Lecture 18
CIS 341: COMPILERS

Announcements

- HW5: OAT v. 2.0
 - records, function pointers, type checking, array-bounds checks, etc.
 - Due: Friday, April 13rd
 - Available soon afternoon
 - Start Early!
- Talk:

Quantum Computation and Cryptography: a changing landscape Andrea Coladangelo, Berkeley Today: 3:30 in Wu & Chen Auditorium

Beyond describing "structure"... describing "properties" Types as sets Subsumption

TYPES, MORE GENERALLY

What are types, anyway?

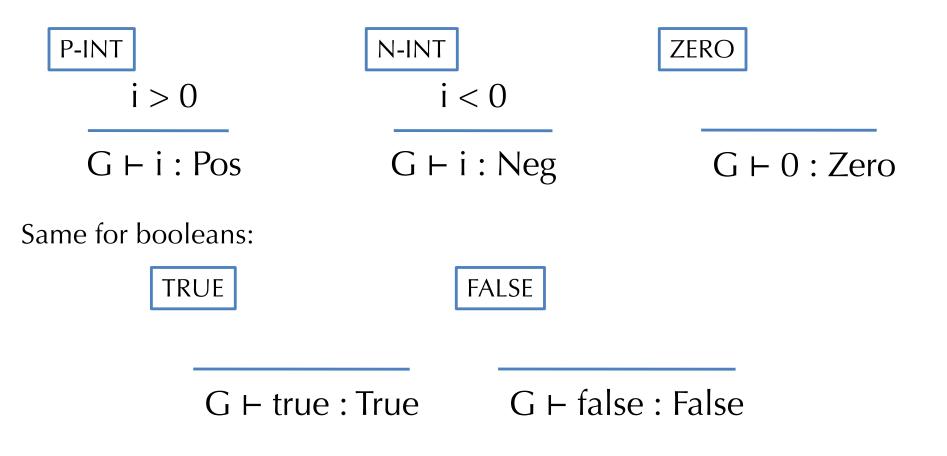
- A *type* is just a predicate on the set of values in a system.
 - For example, the type "int" can be thought of as a boolean function that returns "true" on integers and "false" otherwise.
 - Equivalently, we can think of a type as just a *subset* of all values.
- For efficiency and tractability, the predicates are usually taken to be very simple.
 - Types are an *abstraction* mechanism
- We can easily add new types that distinguish different subsets of values:

```
type tp =
```

```
| IntT (* type of integers *)
| PosT | NegT | ZeroT (* refinements of ints *)
| BoolT (* type of booleans *)
| TrueT | FalseT (* subsets of booleans *)
| AnyT (* any value *)
```

Modifying the typing rules

- We need to refine the typing rules too...
- Some easy cases:
 - Just split up the integers into their more refined cases:



What about "if"?

• Two cases are easy:

```
IF-T G \vdash e_1: True G \vdash e_2: T IF-F G \vdash e_1: False E \vdash e_3: T
```

 $G \vdash if(e_1) e_2 else e_3 : T$ G

- $G \vdash if(e_1) e_2 else e_3 : T$
- What happens when we don't know statically which branch will be taken?
- Consider the typechecking problem:

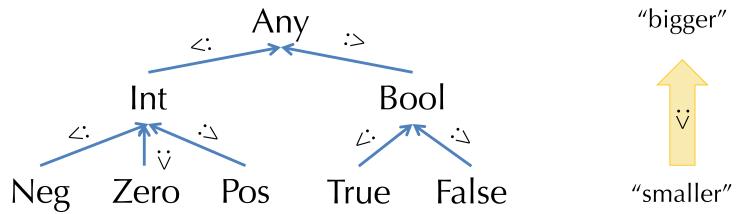
```
x:bool \vdash if (x) 3 else -1 : ?
```

The true branch has type Pos and the false branch has type Neg.

- What should be the result type of the whole if?

Subtyping and Upper Bounds

- If we think of types as sets of values, we have a natural inclusion relation: Pos ⊆ Int
- This subset relation gives rise to a *subtype* relation: Pos <: Int
- Such inclusions give rise to a *subtyping hierarchy*:



- Given any two types T₁ and T₂, we can calculate their *least upper bound* (LUB) according to the hierarchy.
 - Definition: LUB(T_1 , T_2) is the smallest T such that $T_1 <: T$ and $T_2 <: T$
 - Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any
- Note: might want to add types for "NonZero", "NonNegative", and "NonPositive" so that set union on values corresponds to taking LUBs on types.

"If" Typing Rule Revisited

• For statically unknown conditionals, we want the return value to be the LUB of the types of the branches:

IF-BOOL

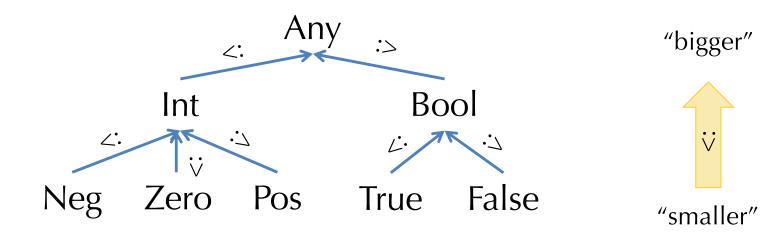
 $G \vdash e_1 : bool \ E \vdash e_2 : T_1 \qquad G \vdash e_3 : T_2$

 $G \vdash if(e_1) e_2 else e_3 : LUB(T_1,T_2)$

- Note: LUB(T₁, T₂) is the most precise type (according to the hierarchy) that can describe any value that has either type T₁ or type T₂.
- In math notation, $LUB(T_1, T_2)$ is sometimes written $T_1 V T_2$
- LUB is also called the *join* operation.

Subtyping Hierarchy

• A subtyping hierarchy:



- The subtyping relation is a *partial order*:
 - Reflexive: T <: T for any type T
 - Transitive: $T_1 <: T_2$ and $T_2 <: T_3$ then $T_1 <: T_3$
 - Antisymmetric: It $T_1 <: T_2$ and $T_2 <: T_1$ then $T_1 = T_2$

Soundness of Subtyping Relations

- We don't have to treat *every* subset of the integers as a type.
 - *e.g.*, we left out the type NonNeg
- A subtyping relation $T_1 <: T_2$ is *sound* if it approximates the underlying semantic subset relation.
- Formally: write [[T]] for the subset of (closed) values of type T

$$- i.e., [[T]] = \{v \mid \vdash v : T\}$$

$$- e.g., [[Zero]] = \{0\}, [[Pos]] = \{1, 2, 3, ...\}$$

- If $T_1 <: T_2$ implies $\llbracket T_1 \rrbracket \subseteq \llbracket T_2 \rrbracket$, then $T_1 <: T_2$ is sound.
 - e.g., Pos <: Int is sound, since $\{1,2,3,...\} \subseteq \{...,-3,-2,-1,0,1,2,3,...\}$
 - e.g., Int <: Pos is *not* sound, since it is *not* the case that $\{...,-3,-2,-1,0,1,2,3,...\}$ ⊆ $\{1,2,3,...\}$

Soundness of LUBs

- Whenever you have a sound subtyping relation, it follows that: $[LUB(T_1, T_2)] \supseteq [[T_1]] \cup [[T_2]]$
 - Note that the LUB is an over approximation of the "semantic union"
 - Example: $[[LUB(Zero, Pos)]] = [[Int]] = \{...,-3,-2,-1,0,1,2,3,...\} \supseteq \{0,1,2,3,...\} = \{0\} \cup \{1,2,3,...\} = [[Zero]] \cup [[Pos]]$
- Using LUBs in the typing rules yields sound approximations of the program behavior (as if the IF-B rule).
- It just so happens that LUBs on these specific subtypes of Int are sound for +

ADD

$$G \vdash e_1 : T_1$$
 $G \vdash e_2 : T_2$ $T_1 <: Int$ $T_2 <: Int$
 $G \vdash e_1 + e_2 : T_1 \lor T_2$

Subsumption Rule

• When we add subtyping judgments of the form T <: S we can uniformly integrate it into the type system generically:

SUBSUMPTION
$$G \vdash e:T T <: S$$

 $G \vdash e:S$

- Subsumption allows any value of type T to be treated as an S whenever T <: S.
- Adding this rule makes the search for typing derivations more difficult:
 - this rule can be applied *anywhere*, since T <: T.
 - But careful engineering of the typing system can incorporate the subsumption rule into a deterministic algorithm.
 - See, e.g., the OAT type system

Downcasting

- What happens if we have an Int but need something of type Pos?
 - At compile time, we don't know whether the Int is greater than zero.
 - At run time, we do.
- Add a "checked downcast"

 $G \vdash e_1 : Int$ $G, x : Pos \vdash e_2 : T_2$ $G \vdash e_3 : T_3$

 $G \vdash ifPos (x = e_1) e_2 else e_3 : T_2 \lor T_3$

- At runtime, if Pos checks whether e_1 is > 0. If so, branches to e_2 and otherwise branches to e_3 .
- Inside the expression e_2 , x is the name for e_1 's value, which is known to be strictly positive because of the dynamic check.
- Note that such rules force the programmer to add the appropriate checks, and can be used in other contexts too:
 - We could give integer division the type: $Int \rightarrow NonZero \rightarrow Int$

SUBTYPING OTHER TYPES

Zdancewic CIS 341: Compilers

Extending Subtyping to Other Types

- What about subtyping for tuples?
 - Intuition: whenever a program expects something of type $S_1 * S_2$, it is sound to give it a $T_1 * T_2$.
 - Example: (Pos * Neg) <: (Int * Int)

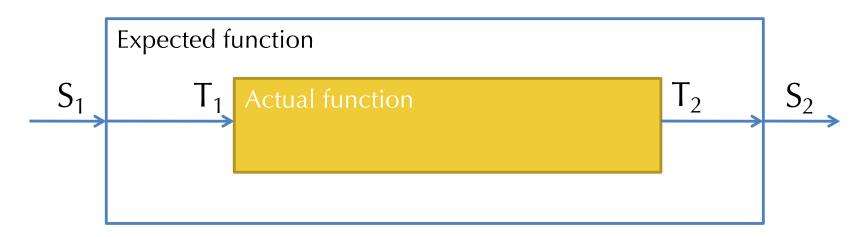
$$\mathsf{T}_1 \mathrel{<:} \mathsf{S}_1 \quad \mathsf{T}_2 \mathrel{<:} \mathsf{S}_2$$

$$(\mathsf{T}_1 * \mathsf{T}_2) <: (\mathsf{S}_1 * \mathsf{S}_2)$$

• What about functions? When is $T_1 \rightarrow T_2 \iff S_1 \rightarrow S_2$?

Subtyping for Function Types

• One way to see it:



Need to convert an S₁ to a T₁ and T₂ to S₂, so the argument type is *contravariant* and the output type is *covariant*.

$$S_1 <: T_1 \quad T_2 <: S_2$$
$$(T_1 \rightarrow T_2) <: (S_1 \rightarrow S_2)$$

Immutable Records

- Record type: { $lab_1:T_1$; $lab_2:T_2$; ... ; $lab_n:T_n$ }
 - Each lab_i is a label drawn from a set of identifiers.

$$\begin{array}{ccc} \text{RECORD} \\ G \vdash e_1 : T_1 \\ \end{array} \quad G \vdash e_2 : T_2 \\ \ldots \\ G \vdash e_n : T_n \\ \end{array}$$

 $G \vdash \{lab_1 = e_1; lab_2 = e_2; \dots; lab_n = e_n\} : \{lab_1:T_1; lab_2:T_2; \dots; lab_n:T_n\}$

PROJECTION $G \vdash e : \{lab_1:T_1; lab_2:T_2; ...; lab_n:T_n\}$

 $G \vdash e.lab_i : T_i$

Immutable Record Subtyping

- Depth subtyping:
 - Corresponding fields may be subtypes

DEPTH

$$T_1 <: U_1 \quad T_2 <: U_2 \quad \dots \quad T_n <: U_n$$

 $\{lab_1:T_1; \, lab_2:T_2; \, \dots \, ; \, lab_n:T_n\} <: \{lab_1:U_1; \, lab_2:U_2; \, \dots \, ; \, lab_n:U_n\}$

- Width subtyping:
 - Subtype record may have *more* fields on the right:

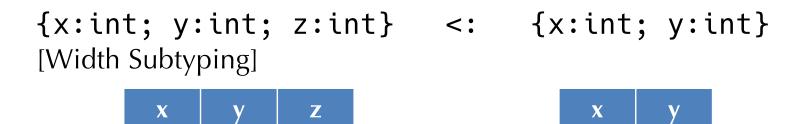
WIDTH

$m \le n$

 $\{lab_1:T_1; \ lab_2:T_2; \ \dots \ ; \ lab_n:T_n\} <: \{lab_1:T_1; \ lab_2:T_2; \ \dots \ ; \ lab_m:T_m\}$

Depth & Width Subtyping vs. Layout

• Width subtyping (without depth) is compatible with "inlined" record representation as with C structs:



- The layout and underlying field indices for 'x' and 'y' are identical.
- The 'z' field is just ignored
- Depth subtyping (without width) is similarly compatible, assuming that the space used by A is the same as the space used by B whenever A <: B
- But... they don't mix without more work

Immutable Record Subtyping (cont'd)

• Width subtyping assumes an implementation in which order of fields in a record matters:

{x:int; y:int} \neq {y:int; x:int}

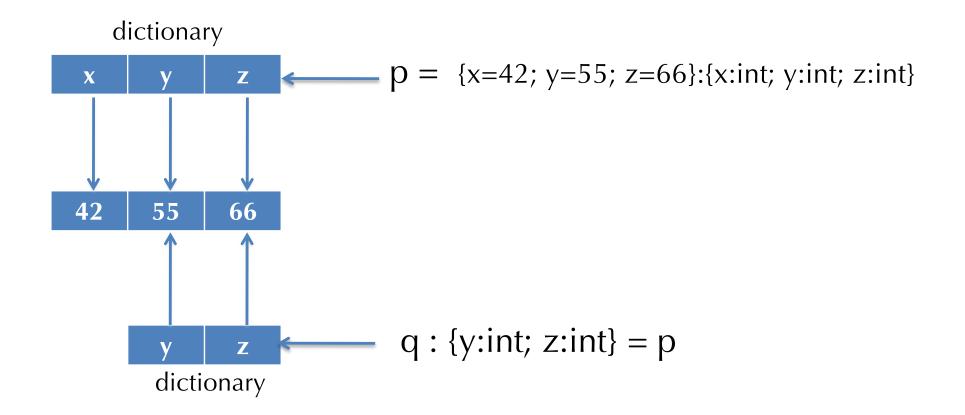
- But: {x:int; y:int; z:int} <: {x:int; y:int}
 - Implementation: a record is a struct, subtypes just add fields at the *end* of the struct.
- Alternative: allow permutation of record fields:

 ${x:int; y:int} = {y:int; x:int}$

- Implementation: compiler sorts the fields before code generation.
- Need to know *all* of the fields to generate the code
- Permutation is not directly compatible with width subtyping: {x:int; z:int; y:int} = {x:int; y:int; z:int} </: {y:int; z:int}

If you want both:

• If you want permutability & dropping, you need to either copy (to rearrange the fields) or use a dictionary like this:



MUTABILITY & SUBTYPING

Zdancewic CIS 341: Compilers

NULL

- What is the type of **null**?
- Consider:

int[] a = null;	// 0K?
<pre>int x = null;</pre>	// not OK?
<pre>string s = null;</pre>	// OK?

- Null has any *reference type*
 - Null is generic
- What about type safety?
 - Requires defined behavior when dereferencing null e.g. Java's NullPointerException
 - Requires a safety check for every dereference operation (typically implemented using low-level hardware "trap" mechanisms.)

Subtyping and References

- What is the proper subtyping relationship for references and arrays?
- Suppose we have NonZero as a type and the division operation has type: Int → NonZero → Int
 - Recall that NonZero <: Int
- Should (NonZero ref) <: (Int ref) ?
- Consider this program:

```
Int bad(NonZero ref r) {
   Int ref a = r; (* OK because (NonZero ref <: Int ref*)
   a := 0; (* OK because 0 : Zero <: Int *)
   return (42 / !r) (* OK because !r has type NonZero *)
}</pre>
```

Mutable Structures are Invariant

- Covariant reference types are unsound
 - As demonstrated in the previous example
- Contravariant reference types are also unsound
 - *i.e.*, If $T_1 \leq T_2$ then ref $T_2 \leq ref T_1$ is also unsound
 - Exercise: construct a program that breaks contravariant references.
- Moral: Mutable structures are *invariant*:

 $T_1 \text{ ref} <: T_2 \text{ ref} \quad \text{implies} \quad T_1 = T_2$

- Same holds for arrays, OCaml-style mutable records, object fields, etc.
 - Note: Java and C# get this wrong. They allows covariant array subtyping, but then compensate by adding a dynamic check on *every* array update!

Another Way to See It

• We can think of a reference cell as an immutable record (object) with two functions (methods) and some hidden state:

T ref \simeq {get: unit \rightarrow T; set: T \rightarrow unit}

- get returns the value hidden in the state.
- set updates the value hidden in the state.
- When is T ref <: S ref?
- Records with depth subtyping:
 - extends pointwise over each component.

{get: unit \rightarrow T; set: T \rightarrow unit} <: {get: unit \rightarrow S; set: S \rightarrow unit}

- get components are subtypes: unit → T <: unit → S
 set components are subtypes: T → unit <: S → unit
- From get, we must have T <: S (covariant return)
- From set, we must have S <: T (contravariant arg.)
- From $T \leq S$ and $S \leq T$ we conclude T = S.

STRUCTURAL VS. NOMINAL TYPES

Zdancewic CIS 341: Compilers

Structural vs. Nominal Typing

- Is type equality / subsumption defined by the *structure* of the data or the *name* of the data?
- Example 1: type abbreviations (OCaml) vs. "newtypes" (a la Haskell)

```
(* OCaml: *)
type cents = int (* cents = int in this scope *)
type age = int
let foo (x:cents) (y:age) = x + y
```

• Type abbreviations are treated "structurally" Newtypes are treated "by name"

Nominal Subtyping in Java

• In Java, Classes and Interfaces must be named and their relationships *explicitly* declared:

```
(* Java: *)
interface Foo {
    int foo();
}
class C {    /* Does not implement the Foo interface */
    int foo() {return 2;}
}
class D implements Foo {
    int foo() {return 341;}
}
```

- Similarly for inheritance: programmers must declare the subclass relation via the "**extends**" keyword.
 - Typechecker still checks that the classes are structurally compatible

See oat.pdf in HW5

OAT'S TYPE SYSTEM

Zdancewic CIS 341: Compilers

OAT's Treatment of Types

- Primitive (non-reference) types:
 - int, bool
- Definitely-non-null reference types: R
 - (named) mutable structs with (right-oriented) width subtyping
 - string
 - arrays (including length information, per HW4)
- Possibly-null reference types: R?
 - Subtyping: R <: R?</pre>
 - Checked downcast syntax if?:

```
int sum(int[]? arr) {
    var z = 0;
    if?(int[] a = arr) {
        for(var i = 0; i<length(a); i = i + 1;) {
            z = z + a[i];
        }
        return z;
}</pre>
```

OAT Features

- Named structure types with mutable fields
 - but using structural, width subtyping
- Typed function pointers
- Polymorphic operations: length and == / !=
 - need special case handling in the typechecker
- Type-annotated null values: t null always has type t?
- Definitely-not-null values means we need an "atomic" array initialization syntax
 - null is not allowed as a value of type int[], so to construct a record containing a field of type int[], we need to initialize it
 - subtlety: int[][] cannot be initialized by default, but int[] can be

OAT "Returns" Analysis

- Typesafe, statement-oriented imperative languages like OAT (or Java) must ensure that a function (always) returns a value of the appropriate type.
 - Does the returned expression's type match the one declared by the function?
 - Do all paths through the code return appropriately?
- OAT's statement checking judgment
 - takes the expected return type as input: what type should the statement return (or void if none)
 - produces a boolean flag as output: does the statement definitely return?