Lecture 17

CIS 341: COMPILERS

Announcements

* HW5: OAT v. 2.0
— records, function pointers, type checking, array-bounds checks, etc.
— Due: Friday, April 23
— Available soon afternoon
— Start Early!

Zdancewic CIS 341: Compilers

Simply-typed Lambda Calculus

« Consider how to identify “well-scoped” lambda calculus terms

— Recall the free variable calculation
— Given: G, a map of variable identifiers to types, e, aterm of the lambda
calculus

— Judgment: GFre:T means “the expression e computes a value of
type T, assuming its free variables have the types given in G”

x:T eG : _
“the variable x has type T an is in scope”
GEx:T
Gre:T—S Grey: T
GrFeje,:S

“e; is a function from T2 to T and e, is an expression of type T2"”

G, x:Tre:S . . | |
. . “Given an input of type T, this function
GrTun(xT~e:T—5S computes a result of type S”

Zdancewic CIS 341: Compilers

 For the language in “tc.m

Adding Integers

l//

we have five inference rules:

ADD

INT VAR
x:T € G
GEI1:Int GEFXx:T
FUN
G x:Tre:S

GrFTfun (xT) » e :T—S

GFe:int GFre:int

EFe +e,:int

APP

GFe;:T—>S GFre:T

GFe e :S

* Note how these rules correspond to the code.

CIS 341: Compilers

Type Checking Derivations

* A derivation or proof tree has (instances of) judgments as its nodes and

edges that connect premises to a conclusion according to an inference
rule.

* Leaves of the tree are axioms (i.e. rules with no premises)
— Example: the INT rule is an axiom

* Goal of the typechecker: verity that such a tree exists.

« Example: Find a tree for the following program using the inference
rules on the previous slide:

F(fun (x:int) » x + 3) 5 :int

CIS 341: Compilers 5

Example Derivation Tree

X:Iint € x:iInt
VAR INT
X:intkF x :int X:intk 3 :int
ADD
X:intkFx + 3:int
FUN INT
F (fun (x:int) -x + 3) :int — int 5 :int

APP

F (fun (x:int) - x + 3) 5 :int

Note: the OCaml function typecheck verifies the existence of this
tree. The structure of the recursive calls when running typecheck is

the same shape as this tree!
Note that x :int € E is implemented by the function Lookup

CIS 341: Compilers

lll-typed Programs

Programs without derivations are ill-typed

Example: There is no type T such that

F(fun (x:int) » x 3) 5:T

X:int—T €& x:ik

VAR

APP

FUN

X:intkFx :int—T x:intl—3f'§t

APP

X:intkFx 3:T \
F (fun (x:int) -»x 3):int—T

F (fun (x:int) - x 3) 5 : T

Zdancewic CIS 341: Compilers

F5: int\

Type Safety

"Well typed programs do not go wrong."
— Robin Milner, 1978

Theorem: (simply typed lambda calculus with integers)

If + e:t then there exists a value vsuchthat e U v.

* Note: this is a very strong property.

— Well-typed programs cannot "go wrong" by trying to execute undefined
code (such as 3 + (fun x -> 2))

— Simply-typed lambda calculus is guaranteed to terminate!
(i.e. it isn't Turing complete)

Zdancewic CIS 341: Compilers

Notes about this Typechecker

The interpreter evaluates the body of a function only when it's applied.

The typechecker always checks the body of the function

— even if it's never applied

— We assume the input has some type (say t;) and reflect this in the type of the
function (t; => t,).

Dually, at a call site (e; e,), we don't know what closure we're going
to get.

— But we can calculate e;'s type, check that e, is an argument of the right
type, and determine what type e; will return.

Question: Why is this an approximation?
Question: What if well_typed always returns false?

oat.pdf

TYPECHECKING OAT

Zdancewic CIS 341: Compilers

Checking Derivations

* A derivation or proof tree has (instances of) judgments as its nodes and
edges that connect premises to a conclusion according to an inference

rule.
» Leaves of the tree are axioms (i.e. rules with no premises)
— Example: the INT rule is an axiom

* Goal of the type checker: verify that such a tree exists.

« Examplel: Find a tree for the following program using the inference
rules in oat.pdf:
var x1 = 0;
var x2 = x1 + x1;
x1l = x1 - x2;
return(xl);

Example2: There is no tree for this ill-scoped program:

var x2 = x1 + x1;
return(x2);

CIS 341: Compilers 11

Example Derivation

var x1 = 0;

var x2 = x1 + x1;
x1 = x1 - x2;
return(xl);

Dy Dy D3 Dy
Go; - ;int Fvar x; =0; var xp = x1 + X1; X1 = X1 - Xp; return x1; = -, X1:int,xp:int
Fvar x; =0; var xp = x; + X1; X1 = X1 - Xp; return X ;

[STMTS]
[PROG]

Zdancewic CIS 341: Compilers 12

Example Derivation

[INT]

Gp;- F0:int
[CONST]

Gg;-F0: int
Gop;-Hvarxy =0= -, xq:int

[DECL]

D, [SDECL|

Gpo; - ;int Fvar x; =0; = -, x7:int

X1:int € -, xq:int X1:int € -, xq:int
[ADD| . — [VAR] _ — [VAR]
Gg;+,x1:int F x7 : int Go;:,x1:int F x1 : int

-+ : (int, int) — int

BOP
Gg;-,xlzintl—xl + X1 : int []

DECL
Gpo;:,Xx1:int;int Fvar xp =x; + x1; = -, X1:int,xp:int []

SDECL
D, = Gpo;:,Xx1:int;int Fvar xp =x; + x1; = -, X1:int,xp:int |)

Zdancewic CIS 341: Compilers 13

Example Derivation

X1:int € -, x7:int,xp:int Xp:int € -, x1:int,Xx7:int
— — [aDD] : : — [VAR] : : — [VAR]
- - : (int, int) — int Go;+,x1:int,xp:int F xq : int Go;:,x1:int,xp:int F xp : int

BOP|

D3 — Go;+,X1:int, xp:int F x1 -xp : int
Go;-,x1:int, xp:int;int Hx; =x1 -xp; = -, x1:int,xp:int

[AssN]

X1:int € -, x1:1nt, Xy :int

VAR
Gg;+,X1:int,xp:int - xq1 : int [VaE]

RET
Dy, = Gp;-,xq:int, xp:int;int - return x1; = -, X7 :1int, xy:int [Re]

Zdancewic CIS 341: Compilers 14

Type Safety For General Languages

Theorem: (Type Safety)

If +P:t isa well-typed program, then either:
(@) the program terminates in a well-defined way, or
(b) the program continues computing forever

« Well-defined termination could include:
— halting with a return value

— raising an exception

« Type safety rules out undefined behaviors:
— abusing "unsafe" casts: converting pointers to integers, etc.
— treating non-code values as code (and vice-versa)
— breaking the type abstractions of the language

* What is "defined" depends on the language semantics...

Zdancewic CIS 341: Compilers

15

Why Inference Rules?

« They are a compact, precise way of specifying language properties.
— E.g. ~20 pages for full Java vs. 100’s of pages of prose Java Language Spec.

* Inference rules correspond closely to the recursive AST traversal that
implements them

« Type checking (and type inference) is nothing more than attempting to
prove a different judgment (E - e : t) by searching backwards through the
rules.

« Compiling in a context is nothing more than a collection of inference
rules specifying yet a different judgment (G F src = target)

— Moreover, the compilation rules are very similar in structure to the
typechecking rules

« Strong mathematical foundations

— The “Curry-Howard correspondence”: Programming Language ~ Logic,
Program ~ Proof, Type ~ Proposition

— See CIS 500 if you're interested in type systems!

CIS 341: Compilers 16

COMPILING

Zdancewic CIS 341: Compilers 17

Compilation As Translating Judgments

« Consider the source typing judgment for source expressions:

Cre:t

« How do we interpret this information in the target language?
[Cre:t]= ¢

« [C] translates contexts
* [t] 1s a target type

 [e] translates to a (potentially empty) stream of instructions, that, when
run, computes the result into some operand

* INVARIANT: if [Cre:t] =ty operand, stream
then the type (at the target level) of the operand is ty=[t]

Zdancewic CIS 341: Compilers 18

Example

e« C F341+5:int whatis [CF 341 +5:int] ¢
[+ 341 :int] = (i64, const 341, [1) [F 5 :int] = (i64, const 5, [])
[C F 341 :Int]] = (i64, Const 341, [1) [C =5 :int] = (164, const 5, [1)

[CH34T1T +5:Int] = (i64, %tmp, [%tmp = add 164 (Const 341) (Const 5)])

Zdancewic CIS 341: Compilers 19

What about the Context?

* What is [C]?
* Source level C has bindings like: x:int, y:bool
— We think of it as a finite map from identifiers to types

* What is the interpretation of C at the target level?

« [C] maps source identifiers, “x” to source types and [x]

* What is the interpretation of a variable [x] at the target level?
— How are the variables used in the type system?

x:t €L x:teL G;LlFexp:t
TYP_VAR TYP_ASSN
G;LFx:t - G;L;rtFx=exp; = L -
as expressions as addresses
(which denote values) (which can be assigned)

Zdancewic CIS 341: Compilers 20

Interpretation of Contexts

* [C] = a map from source identifiers to types and target identifiers

e [NVARIANT:
x:t € C means that

(1) lookup [C] x = (t, s1d_x)
(2) the (target) type of S1d_x is [t]* (a pointer to [t])

Zdancewic CIS 341: Compilers

21

Interpretation of Variables

 Establish invariant for expressions:

x:t €L
G;LFHx:t

as expressions

TYP_VAR

(which denote values)

= (%tmp, [%tmp = load 164* S%id_x])

where (164, %s1d_X) = lookup [L] x

« What about statements?

x:teL G;LFEexp:t

G;L;rtkx=exp; = L

as addresses

(which can be assigned)

Zdancewic CIS 341: Compilers

TYP_ASSNL = stream @

[store [t] opn, [tl* %id_x]

where (t, %1d_X) = lookup [[L] x
and [G;L + exp : t] = ([t], opn, stream)

22

Other Judgments?

Statement:
[C; rt = stmt=> C'] = [C’] , stream

Declaration:
[GLEFtx=exp=> G;Lx:it] = [G;Lx:t], stream

INVARIANT: stream is of the form:
stream’ (@
[%1d_x = alloca [t];
store [t] opn, [t]* %id_x]

and [G;L Fexp:t] = ([t], opn, stream’)

Rest follow similarly

Zdancewic CIS 341: Compilers

23

COMPILING CONTROL

Zdancewic CIS 341: Compilers

Translating while

« Consider translating “while(e) s”:

— Test the conditional, if true jump to the body, else jump to the label after
the body.

[C;rt Fwhile(e) s = C'] = [C'],

lpre:

opn = [C - e : bool]

%test = i1cmp eq 11 opn, 0

br Stest, label %lpost, label %lbody
lbody:

[C;rt s = C']

br Slpre
lpost:

« Note: writing opn =[C F e : bool] ispun
— translating [C F e : bool] generates code that puts the result into opn
— In this notation there is implicit collection of the code

CIS 341: Compilers

Translating if-then-else

« Similar to while except that code is slightly more complicated because
if-then-else must reach a merge and the else branch is optional.

[C;rt - 1f (e;) sq else s, = C']= [C]

opn = [C - e : bool]

%test = i1cmp eq 11 opn, 0

br Stest, label %else, label Sthen
then:

[[C;rt - S = C’]]

br %merge
else:

[C; rt s, = C']

br %merge
merge:

CIS 341: Compilers 26

Connecting this to Code

* Instruction streams:
— Must include labels, terminators, and “hoisted” global constants

* Must post-process the stream into a control-flow-graph

e See frontend.ml from HW4

Zdancewic CIS 341: Compilers

27

OPTIMIZING CONTROL

Zdancewic CIS 341: Compilers

Standard Evaluation

« Consider compiling the following program fragment:

%tmpl = 1cmp Eq [y], O sy
Stmp2 = and [x] [tmpl]
%tmp3 = 1cmp Eq [w], O
%tmp4d = or Stmp2, %Stmp3
| |
1fz(§ g. y | iw) Stmp5 = 1cmp Eq Stmp4d, 0
- ’

br Stmp4, label %else, label Sthen

else
z = 4 [$> then:

return z; store [z], 3
br %merge

else:
store [z], 4
br %merge

merge:
%tmp5 = load [z]
ret %Stmpbs

CIS 341: Compilers z7

Observation

« Usually, we want the translation [e] to produce a value
— [CF e:t] = (ty, operand, stream)
— eg [Cre +e,:int] = (i64,%tmp, [Stmp =add [e;] [e,]])

« But when the expression we're compiling appears in a test, the
program jumps to one label or another after the comparison but

otherwise never uses the value.

* In many cases, we can avoid “materializing” the value (i.e. storing it in
a temporary) and thus produce better code.

— This idea also lets us implement different functionality too:
e.g. short-circuiting boolean expressions

CIS 341: Compilers 30

Idea: Use a different translation for tests

Usual Expression translation:
[C e : 1] = (ty, operand, stream)

Conditional branch translation of booleans,
without materializing the value:

[C + e : bool@] ltrue Ifalse = stream
[C, rt - if (e) then s1 elses2 = C'] = [C'],

1NsNns;
then:
Notes: [s1]
 takes two extra br %merge
arguments: a “true” else:
branch label and a [s,]
“false” branch label. br %merge
 Doesn’t “return a value” merge:
« Aside: this is a form of where
continu.ation—passing [C, rt s, = C] = [C], insns;
translation... [C, rt s, = C”] = [C"], insns,

[C +e:bool@] thenelse = insns,
CIS 341: Compilers 31

Short Circuit Compilation: Expressions

[C I e : bool@] ltrue lfalse = insns

FALSE
[C + false : bool@] ltrue Ifalse = [br S%lfalse]

TRUE
[C F true : bool@] ltrue Ilfalse = [br Sltrue]

[C F e : bool@] Ifalse Itrue = insns
NOT

[C F le : bool@] ltrue Ifalse = insns

Zdancewic CIS 341: Compilers

32

Short Circuit

Idea: build the logic into the translation

[C el : bool@] ltrue right = insns;,

Evaluation

[C + e2 : bool@] ltrue Ifalse = insns,

[C - el]|e2 : bool@] Itrue Ilfalse =

[C el : bool@] right Ifalse = insns;

1nsns,
right:
insn,

[C + e2 : bool@] ltrue Ifalse = insns,

[C el1&e2 : bool@] ltrue Ifalse =

where right is a fresh label
Zdancewic CIS 341: Compilers

1nsns,
right:
insn,

33

Short-Circuit Evaluation

« Consider compiling the following program fragment:

%tmpl = i1cmp Eq [x], O
br Stmpl, label %right2, label %rightl

rightl:
%tmp2 = icmp Eq [yl, O
if (x &ty | 'w) br %tmp2, label %then, label %right2
z2 =3 lght?2
rig :
else [> %tmp3 = icmp Eq [w], 0
z = 4; br %tmp3, label %then, label %else
return z;
then:

store [z], 3
br Smerge

else:
store [z], 4
br Smerge

merge:
%tmp5 = load [z]
CIS 341: Compilers ret %tmpb5

Beyond describing “structure”... describing “properties”
Types as sets
Subsumption

TYPES, MORE GENERALLY

Zdancewic CIS 341: Compilers

35

Tuples

* ML-style tuples with statically known number of products:
 First: add a new type constructor: T; * ... * T,

TUPLE Gl_e1:T1 Gl_en:Tn

GF (e1, ceey en) :T1 * . *Tn

PRO)]

CIS 341: Compilers

36

Arrays

 Array constructs are not hard
 First: add a new type constructor: T[]

GFe :int GFe,:T e, is the size of the newly
NEW allocated array. e,
initializes the elements of
G F new Tleql(e;y) : TI] the array.
NDEX| G e, : T[] Gre,:int
GFele] T Note: These rules don’t
ensure that the array index
UPDATE is in bounds — that should

GrFe T[] GFre:int GFe;:T bechecked dynamically.

G F ele,] =e; 0k

CIS 341: Compilers 37

References

* ML-style references (note that ML uses only expressions)

 First, add a new type constructor: T ref

REF

DEREF

ASSIGN

Gre:T

Grrefe:Tref

EFre:Tref

GFrle T

Gre :Tref Ere,:T

CIS 341: Compilers

GFe =€, :unit

Note the similarity with the
rules for arrays...

38

What are types, anyway?

* A type is just a predicate on the set of values in a system.

— For example, the type “int” can be thought of as a boolean function that
returns “true” on integers and “false” otherwise.

— Equivalently, we can think of a type as just a subset of all values.

 For efficiency and tractability, the predicates are usually taken to be
very simple.
— Types are an abstraction mechanism

* We can easily add new types that distinguish different subsets of
values:

type tp =
IntT (* type of integers *)
PosT | NegT | ZeroT (* refinements of ints *)
BoolT (* type of booleans *)
TrueT | FalseT (* subsets of booleans *)
AnyT (* any value *)

CIS 341: Compilers 39

Modifying the typing rules

* We need to refine the typing rules too...

* Some easy cases:
— Just split up the integers into their more refined cases:

P-INT N-INT ZERO
1 >0 1 <O
Gk 1: Pos G Fi: Neg GFO: Zero
« Same for booleans:
TRUE FALSE
G true : True G I false : False

CIS 341: Compilers 40

What about “if”?

Two cases are easy:

IF-T

Gre :True Gre,:T " |Gre :False Erey:T

Grif(e;)e,elsee;: T GFrif(e;)e,elsee;: T

What happens when we don’t know statically which branch will be
taken?

Consider the typechecking problem:

x:bool F if (x) 3 else -1 : ?

The true branch has type Pos and the false branch has type Neg.
— What should be the result type of the whole if?

CIS 341: Compilers 41

Subtyping and Upper Bounds

* If we think of types as sets of values, we have a natural inclusion
relation: Pos C Int

 This subset relation gives rise to a subtype relation: Pos <: Int
* Such inclusions give rise to a subtyping hierarchy:

Any

Int Bool

Neg Zero Pos True False

« Given any two types Ty and T,, we can calculate their least upper
bound (LUB) according to the hierarchy.

— Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any
— Note: might want to add types for “NonZero”, “NonNegative”, and

“NonPositive” so that set union on values corresponds to taking LUBs on

types.

CIS 341: Compilers

“If” Typing Rule Revisited

 For statically unknown conditionals, we want the return value to be
the LUB of the types of the branches:

IF-BOOL

Ghre :bool Ere,:T, Gre;:T,

G+ if (eq) e, else e; : LUB(T,,T,)

* Note that LUB(T,, T,) is the most precise type (according to the
hierarchy) that is able to describe any value that has either type T, or

type T,.
* In math notation, LUB(T1, T2) is sometimes written T; V T,
* LUB is also called the join operation.

CIS 341: Compilers 43

Subtyping Hierarchy

* A subtyping hierarchy:

Int Bool

Neg Zero Pos True False

* The subtyping relation is a partial order:
— Reflexive: T<:T forany typeT
— Transitive: T;<:T, andT, <:T5thenT; <: T,
— Antisymmetric: I1tT; <:T,and T, <: T, thenT, =T,

CIS 341: Compilers

44

Soundness of Subtyping Relations

« We don’t have to treat every subset of the integers as a type.
— e.g., we left out the type NonNeg

* A subtyping relation T, <: T, is sound if it approximates the underlying
semantic subset relation.
* Formally: write [T] for the subset of (closed) values of type T
— e [T]l={v|Fv:T}
— e.g. [Zero] ={0}, [Pos] =11, 2,3, ...}

« IfT; <:T, implies [T{] € [T,], then T; <: T, is sound.
— e.g. Pos <: Intis sound, since {1,2,3,...} € {...,-3,-2,-1,0,1,2,3,...}

— e.g. Int <: Pos is not sound, since it is not the case that
{...,-3,-2,-1,0,1,2,3,...}1€ {1,2,3,...}

CIS 341: Compilers 45

Soundness of LUBs

* Whenever you have a sound subtyping relation, it follows that:
[LUB(T, To) 2 [T1] U [T-]
— Note that the LUB is an over approximation of the “semantic union”
— Example: [LUB(Zero, Pos)] = [Int] =¢{...,-3,-2,-1,0,1,2,3,...} 2
{0,1,2,3,...} ={0} U {1,2,3,...} = [Zero] U [[Pos]

« Using LUBs in the typing rules yields sound approximations of the
program behavior (as if the IF-B rule).

* It just so happens that LUBs on subtypes of Int are sound for +

ADD
Gre T, Grke,:T, T,<Int T,<:Int

Gl—e1+eth1VT2

CIS 341: Compilers 46

Subsumption Rule

* When we add subtyping judgments of the form T <: S we can
uniformly integrate it into the type system generically:

SUBSUMPTION Grke:T T<S

GFre:S

« Subsumption allows any value of type T to be treated as an S
whenever T <: S.

» Adding this rule makes the search for typing derivations more difficult
— this rule can be applied anywhere, since T <: T.

— But careful engineering of the typing system can incorporate the
subsumption rule into a deterministic algorithm. (See, e.g., the OAT type
system)

CIS 341: Compilers 47

Downcasting

What happens if we have an Int but need something of type Pos?
— At compile time, we don’t know whether the Int is greater than zero.
— At run time, we do.

Add a “checked downcast”
GFe:int G, x:Poske,:T, GrFe;: T,

G FifPos (x=e)) e, elsee; : T, VT;

At runtime, ifPos checks whether e, is > 0. If so, branches to e, and
otherwise branches to e;.

Inside the expression e,, x is the name for e;’s value, which is known
to be strictly positive because of the dynamic check.

Note that such rules force the programmer to add the appropriate
checks

— We could give integer division the type: Int — NonZero — Int

CIS 341: Compilers

SUBTYPING OTHER TYPES

Zdancewic CIS 341: Compilers

Extending Subtyping to Other Types

* What about subtyping for tuples?

— Intuition: whenever a program expects
something of type S; * S,, it is sound T, < S T, <S5,
to giveitaT; *T,.

— Example: (Pos * Neg) <: (Int * Int) (T, *T,) <: (51 * S))

« What about functions?

* When IS T1 —)Tz <: 51 — 52 ?

CIS 341: Compilers

50

Subtyping for Function Types

* One way to see it:

Expected function

S T T S

> > > >

* Need to convertan ST toaT1 and T2 to S2, so the argument type is
contravariant and the output type is covariant.

S;<:Ty T,<S,

(T = T,) < (51— 5y)

CIS 341: Compilers 51

Immutable Records

* Record type: {lab;:T;; lab,:T,; ... ; lab,:T,}
— Each lab; is a label drawn from a set of identifiers.

RECORDlGI_e1:T1 Gre,:T, ... Gre,:T,

G F {lab; = eq; lab, = e,; ... ; lab, = e,} : {lab;:T;; lab,:T,; ... ; lab,:T,}

PROJECTION | G e : {lab:Ty; lab,:T,; ... : lab:T.}

G e.labi :Ti

CIS 341: Compilers

Immutable Record Subtyping

* Depth subtyping:
— Corresponding fields may be subtypes

DEFIH] T < U, T,< U, ... T.< U,

{lab,:T4; lab,:T,; ... ; lab,:T} <: {lab;:U;; lab,:U,; ... ; lab,:U,}

* Width subtyping:

— Subtype record may have more fields:

WIDTH

m=<n

{lab:T¢; lab,:T,; ... ; lab,:T,} <: {lab;:T¢; lab,:T,; ... ; lab,,:T,,}

CIS 341: Compilers 53

Depth & Width Subtyping vs. Layout

Width subtyping (without depth) is compatible with "inlined" record
representation as with C structs:

{x:int; y:int; z:int} <: {x:int; y:1int}
[Width Subtyping]

ESFEES x|y

— The layout and underlying field indices for 'x' and 'y' are identical.
— The 'Z' field is just ignored

Depth subtyping (without width) is similarly compatible, assuming that

the space used by A is the same as the space used by B whenever
A< B

But... they don't mix without more work

Zdancewic CIS 341: Compilers 54

Immutable Record Subtyping (cont’d)

Width subtyping assumes an implementation in which order of fields
in a record matters:
{x:nt; y:int} # {y:int; x:int}
But: {x:int; y:int; z:int} <: {x:int; y:int}
— Implementation: a record is a struct, subtypes just add fields at the end of
the struct.

Alternative: allow permutation of record fields:
{x:int; y:int} = {y:int; x:int}
— Implementation: compiler sorts the fields before code generation.
— Need to know all of the fields to generate the code
Permutation is not directly compatible with width subtyping:

{x:int; z:int; y:int} = {x:int; y:int; z:int} </: {y:int; z:int}

CIS 341: Compilers 55

If you want both:

 If you want permutability & dropping, you need to either copy (to
rearrange the fields) or use a dictionary like this:

dictionary

e P = {x=42; y=55; z=66}.{x:Iint; y:int; z:int}

1

=
42 | 55 | 66

||

R q:{y:int; zint} =p

dictionary

MUTABILITY & SUBTYPING

Zdancewic CIS 341: Compilers

NULL

« What is the type of null?

e Consider:
int[] a = null; // OK?
int x = null; // not OK?
string s = null; // OK?

NULL

GEnull:r

* Null has any reference type
— Null is generic

* What about type safety?

— Requires defined behavior when dereferencing null
e.g. Java's NullPointerException

— Requires a safety check for every dereference operation
(typically implemented using low-level hardware "trap" mechanisms.)

Zdancewic CIS 341: Compilers

Subtyping and References

* What is the proper subtyping relationship for references and arrays?

* Suppose we have NonZero as a type and the division operation has
type: Int — NonZero — Int

— Recall that NonZero <: Int

* Should (NonZero ref) <: (Int ref) ¢
« Consider this program:

Int bad(NonZero ref r) {
Int ref a = r; (* OK because (NonZero ref <: Int refx)
a := 0; (* OK because 0 : Zero <: Int *)
return (42 / !'r) (* OK because !r has type NonZero *)

}

CIS 341: Compilers 59

Mutable Structures are Invariant

Covariant reference types are unsound
— As demonstrated in the previous example

Contravariant reference types are also unsound

— i.e. If Ty <: T, thenref T, <: ref T, is also unsound
— Exercise: construct a program that breaks contravariant references.

Moral: Mutable structures are invariant:
T, ref <:T,ref implies T; =T,

Same holds for arrays, OCaml-style mutable records, object fields, etc.

— Note: Java and C# get this wrong. They allows covariant array subtyping,
but then compensate by adding a dynamic check on every array update!

CIS 341: Compilers 60

CIS 341: Compilers

Another Way to See It

We can think of a reference cell as an immutable record (object) with
two functions (methods) and some hidden state:
Tref =~ {get:unit—T, set:T — unit}

— get returns the value hidden in the state.
— set updates the value hidden in the state.

When is T ref <: S ref?

Records are like tuples: subtyping extends pointwise over each
component.

{get: unit — T, set: T — unit} <: {get: unit — §; set: S — unit}

— get components are subtypes: unit—T <: unit— S
set components are subtypes: T — unit < S — unit

From get, we must have T <: S (covariant return)
From set, we must have S <: T (contravariant arg.)
From T <: Sand S <: T we conclude T =S.

61

STRUCTURAL VS. NOMINAL
TYPES

Zdancewic CIS 341: Compilers

Structural vs. Nominal Typing

s type equality / subsumption defined by the structure of the data or the
name of the data?

Example 1: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

(* OCaml: *)
type cents = int (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + vy

(* Haskell: *)

newtype Cents = Cents Integer (* Integer and Cents arr
isomorphic, not identical. *)

newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo x y =X +y (* ITL typed! *)

Type abbreviations are treated “structurally”
Newtypes are treated “by name”

Zdancewic CIS 341: Compilers

63

Nominal Subtyping in Java

 In Java, Classes and Interfaces must be named and their relationships
explicitly declared:

(* Java: *)
interface Foo {

int foo();

}

class C { /* Does not implement the Foo interface */
int foo() {return 2;}

}

class D implements Foo {
int foo() {return 341;}

}

 Similarly for inheritance: programmers must declare the subclass
relation via the “extends” keyword.

— Typechecker still checks that the classes are structurally compatible

Zdancewic CIS 341: Compilers 64

See oat.pdf in HW5

OAT'STYPE SYSTEM

Zdancewic CIS 341: Compilers 65

OAT's Treatment of Types

* Primitive (non-reference) types:
— 1int, bool
* Definitely non-null reference types: R
— (named) mutable structs with (right-oriented) width subtyping
— string
— arrays (including length information, per HW4)
* Possibly-null reference types: R?
— Subtyping: R <: R?
— Checked downcast syntax 1f7?:

int sum(int[]? arr) {
var z = 0;

if?(int[] a = arr) {
for(var 1 = 0; i<length(a); 1 =1 + 1;) {
z =z + a[ill;
}
}
return z;

}

Zdancewic CIS 341: Compilers

66

OAT Features

« Named structure types with mutable fields
— but using structural, width subtyping

« Typed function pointers

« Polymorphic operations: length and ==/ !=
— need special case handling in the typechecker

« Type-annotated null values: t null always has type t?

 Definitely-not-null values means we need an "atomic" array
initialization syntax

— for example, null is not allowed as a value of type int[], so to
construct a record containing a field of type int[], we need to initialize
It

— subtlety: int[][] cannot be initialized by default, but int[] can be

Zdancewic CIS 341: Compilers 67

OAT "Returns" Analysis

« Typesafe, statement-oriented imperative languages like OAT (or Java)
must ensure that a function (always) returns a value of the appropriate

type.
— Does the returned expression's type match the one declared by the
function?

— Do all paths through the code return appropriately?
« OAT's statement checking judgment

— takes the expected return type as input: what type should the statement
return (or void if none)

— produces a boolean flag as output: does the statement definitely return?

Zdancewic CIS 341: Compilers 68

