t]\!] = (ty, operand, stream)
```

Conditional branch translation of booleans, without materializing the value:

```
[C \vdash e : bool@] Itrue Ifalse = stream [C, rt \vdash if (e) then s1 else s2 \Rightarrow C'] = [C'],
```

Notes:

- takes two extra arguments: a "true" branch label and a "false" branch label.
- Doesn't "return a value"
- Aside: this is a form of continuation-passing translation...

```
insns<sub>3</sub>
then:
    [s1]
    br %merge
else:
    [s<sub>2</sub>]
    br %merge
merge:
```

```
where [\![C, rt \vdash s_1 \Rightarrow C']\!] = [\![C']\!], insns<sub>1</sub>
```

$$[\![C, rt \vdash s_2 \Rightarrow C'']\!] = [\![C'']\!], insns_2$$

 $[\![C \vdash e : bool@]\!] then else = insns_3$

Short Circuit Compilation: Expressions

• ¶C ⊢ e : bool@∏ Itrue Ifalse = insns

```
[C ⊢ false : bool@] Itrue Ifalse = [br %lfalse]

TRUE

[C ⊢ true : bool@] Itrue Ifalse = [br %ltrue]
```

Short Circuit Evaluation

Idea: build the logic into the translation

where right is a fresh label

Short-Circuit Evaluation

Consider compiling the following program fragment:

```
if (x & !y | !w)
  z = 3;
else
  z = 4;
return z;
```

```
%tmp1 = icmp Eq [x], 0
    br %tmp1, label %right2, label %right1
right1:
   %tmp2 = icmp Eq [y], 0
    br %tmp2, label %then, label %right2
right2:
   %tmp3 = icmp Eq [w], 0
    br %tmp3, label %then, label %else
then:
   store [z], 3
    br %merge
else:
   store [z], 4
    br %merge
merge:
   tmp5 = load [z]
    ret %tmp5
```

Beyond describing "structure"... describing "properties"

Types as sets

Subsumption

TYPES, MORE GENERALLY

Zdancewic CIS 341: Compilers 35

Tuples

- ML-style tuples with statically known number of products:
- First: add a new type constructor: T₁ * ... * T_n

G
$$\vdash$$
 e₁: T₁ ... G \vdash e_n: T_n

$$G \vdash (e_1, ..., e_n): T_1 * ... * T_n$$

G
$$\vdash$$
 e : $T_1 * ... * T_n$ $1 \le i \le n$ $G \vdash$ prj_i e : T_i

Arrays

- Array constructs are not hard
- First: add a new type constructor: T[]

NEW

$$G \vdash e_1 : int \quad G \vdash e_2 : T$$

$$G \vdash \text{new } T[e_1](e_2) : T[]$$

 e_1 is the size of the newly allocated array. e_2 initializes the elements of the array.

INDEX

$$G \vdash e_1 : T[] \qquad G \vdash e_2 : int$$

$$G \vdash e_1[e_2] : T$$

UPDATE

$$G \vdash e_1 : T[] \quad G \vdash e_2 : int \quad G \vdash e_3 : T$$

Note: These rules don't ensure that the array index is in bounds – that should be checked *dynamically*.

$$G \vdash e_1[e_2] = e_3 \text{ ok}$$

References

- ML-style references (note that ML uses only expressions)
- First, add a new type constructor: T ref

REF

 $G \vdash e : T$

 $G \vdash ref e : T ref$

DEREF

 $E \vdash e : T ref$

 $G \vdash !e : T$

ASSIGN

 $G \vdash e_1 : T \text{ ref } E \vdash e_2 : T$

 $G \vdash e_1 := e_2 : unit$

Note the similarity with the rules for arrays...

What are types, anyway?

- A type is just a predicate on the set of values in a system.
 - For example, the type "int" can be thought of as a boolean function that returns "true" on integers and "false" otherwise.
 - Equivalently, we can think of a type as just a *subset* of all values.
- For efficiency and tractability, the predicates are usually taken to be very simple.
 - Types are an abstraction mechanism
- We can easily add new types that distinguish different subsets of values:

Modifying the typing rules

- We need to refine the typing rules too…
- Some easy cases:
 - Just split up the integers into their more refined cases:

Same for booleans:

TRUE FALSE $G \vdash \text{true} : \text{True}$ $G \vdash \text{false} : \text{False}$

What about "if"?

Two cases are easy:

IF-T
$$G \vdash e_1 : True \ G \vdash e_2 : T$$
 $G \vdash e_1 : False \ E \vdash e_3 : T$ $G \vdash if (e_1) \ e_2 \ else \ e_3 : T$ $G \vdash if (e_1) \ e_2 \ else \ e_3 : T$

- What happens when we don't know statically which branch will be taken?
- Consider the typechecking problem:

$$x:bool \vdash if(x) \ 3 \ else -1 : ?$$

- The true branch has type Pos and the false branch has type Neg.
 - What should be the result type of the whole if?

Subtyping and Upper Bounds

- If we think of types as sets of values, we have a natural inclusion relation: Pos ⊆ Int
- This subset relation gives rise to a *subtype* relation: Pos <: Int
- Such inclusions give rise to a subtyping hierarchy:

- Given any two types T₁ and T₂, we can calculate their *least upper bound* (LUB) according to the hierarchy.
 - Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any
 - Note: might want to add types for "NonZero", "NonNegative", and "NonPositive" so that set union on values corresponds to taking LUBs on types.

"If" Typing Rule Revisited

• For statically unknown conditionals, we want the return value to be the LUB of the types of the branches:

IF-BOOL
$$G \vdash e_1 : bool \ E \vdash e_2 : T_1 \qquad G \vdash e_3 : T_2$$

$$G \vdash if (e_1) \ e_2 \ else \ e_3 : LUB(T_1, T_2)$$

- Note that LUB(T₁, T₂) is the most precise type (according to the hierarchy) that is able to describe any value that has either type T₁ or type T₂.
- In math notation, LUB(T1, T2) is sometimes written T₁ V T₂
- LUB is also called the join operation.

Subtyping Hierarchy

A subtyping hierarchy:

- The subtyping relation is a *partial order*:
 - Reflexive: T <: T for any type T
 - Transitive: $T_1 <: T_2$ and $T_2 <: T_3$ then $T_1 <: T_3$
 - Antisymmetric: It $T_1 <: T_2$ and $T_2 <: T_1$ then $T_1 = T_2$

Soundness of Subtyping Relations

- We don't have to treat every subset of the integers as a type.
 - e.g., we left out the type NonNeg
- A subtyping relation $T_1 <: T_2$ is *sound* if it approximates the underlying semantic subset relation.
- Formally: write [T] for the subset of (closed) values of type T
 - i.e. $[T] = \{v \mid \vdash v : T\}$
 - $\text{ e.g. } [Zero] = \{0\}, [Pos] = \{1, 2, 3, ...\}$
- If $T_1 <: T_2$ implies $[T_1] \subseteq [T_2]$, then $T_1 <: T_2$ is sound.
 - e.g. Pos <: Int is sound, since $\{1,2,3,...\}$ ⊆ $\{...,-3,-2,-1,0,1,2,3,...\}$
 - e.g. Int <: Pos is not sound, since it is *not* the case that $\{...,-3,-2,-1,0,1,2,3,...\}$ ⊆ $\{1,2,3,...\}$

Soundness of LUBs

- Whenever you have a sound subtyping relation, it follows that:

 [LUB(T₁, T₂)] ⊇ [T₁] ∪ [T₂]
 - Note that the LUB is an over approximation of the "semantic union"
 - Example: $[LUB(Zero, Pos)] = [Int] = {...,-3,-2,-1,0,1,2,3,...} \supseteq {0,1,2,3,...} = {0} \cup {1,2,3,...} = [Zero] \cup [Pos]$
- Using LUBs in the typing rules yields sound approximations of the program behavior (as if the IF-B rule).
- It just so happens that LUBs on subtypes of Int are *sound* for +

ADD
$$G \vdash e_1 : T_1 \qquad G \vdash e_2 : T_2 \qquad T_1 <: Int \quad T_2 <: Int$$

$$G \vdash e_1 + e_2 : T_1 \lor T_2$$

Subsumption Rule

• When we add subtyping judgments of the form T <: S we can uniformly integrate it into the type system generically:

SUBSUMPTION
$$G \vdash e : T : S$$

$$G \vdash e : S$$

- Subsumption allows any value of type T to be treated as an S whenever T <: S.
- Adding this rule makes the search for typing derivations more difficult

 this rule can be applied anywhere, since T <: T.
 - But careful engineering of the typing system can incorporate the subsumption rule into a deterministic algorithm. (See, e.g., the OAT type system)

Downcasting

- What happens if we have an Int but need something of type Pos?
 - At compile time, we don't know whether the Int is greater than zero.
 - At run time, we do.
- Add a "checked downcast"

$$G \vdash e_1 : Int$$
 $G, x : Pos \vdash e_2 : T_2$ $G \vdash e_3 : T_3$

$$G \vdash ifPos (x = e_1) e_2 else e_3 : T_2 \lor T_3$$

- At runtime, ifPos checks whether e_1 is > 0. If so, branches to e_2 and otherwise branches to e_3 .
- Inside the expression e_2 , x is the name for e_1 's value, which is known to be strictly positive because of the dynamic check.
- Note that such rules force the programmer to add the appropriate checks
 - We could give integer division the type: Int \rightarrow NonZero \rightarrow Int

CIS 341: Compilers

48

SUBTYPING OTHER TYPES

Zdancewic CIS 341: Compilers 49

Extending Subtyping to Other Types

- What about subtyping for tuples?
 - Intuition: whenever a program expects something of type $S_1 * S_2$, it is sound to give it a $T_1 * T_2$.
 - Example: (Pos * Neg) <: (Int * Int)</pre>

$$T_1 <: S_1 \quad T_2 <: S_2$$

$$(T_1 * T_2) <: (S_1 * S_2)$$

- What about functions?
- When is $T_1 \rightarrow T_2 <: S_1 \rightarrow S_2$?

Subtyping for Function Types

One way to see it:

• Need to convert an S1 to a T1 and T2 to S2, so the argument type is *contravariant* and the output type is *covariant*.

$$S_1 <: T_1 \quad T_2 <: S_2$$

$$(\mathsf{T}_1 \to \mathsf{T}_2) <: (\mathsf{S}_1 \to \mathsf{S}_2)$$

Immutable Records

- Record type: $\{lab_1:T_1; lab_2:T_2; ...; lab_n:T_n\}$
 - Each lab; is a label drawn from a set of identifiers.

RECORD
$$G \vdash e_1 : T_1$$

$$G \vdash e_2 : T_2$$

$$G \vdash e_2 : T_2 \qquad \dots \qquad G \vdash e_n : T_n$$

$$G \vdash \{lab_1 = e_1; lab_2 = e_2; ...; lab_n = e_n\} : \{lab_1:T_1; lab_2:T_2; ...; lab_n:T_n\}$$

PROJECTION

$$G \vdash e : \{lab_1:T_1; lab_2:T_2; \dots; lab_n:T_n\}$$

$$G \vdash e.lab_i : T_i$$

Immutable Record Subtyping

- Depth subtyping:
 - Corresponding fields may be subtypes

$$T_1 <: U_1 \quad T_2 <: U_2 \quad ... \quad T_n <: U_n$$

```
{lab_1:T_1; lab_2:T_2; ...; lab_n:T_n} <: {lab_1:U_1; lab_2:U_2; ...; lab_n:U_n}
```

- Width subtyping:
 - Subtype record may have more fields:

$$m \le n$$

$${lab_1:T_1; lab_2:T_2; ...; lab_n:T_n} <: {lab_1:T_1; lab_2:T_2; ...; lab_m:T_m}$$

Depth & Width Subtyping vs. Layout

• Width subtyping (without depth) is compatible with "inlined" record representation as with C structs:

```
{x:int; y:int; z:int} <: {x:int; y:int}
[Width Subtyping]</pre>
```

- The layout and underlying field indices for 'x' and 'y' are identical.
- The 'z' field is just ignored
- Depth subtyping (without width) is similarly compatible, assuming that the space used by A is the same as the space used by B whenever A <: B
- But... they don't mix without more work

Immutable Record Subtyping (cont'd)

• Width subtyping assumes an implementation in which order of fields in a record matters:

```
\{x:int; y:int\} \neq \{y:int; x:int\}
```

- But: {x:int; y:int; z:int} <: {x:int; y:int}
 - Implementation: a record is a struct, subtypes just add fields at the end of the struct.
- Alternative: allow permutation of record fields:

```
{x:int; y:int} = {y:int; x:int}
```

- Implementation: compiler sorts the fields before code generation.
- Need to know all of the fields to generate the code
- Permutation is not directly compatible with width subtyping:

```
{x:int; z:int; y:int} = {x:int; y:int; z:int} </: {y:int; z:int}
```

If you want both:

• If you want permutability & dropping, you need to either copy (to rearrange the fields) or use a dictionary like this:

MUTABILITY & SUBTYPING

Zdancewic CIS 341: Compilers 57

NULL

- What is the type of null?
- Consider:

- Null has any reference type
 - Null is generic
- What about type safety?
 - Requires defined behavior when dereferencing null e.g. Java's NullPointerException
 - Requires a safety check for every dereference operation (typically implemented using low-level hardware "trap" mechanisms.)

Subtyping and References

- What is the proper subtyping relationship for references and arrays?
- Suppose we have NonZero as a type and the division operation has type: Int → NonZero → Int
 - Recall that NonZero <: Int</p>
- Should (NonZero ref) <: (Int ref) ?
- Consider this program:

Mutable Structures are Invariant

- Covariant reference types are unsound
 - As demonstrated in the previous example
- Contravariant reference types are also unsound
 - i.e. If $T_1 <: T_2$ then ref $T_2 <: ref T_1$ is also unsound
 - Exercise: construct a program that breaks contravariant references.
- Moral: Mutable structures are invariant:

$$T_1 \text{ ref} <: T_2 \text{ ref} \quad \text{implies} \quad T_1 = T_2$$

- Same holds for arrays, OCaml-style mutable records, object fields, etc.
 - Note: Java and C# get this wrong. They allows covariant array subtyping, but then compensate by adding a dynamic check on every array update!

Another Way to See It

• We can think of a reference cell as an immutable record (object) with two functions (methods) and some hidden state:

```
T ref \simeq {get: unit \rightarrow T; set: T \rightarrow unit}
```

- get returns the value hidden in the state.
- set updates the value hidden in the state.
- When is T ref <: S ref?
- Records are like tuples: subtyping extends pointwise over each component.
- $\{get: unit \rightarrow T; set: T \rightarrow unit\} <: \{get: unit \rightarrow S; set: S \rightarrow unit\}$
 - get components are subtypes: unit \rightarrow T <: unit \rightarrow S set components are subtypes: T \rightarrow unit <: S \rightarrow unit
- From get, we must have T <: S (covariant return)
- From set, we must have S <: T (contravariant arg.)
- From T <: S and S <: T we conclude T = S.

STRUCTURAL VS. NOMINAL TYPES

Zdancewic CIS 341: Compilers 62

Structural vs. Nominal Typing

- Is type equality / subsumption defined by the *structure* of the data or the *name* of the data?
- Example 1: type abbreviations (OCaml) vs. "newtypes" (a la Haskell)

 Type abbreviations are treated "structurally" Newtypes are treated "by name"

Nominal Subtyping in Java

• In Java, Classes and Interfaces must be named and their relationships explicitly declared:

```
(* Java: *)
interface Foo {
  int foo();
}

class C {    /* Does not implement the Foo interface */
  int foo() {return 2;}
}

class D implements Foo {
  int foo() {return 341;}
}
```

- Similarly for inheritance: programmers must declare the subclass relation via the "extends" keyword.
 - Typechecker still checks that the classes are structurally compatible

See oat.pdf in HW5

OAT'S TYPE SYSTEM

Zdancewic CIS 341: Compilers

OAT's Treatment of Types

- Primitive (non-reference) types:
 - int, bool
- Definitely non-null reference types:
 - (named) mutable structs with (right-oriented) width subtyping
 - string
 - arrays (including length information, per HW4)
- Possibly-null reference types: R?
 - Subtyping: R <: R?</p>
 - Checked downcast syntax if?:

```
int sum(int[]? arr) {
    var z = 0;
    if?(int[] a = arr) {
        for(var i = 0; i < length(a); i = i + 1;) {
          z = z + a[i];
        }
    }
    return z;
}</pre>
```

OAT Features

- Named structure types with mutable fields
 - but using structural, width subtyping
- Typed function pointers
- Polymorphic operations: length and == / !=
 - need special case handling in the typechecker
- Type-annotated null values: t null always has type t?
- Definitely-not-null values means we need an "atomic" array initialization syntax
 - for example, null is not allowed as a value of type int[], so to construct a record containing a field of type int[], we need to initialize it
 - subtlety: int[][] cannot be initialized by default, but int[] can be

OAT "Returns" Analysis

- Typesafe, statement-oriented imperative languages like OAT (or Java) must ensure that a function (always) returns a value of the appropriate type.
 - Does the returned expression's type match the one declared by the function?
 - Do all paths through the code return appropriately?
- OAT's statement checking judgment
 - takes the expected return type as input: what type should the statement return (or void if none)
 - produces a boolean flag as output: does the statement definitely return?

Zdancewic CIS 341: Compilers 68