
CIS 341: COMPILERS
Lecture 18

Announcements

• HW5: OAT v. 2.0
– records, function pointers, type checking, array-bounds checks, etc.
– Due: Friday, April 13rd

– Available soon afternoon
– Start Early!

• Talk:
Quantum Computation and Cryptography: a changing landscape
Andrea Coladangelo, Berkeley
Today: 3:30 in Wu & Chen Auditorium

Zdancewic CIS 341: Compilers 2

TYPES, MORE GENERALLY

Zdancewic CIS 341: Compilers 3

Beyond describing “structure”… describing “properties”
Types as sets
Subsumption

What are types, anyway?
• A type is just a predicate on the set of values in a system.

– For example, the type “int” can be thought of as a boolean function that
returns “true” on integers and “false” otherwise.

– Equivalently, we can think of a type as just a subset of all values.

• For efficiency and tractability, the predicates are usually taken to be
very simple.
– Types are an abstraction mechanism

• We can easily add new types that distinguish different subsets of
values:

type tp =
| IntT (* type of integers *)
| PosT | NegT | ZeroT (* refinements of ints *)
| BoolT (* type of booleans *)
| TrueT | FalseT (* subsets of booleans *)
| AnyT (* any value *)

CIS 341: Compilers 4

Modifying the typing rules
• We need to refine the typing rules too…
• Some easy cases:

– Just split up the integers into their more refined cases:

• Same for booleans:

CIS 341: Compilers 5

i > 0

G ⊢ i : Pos

P-INT

i < 0

G ⊢ i : Neg

N-INT ZERO

G ⊢ 0 : Zero

TRUE

G ⊢ true : True

FALSE

G ⊢ false : False

What about “if”?
• Two cases are easy:

• What happens when we don’t know statically which branch will be
taken?

• Consider the typechecking problem:

x:bool ⊢ if (x) 3 else -1 : ?

The true branch has type Pos and the false branch has type Neg.
– What should be the result type of the whole if?

CIS 341: Compilers 6

G ⊢ e1 : True G ⊢ e2 : T

G ⊢ if (e1) e2 else e3 : T

G ⊢ e1 : False E ⊢ e3 : T

G ⊢ if (e1) e2 else e3 : T

IF-T IF-F

Subtyping and Upper Bounds
• If we think of types as sets of values, we have a natural inclusion

relation: Pos ⊆ Int
• This subset relation gives rise to a subtype relation: Pos <: Int
• Such inclusions give rise to a subtyping hierarchy:

• Given any two types T1 and T2, we can calculate their
least upper bound (LUB) according to the hierarchy.
– Definition: LUB(T1, T2) is the smallest T such that T1 <: T and T2 <: T
– Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any

• Note: might want to add types for “NonZero”, “NonNegative”, and
“NonPositive” so that set union on values corresponds to taking LUBs
on types.

CIS 341: Compilers 7

Any

Int

Neg Zero Pos

Bool

True False

<:

<: <:

:>

:> :>:>

“bigger”

“smaller”

<
:

“If” Typing Rule Revisited
• For statically unknown conditionals, we want the return value to be

the LUB of the types of the branches:

• Note: LUB(T1, T2) is the most precise type (according to the hierarchy)
that can describe any value that has either type T1 or type T2.

• In math notation, LUB(T1, T2) is sometimes written T1 ⋁ T2

• LUB is also called the join operation.

CIS 341: Compilers 8

G ⊢ e1 : bool E ⊢ e2 : T1 G ⊢ e3 : T2

G ⊢ if (e1) e2 else e3 : LUB(T1,T2)

IF-BOOL

Subtyping Hierarchy
• A subtyping hierarchy:

• The subtyping relation is a partial order:
– Reflexive: T <: T for any type T
– Transitive: T1 <: T2 and T2 <: T3 then T1 <: T3

– Antisymmetric: It T1 <: T2 and T2 <: T1 then T1 = T2

CIS 341: Compilers 9

Any

Int

Neg Zero Pos

Bool

True False

<:

<: <:

:>

:> :>:>

“bigger”

“smaller”

<
:

Soundness of Subtyping Relations
• We don’t have to treat every subset of the integers as a type.

– e.g., we left out the type NonNeg

• A subtyping relation T1 <: T2 is sound if it approximates the underlying
semantic subset relation.

• Formally: write ⟦T⟧ for the subset of (closed) values of type T
– i.e., ⟦T⟧ = {v | ⊢ v : T}
– e.g., ⟦Zero⟧ = {0}, ⟦Pos⟧ = {1, 2, 3, …}

• If T1 <: T2 implies ⟦T1⟧ ⊆ ⟦T2⟧, then T1 <: T2 is sound.
– e.g., Pos <: Int is sound, since {1,2,3,…} ⊆ {…,-3,-2,-1,0,1,2,3,...}
– e.g., Int <: Pos is not sound, since it is not the case that

{…,-3,-2,-1,0,1,2,3,...}⊆ {1,2,3,…}

CIS 341: Compilers 10

Soundness of LUBs
• Whenever you have a sound subtyping relation, it follows that:

⟦LUB(T1, T2)⟧ ⊇ ⟦T1⟧ ∪ ⟦T2⟧
– Note that the LUB is an over approximation of the “semantic union”
– Example: ⟦LUB(Zero, Pos)⟧ = ⟦Int⟧ = {…,-3,-2,-1,0,1,2,3,…} ⊇

{0,1,2,3,…} = {0} ∪ {1,2,3,…} = ⟦Zero⟧ ∪ ⟦Pos⟧

• Using LUBs in the typing rules yields sound approximations of the
program behavior (as if the IF-B rule).

• It just so happens that LUBs on these specific subtypes of Int are sound
for +

CIS 341: Compilers 11

G ⊢ e1 : T1 G ⊢ e2 : T2 T1 <: Int T2 <: Int

G ⊢ e1 + e2 : T1 ⋁ T2

ADD

Subsumption Rule
• When we add subtyping judgments of the form T <: S we can

uniformly integrate it into the type system generically:

• Subsumption allows any value of type T to be treated as an S
whenever T <: S.

• Adding this rule makes the search for typing derivations more difficult:
– this rule can be applied anywhere, since T <: T.
– But careful engineering of the typing system can incorporate the

subsumption rule into a deterministic algorithm.
– See, e.g., the OAT type system

CIS 341: Compilers 12

G ⊢ e : T T <: S

G ⊢ e : S

SUBSUMPTION

Downcasting
• What happens if we have an Int but need something of type Pos?

– At compile time, we don’t know whether the Int is greater than zero.
– At run time, we do.

• Add a “checked downcast”

• At runtime, ifPos checks whether e1 is > 0. If so, branches to e2 and
otherwise branches to e3.

• Inside the expression e2, x is the name for e1’s value, which is known
to be strictly positive because of the dynamic check.

• Note that such rules force the programmer to add the appropriate
checks, and can be used in other contexts too:
– We could give integer division the type: Int → NonZero → Int

CIS 341: Compilers 13

G ⊢ e1 : Int G, x : Pos ⊢ e2 : T2 G ⊢ e3 : T3

G ⊢ ifPos (x = e1) e2 else e3 : T2 ⋁ T3

SUBTYPING OTHER TYPES

Zdancewic CIS 341: Compilers 14

Extending Subtyping to Other Types
• What about subtyping for tuples?

– Intuition: whenever a program expects
something of type S1 * S2, it is sound
to give it a T1 * T2.

– Example: (Pos * Neg) <: (Int * Int)

• What about functions? When is T1 → T2 <: S1 → S2 ?

CIS 341: Compilers 15

T1 <: S1 T2 <: S2

(T1 * T2) <: (S1 * S2)

Subtyping for Function Types
• One way to see it:

• Need to convert an S1 to a T1 and T2 to S2, so the argument type is
contravariant and the output type is covariant.

CIS 341: Compilers 16

Expected function

Actual functionS1 S2T1 T2

S1 <: T1 T2 <: S2

(T1 → T2) <: (S1 → S2)

Immutable Records
• Record type: {lab1:T1; lab2:T2; … ; labn:Tn}

– Each labi is a label drawn from a set of identifiers.

CIS 341: Compilers 17

G ⊢ e1 : T1 G ⊢ e2 : T2 … G ⊢ en : Tn

G ⊢ {lab1 = e1; lab2 = e2; … ; labn = en} : {lab1:T1; lab2:T2; … ; labn:Tn}

RECORD

G ⊢ e : {lab1:T1; lab2:T2; … ; labn:Tn}

G ⊢ e.labi : Ti

PROJECTION

Immutable Record Subtyping
• Depth subtyping:

– Corresponding fields may be subtypes

• Width subtyping:
– Subtype record may have more fields on the right:

CIS 341: Compilers 18

T1 <: U1 T2 <: U2 … Tn <: Un

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:U1; lab2:U2; … ; labn:Un}

DEPTH

m ≤ n

{lab1:T1; lab2:T2; … ; labn:Tn} <: {lab1:T1; lab2:T2; … ; labm:Tm}

WIDTH

Depth & Width Subtyping vs. Layout
• Width subtyping (without depth) is compatible with "inlined" record

representation as with C structs:

{x:int; y:int; z:int} <: {x:int; y:int}
[Width Subtyping]

– The layout and underlying field indices for 'x' and 'y' are identical.
– The 'z' field is just ignored

• Depth subtyping (without width) is similarly compatible, assuming that
the space used by A is the same as the space used by B whenever
A <: B

• But… they don't mix without more work

Zdancewic CIS 341: Compilers 19

x y z x y

Immutable Record Subtyping (cont’d)
• Width subtyping assumes an implementation in which order of fields

in a record matters:
{x:int; y:int} ≠ {y:int; x:int}

• But: {x:int; y:int; z:int} <: {x:int; y:int}
– Implementation: a record is a struct, subtypes just add fields at the end of

the struct.

• Alternative: allow permutation of record fields:
{x:int; y:int} = {y:int; x:int}

– Implementation: compiler sorts the fields before code generation.
– Need to know all of the fields to generate the code

• Permutation is not directly compatible with width subtyping:
{x:int; z:int; y:int} = {x:int; y:int; z:int} </: {y:int; z:int}

CIS 341: Compilers 20

If you want both:
• If you want permutability & dropping, you need to either copy (to

rearrange the fields) or use a dictionary like this:

p = {x=42; y=55; z=66}:{x:int; y:int; z:int}

q : {y:int; z:int} = p

x y z

42 55 66

y z

dictionary

dictionary

MUTABILITY & SUBTYPING

Zdancewic CIS 341: Compilers 22

NULL
• What is the type of null?
• Consider:

int[] a = null; // OK?
int x = null; // not OK?
string s = null; // OK?

• Null has any reference type
– Null is generic

• What about type safety?
– Requires defined behavior when dereferencing null

e.g. Java's NullPointerException
– Requires a safety check for every dereference operation

(typically implemented using low-level hardware "trap" mechanisms.)

Zdancewic CIS 341: Compilers 23

NULL
G ⊢ null : r

Subtyping and References
• What is the proper subtyping relationship for references and arrays?

• Suppose we have NonZero as a type and the division operation has
type: Int → NonZero → Int
– Recall that NonZero <: Int

• Should (NonZero ref) <: (Int ref) ?
• Consider this program:

Int bad(NonZero ref r) {
Int ref a = r; (* OK because (NonZero ref <: Int ref*)
a := 0; (* OK because 0 : Zero <: Int *)
return (42 / !r) (* OK because !r has type NonZero *)

}

CIS 341: Compilers 24

Mutable Structures are Invariant
• Covariant reference types are unsound

– As demonstrated in the previous example

• Contravariant reference types are also unsound
– i.e., If T1 <: T2 then ref T2 <: ref T1 is also unsound
– Exercise: construct a program that breaks contravariant references.

• Moral: Mutable structures are invariant:
T1 ref <: T2 ref implies T1 = T2

• Same holds for arrays, OCaml-style mutable records, object fields, etc.
– Note: Java and C# get this wrong. They allows covariant array subtyping,

but then compensate by adding a dynamic check on every array update!

CIS 341: Compilers 25

Another Way to See It
• We can think of a reference cell as an immutable record (object) with

two functions (methods) and some hidden state:
T ref ≃ {get: unit → T; set: T → unit}

– get returns the value hidden in the state.
– set updates the value hidden in the state.

• When is T ref <: S ref?
• Records with depth subtyping:

– extends pointwise over each component.

{get: unit → T; set: T → unit} <: {get: unit → S; set: S → unit}
– get components are subtypes: unit → T <: unit → S

set components are subtypes: T → unit <: S → unit

• From get, we must have T <: S (covariant return)
• From set, we must have S <: T (contravariant arg.)
• From T <: S and S <: T we conclude T = S.

CIS 341: Compilers 26

STRUCTURAL VS. NOMINAL
TYPES

Zdancewic CIS 341: Compilers 27

Structural vs. Nominal Typing
• Is type equality / subsumption defined by the structure of the data or the

name of the data?
• Example 1: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

• Type abbreviations are treated “structurally”
Newtypes are treated “by name”

Zdancewic CIS 341: Compilers 28

(* OCaml: *)
type cents = int (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + y

(* Haskell: *)
newtype Cents = Cents Integer (* Integer and Cents are

isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo x y = x + y (* Ill typed! *)

Nominal Subtyping in Java
• In Java, Classes and Interfaces must be named and their relationships

explicitly declared:

• Similarly for inheritance: programmers must declare the subclass
relation via the “extends” keyword.
– Typechecker still checks that the classes are structurally compatible

Zdancewic CIS 341: Compilers 29

(* Java: *)
interface Foo {

int foo();
}

class C { /* Does not implement the Foo interface */
int foo() {return 2;}

}

class D implements Foo {
int foo() {return 341;}

}

OAT'S TYPE SYSTEM

Zdancewic CIS 341: Compilers 30

See oat.pdf in HW5

OAT's Treatment of Types
• Primitive (non-reference) types:

– int, bool

• Definitely-non-null reference types: R
– (named) mutable structs with (right-oriented) width subtyping
– string
– arrays (including length information, per HW4)

• Possibly-null reference types: R?
– Subtyping: R <: R?
– Checked downcast syntax if?:

Zdancewic CIS 341: Compilers 31

int sum(int[]? arr) {
var z = 0;
if?(int[] a = arr) {

for(var i = 0; i<length(a); i = i + 1;) {
z = z + a[i];

}
}
return z;

}

OAT Features
• Named structure types with mutable fields

– but using structural, width subtyping

• Typed function pointers

• Polymorphic operations: length and == / !=
– need special case handling in the typechecker

• Type-annotated null values: t null always has type t?

• Definitely-not-null values means we need an "atomic" array
initialization syntax
– null is not allowed as a value of type int[], so to construct a record

containing a field of type int[], we need to initialize it
– subtlety: int[][] cannot be initialized by default, but int[] can be

Zdancewic CIS 341: Compilers 32

OAT "Returns" Analysis
• Typesafe, statement-oriented imperative languages like OAT (or Java)

must ensure that a function (always) returns a value of the appropriate
type.
– Does the returned expression's type match the one declared by the

function?
– Do all paths through the code return appropriately?

• OAT's statement checking judgment
– takes the expected return type as input: what type should the statement

return (or void if none)
– produces a boolean flag as output: does the statement definitely return?

Zdancewic CIS 341: Compilers 33

