Lecture 18

CIS 341: COMPILERS

Announcements

* HW5: OAT v. 2.0
— records, function pointers, type checking, array-bounds checks, etc.
— Due: Friday, April 13
— Available soon afternoon
— Start Early!

e Talk:

Quantum Computation and Cryptography: a changing landscape
Andrea Coladangelo, Berkeley
Today: 3:30 in Wu & Chen Auditorium

Zdancewic CIS 341: Compilers

Beyond describing “structure”... describing “properties”
Types as sets
Subsumption

TYPES, MORE GENERALLY

Zdancewic CIS 341: Compilers 3

What are types, anyway?

« Atype is just a predicate on the set of values in a system.

— For example, the type “int” can be thought of as a boolean function that
returns “true” on integers and “false” otherwise.

— Equivalently, we can think of a type as just a subset of all values.

 For efficiency and tractability, the predicates are usually taken to be
very simple.
— Types are an abstraction mechanism

* We can easily add new types that distinguish different subsets of
values:

type tp =
IntT (* type of integers *)
PosT | NegT | ZeroT (* refinements of ints *)
BoolT (* type of booleans *)
TrueT | FalseT (* subsets of booleans *)
AnyT (* any value *)

CIS 341: Compilers

Modifying the typing rules

* We need to refine the typing rules too...

* Some easy cases:
— Just split up the integers into their more refined cases:

P-INT

1 >0

G Fi: Pos

« Same for booleans:

CIS 341: Compilers

TRUE

/ZERO

N-INT
1<0
G Fi:Neg
FALSE

G F true : True

GFO: Zero

G F false : False

What about “if”?

Two cases are easy:

[F-T

Gre :True GrFe,: T

IF-F

Ghrif(e;)e,elsee;: T

Gre :False EFe;:T

Ghrif(e;)e,elsee;: T

What happens when we don’t know statically which branch will be

taken?

Consider the typechecking problem:

x:bool F if (x) 3 else -1 : ?

The true branch has type Pos and the false branch has type Neg.
— What should be the result type of the whole if?

CIS 341: Compilers

Subtyping and Upper Bounds

If we think of types as sets of values, we have a natural inclusion
relation: Pos C Int

This subset relation gives rise to a subtype relation: Pos <: Int
Such inclusions give rise to a subtyping hierarchy:

. Any “bigger”

Int Bool .

ay - . . v
Neg Zero Pos True False “smaller”

Given any two types T; and T,, we can calculate their
least upper bound (LUB) according to the hierarchy.
— Definition: LUB(T,, T,) is the smallest T such that T; <: Tand T, <: T
— Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any
Note: might want to add types for “NonZero”, “NonNegative”, and

“NonPositive” so that set union on values corresponds to taking LUBs
on types.

CIS 341: Compilers

“I1f” Typing Rule Revisited

 For statically unknown conditionals, we want the return value to be
the LUB of the types of the branches:

IF-BOOL

GFe;:bool EFe,: T, Gre;:T,

G if (e) e, else ey : LUB(T,,T,)

* Note: LUB(T;, T,) is the most precise type (according to the hierarchy)
that can describe any value that has either type T, or type T,.

e In math notation, LUB(T,, T,) is sometimes written T; V T,
« LUB is also called the join operation.

CIS 341: Compilers

Subtyping Hierarchy

* A subtyping hierarchy:

o~ “bigger”

Int Bool

Neg Zero Pos True False) .
smaller

« The subtyping relation is a partial order:
— Reflexive: T<: T forany typeT
— Transitive: T, <:T, andT, <:T;thenT; <: T,
— Antisymmetric: ItT; <:T,andT, <: T, thenT, =T,

CIS 341: Compilers

Soundness of Subtyping Relations

« We don't have to treat every subset of the integers as a type.
— e.g., we left out the type NonNeg

* A subtyping relation T; <: T, is sound if it approximates the underlying
semantic subset relation.
» Formally: write [[T] for the subset of (closed) values of type T
— ie., [Tl={v|kFv:T}
— e.g., [Zero] =1{0}, [Pos] =11, 2,3, ...}

« IfT; <:T, implies [T{] € [T,], then T, <: T, is sound.
— e.g.,, Pos<:Int issound, since {1,2,3,...} €{...,-3,-2,-1,0,1,2,3,...}

— e.g., Int<:Pos is notsound, since it is not the case that
{...-3,-2,-1,0,1,2,3,...}1€ {1,2,3,...}

CIS 341: Compilers 10

Soundness of LUBs

* Whenever you have a sound subtyping relation, it follows that:
[LUB(T,,)] 2 [T,] U [T,]
— Note that the LUB is an over approximation of the “semantic union”
— Example: [LUB(Zero, Pos)] = [Int] ={...,-3,-2,-1,0,1,2,3,...} 2
{0,1,2,3,...} ={0} u {1,2,3,...} = [Zero] U [Pos]

« Using LUBs in the typing rules yields sound approximations of the
program behavior (as if the IF-B rule).
* It just so happens that LUBs on these specific subtypes of Int are sound

for +

ADD
GFre T, Grke, :T, T;<:Int T, < Int

GrFe +e,:T; VT,

CIS 341: Compilers 11

Subsumption Rule

* When we add subtyping judgments of the form T <: S we can
uniformly integrate it into the type system generically:

SUBSUMPTION Grke:T T<S

GFre:S

* Subsumption allows any value of type T to be treated as an S
whenever T <: S.
» Adding this rule makes the search for typing derivations more difficult:
— this rule can be applied anywhere, since T <: T.

— But careful engineering of the typing system can incorporate the
subsumption rule into a deterministic algorithm.

— See, e.g., the OAT type system

CIS 341: Compilers 12

Downcasting

What happens if we have an Int but need something of type Pos?
— At compile time, we don’t know whether the Int is greater than zero.
— At run time, we do.

Add a “checked downcast”
GFe;:int G, x:Poske,:T, GFe;: T,

GFrifPos(x=e)) e, elsee; : T, VT;

At runtime, ifPos checks whether e; is > 0. If so, branches to e, and
otherwise branches to e;.

Inside the expression e,, x is the name for e;’s value, which is known
to be strictly positive because of the dynamic check.

Note that such rules force the programmer to add the appropriate
checks, and can be used in other contexts too:

— We could give integer division the type: Int — NonZero — Int

CIS 341: Compilers

SUBTYPING OTHER TYPES

Zdancewic CIS 341: Compilers

Extending Subtyping to Other Types

* What about subtyping for tuples?

— Intuition: whenever a program expects
something of type S; * S,, it is sound
togiveitaT; *T,.

— Example: (Pos * Neg) <: (Int * Int)

T1 <: S1 T2 <: 82

(T *Ty) < (57 *S))

 What about functions? When is T, ->T, < S§;—S, ¢

CIS 341: Compilers

Subtyping for Function Types

* One way to see it:

Expected function

S T T, S)

> > > >

* Need to convertan S;toaT, and T, to S,, so the argument type is
contravariant and the output type is covariant.

S1 <: T1 Tz <: 52

(T; = T,) < (51— 5))

CIS 341: Compilers 16

Immutable Records

* Record type: {lab:Ty; lab,:T,; ... ; lab,:T,}
— Each lab; is a label drawn from a set of identifiers.

RECORDlGI_e1:T1 Gre,:T, ... Gre,:T,

G F {lab; =ey; lab, =e,; ... ; lab, = e} : {lab;:Ty; lab,:T,; ... ; lab,:T,}

PROJECTION | G + e : {lab,:Ty; laby:T,; ... ; lab,:T,}

G e.labi :Ti

CIS 341: Compilers

Immutable Record Subtyping

* Depth subtyping:
— Corresponding fields may be subtypes

DEFTH T, <U T, <U, .. T.<U,

{lab;:T;; lab,:T,; ... ; lab,:T,} <: {lab,:U;; lab,:U,; ... ; lab,:U_}

* Width subtyping:

— Subtype record may have more fields on the right:

WIDTH

m=<n

{lab;:T4; lab,:T,; ... ; lab:T,} <: {lab;:T4; laby:T,; ... ; lab,: T}

CIS 341: Compilers

18

Depth & Width Subtyping vs. Layout

Width subtyping (without depth) is compatible with "inlined" record
representation as with C structs:

{x:int; y:int; z:int} <: {x:int; y:int}
[Width Subtyping]

x|y 2 x|y

— The layout and underlying field indices for 'x' and 'y' are identical.
— The 'Z' field is just ignored

Depth subtyping (without width) is similarly compatible, assuming that

the space used by A is the same as the space used by B whenever
A< B

But... they don't mix without more work

Zdancewic CIS 341: Compilers 19

CIS 341: Compilers

Immutable Record Subtyping (cont’d)

Width subtyping assumes an implementation in which order of fields
in a record matters:

{x:int; y:int} # {y:int; x:int}
But: {x:int; y:int; z:int} <: {x:int; y:int}

— Implementation: a record is a struct, subtypes just add fields at the end of
the struct.

Alternative: allow permutation of record fields:
{x:int; y:int} = {y:int; x:int}
— Implementation: compiler sorts the fields before code generation.
— Need to know all of the fields to generate the code
Permutation is not directly compatible with width subtyping:

{x:int; z:int; y:int} = {x:int; y:int; z:int} </: {y:int; z:int}

20

If you want both:

 If you want permutability & dropping, you need to either copy (to
rearrange the fields) or use a dictionary like this:

dictionary

||

||

R q: {y:int; zzint} = p

dictionary

e P = {x=42; y=55; z=66}:{x:int; y:int; z:int}

%)

MUTABILITY & SUBTYPING

Zdancewic CIS 341: Compilers

NULL

« What is the type of null?

« Consider:
int[] a = null; // OK?
int X null; // not OK?
string s = null; // OK?

NULL

GrEnull:r

* Null has any reference type
— Null is generic

* What about type safety?

— Requires defined behavior when dereferencing null
e.g. Java's NullPointerException

— Requires a safety check for every dereference operation
(typically implemented using low-level hardware "trap" mechanisms.)

Zdancewic CIS 341: Compilers 23

Subtyping and References

* What is the proper subtyping relationship for references and arrays?

* Suppose we have NonZero as a type and the division operation has
type: Int — NonZero — Int

— Recall that NonZero <: Int
e Should (NonZero ref) <: (Int ref) ¢
« Consider this program:

Int bad(NonZero ref r) {
Int ref a = r; (* OK because (NonZero ref <: Int refx)
a := 0; (* OK because 0 : Zero <: Int *)
return (42 / !'r) (* OK because !r has type NonZero *)

}

CIS 341: Compilers 24

Mutable Structures are Invariant

« Covariant reference types are unsound
— As demonstrated in the previous example

Contravariant reference types are also unsound

— je., IfT, <:T,thenrefT, <: ref T; is also unsound
— Exercise: construct a program that breaks contravariant references.

Moral: Mutable structures are invariant:
T, ref<:T,ref implies T,=T,

Same holds for arrays, OCaml-style mutable records, object fields, etc.

— Note: Java and C# get this wrong. They allows covariant array subtyping,
but then compensate by adding a dynamic check on every array update!

CIS 341: Compilers 25

Another Way to See It

* We can think of a reference cell as an immutable record (object) with
two functions (methods) and some hidden state:
Tref = {get:unit—T, set:T — unit}

— get returns the value hidden in the state.
— set updates the value hidden in the state.

 WhenisT ref <: S ref?
« Records with depth subtyping:

— extends pointwise over each component.
{get: unit — T, set: T — unit} <: {get: unit — §; set: S — unit}

— get components are subtypes: unit—T <: unit— S
set components are subtypes: T — unit <¢ S — unit

 From get, we must have T <: S (covariant return)
* From set, we must have S <: T (contravariant arg.)
* FromT<:SandS <: T we concludeT =S.

CIS 341: Compilers 26

STRUCTURAL VS. NOMINAL
TYPES

Zdancewic CIS 341: Compilers

Structural vs. Nominal Typing

s type equality / subsumption defined by the structure of the data or the
name of the data?

Example 1: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

(* OCaml: =)
type cents = int (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + vy

(* Haskell: *)

newtype Cents = Cents Integer (* Integer and Cents are
isomorphic, not identical. *)

newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo x y =X +y (* ITL typed! *)

Type abbreviations are treated “structurally”
Newtypes are treated “by name”

Zdancewic CIS 341: Compilers

28

Nominal Subtyping in Java

* InJava, Classes and Interfaces must be named and their relationships
explicitly declared:

(* Java: *)
interface Foo {

int foo();

}

class C { /* Does not implement the Foo interface */
int foo() {return 2;}

}

class D implements Foo {
int foo() {return 341;}
s

 Similarly for inheritance: programmers must declare the subclass
relation via the “extends” keyword.

— Typechecker still checks that the classes are structurally compatible

Zdancewic CIS 341: Compilers 29

See oat.pdf in HW5

OAT'S TYPE SYSTEM

Zdancewic CIS 341: Compilers

OAT's Treatment of Types

 Primitive (non-reference) types:
— 1nt, bool
* Definitely-non-null reference types: R
— (named) mutable structs with (right-oriented) width subtyping
— string
— arrays (including length information, per HW4)
 Possibly-null reference types: R?
— Subtyping: R <: R?
— Checked downcast syntax 1f?:

int sum(int[]? arr) {
var z = 0;
if?(int[] a = arr) {
for(var 1 = 0; i<length(a); i = 1 + 1;) {
z =z + a[i];
}
}

return z;

}

Zdancewic CIS 341: Compilers

31

OAT Features

« Named structure types with mutable fields
— but using structural, width subtyping

« Typed function pointers

« Polymorphic operations: length and ==/ !=
— need special case handling in the typechecker

« Type-annotated null values: t null always has type t7?

 Definitely-not-null values means we need an "atomic" array
initialization syntax

— nullis not allowed as a value of type int[], so to construct a record
containing a field of type int[], we need to initialize it

— subtlety: int[][] cannot be initialized by default, but int[] can be

Zdancewic CIS 341: Compilers 32

OAT "Returns" Analysis

« Typesafe, statement-oriented imperative languages like OAT (or Java)
must ensure that a function (always) returns a value of the appropriate

type.

— Does the returned expression's type match the one declared by the
function?

— Do all paths through the code return appropriately?
* OAT's statement checking judgment

— takes the expected return type as input: what type should the statement
return (or vold if none)

— produces a boolean flag as output: does the statement definitely return?

Zdancewic CIS 341: Compilers 33

