Lecture 22 CIS 341: COMPILERS

Announcements

- HW5: Oat v. 2
 - Due *tomorrow* at midnight!
- HW6: Analysis & Optimizations
 - Alias analysis, constant propagation, dead code elimination, register allocation
 - Available Thursday or Friday
 - Due: Wednesday, April 27th
- Final Exam:
 - According to registrar: Monday, May 2nd noon 2:00pm

CODE ANALYSIS

Zdancewic CIS 341: Compilers

Liveness information

- The scopes of a,b,c,x all overlap they're all in scope at the end of the block.
- But, a, b, c are never live at the same time.
 - So they can share the same stack slot / register

Live Variable Analysis

- A variable v is *live* at a program point if v is defined before the program point and used after it.
- Liveness is defined in terms of where variables are *defined* and where variables are *used*
- Liveness analysis: Compute the live variables between each statement.
 - May be *conservative* (i.e. it may claim a variable is live when it isn't) so because that's a safe approximation
 - To be useful, it should be more *precise* than simple scoping rules.
- Liveness analysis is one example of *dataflow analysis*
 - Other examples: Available Expressions, Reaching Definitions, Constant-Propagation Analysis, ...

Control-flow Graphs Revisited

- For the purposes of dataflow analysis, we use the *control-flow graph* (CFG) intermediate form.
- Recall that a basic block is a sequence of instructions such that:
 - There is a distinguished, labeled entry point (no jumps into the middle of a basic block)
 - There is a (possibly empty) sequence of non-control-flow instructions
 - The block ends with a single control-flow instruction (jump, conditional branch, return, etc.)
- A control flow graph
 - Nodes are blocks
 - There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the entry label of B2
 - There are no "dangling" edges there is a block for every jump target.

Note: the following slides are intentionally a bit ambiguous about the exact nature of the code in the control flow graphs:

an "imperative" C-like source level at the x86 assembly level the LLVM IR level

Each setting applies the same general idea, but the exact details will differ.

• e.g., LLVM IR doesn't have "imperative" update of %uid temporaries. (The SSA structure of the LLVM IR (by design!) makes some of these analyses simpler.)

Dataflow over CFGs

- For precision, it is helpful to think of the "fall through" between ulletsequential instructions as an edge of the control-flow graph too.
 - Different implementation tradeoffs in practice...

Liveness is Associated with Edges

- This is useful so that the same register can be used for different temporaries in the same statement.
- Example: **a** = **b** + **1**
- Compiles to:

Uses and Definitions

- Every instruction/statement *uses* some set of variables
 - i.e. reads from them
- Every instruction/statement *defines* some set of variables
 - i.e. writes to them
- For a node/statement s define:
 - use[s] : set of variables used by s
 - def[s] : set of variables defined by s
- Examples:

Liveness, Formally

- A variable v is *live* on edge e if: There is
 - a node n in the CFG such that use[n] contains v, and
 - a directed path from e to n such that for every statement s' on the path, def[s'] does not contain v
- The first clause says that v will be used on some path starting from edge e.
- The second clause says that v won't be redefined on that path before the use.
- Questions:
 - How to compute this efficiently?
 - How to use this information (e.g. for register allocation)?
 - How does the choice of IR affect this?
 (e.g. LLVM IR uses SSA, so it doesn't allow redefinition ⇒ simplify liveness analysis)

Simple, inefficient algorithm

- "A variable v is live on an edge e if there is a node n in the CFG using it *and* a directed path from e to n pasing through no def of v."
- Backtracking Algorithm:
 - For each variable v...
 - Try all paths from each use of v, tracing backwards through the controlflow graph until either v is defined or a previously visited node has been reached.
 - Mark the variable v live across each edge traversed.

• Inefficient because it explores the same paths many times (for different uses and different variables)

Dataflow Analysis

- *Idea*: compute liveness information for all variables simultaneously.
 Keep track of sets of information about each node
- Approach: define *equations* that must be satisfied by any liveness determination.
 - Equations based on "obvious" constraints.
- Solve the equations by iteratively converging on a solution.
 - Start with a "rough" approximation to the answer
 - Refine the answer at each iteration
 - Keep going until no more refinement is possible: a *fixpoint* has been reached
- This is an instance of a general framework for computing program properties: dataflow analysis

Dataflow Value Sets for Liveness

- Nodes are program statements, so:
- use[n] : set of variables used by n
- def[n] : set of variables defined by n
- in[n] : set of variables live on entry to n
- out[n] : set of variables live on exit from n
- Associate in[n] and out[n] with the "collected" information about incoming/outgoing edges
- For Liveness: what constraints are there among these sets?

What other constraints?

• Clearly:

 $in[n] \supseteq use[n]$

٠

Other Dataflow Constraints

- We have: $in[n] \supseteq use[n]$
 - "A variable must be live on entry to n if it is used by n"
- Also: $in[n] \supseteq out[n] def[n]$
 - "If a variable is live on exit from n, and n doesn't define it, it is live on entry to n"
 - Note: here '-' means "set difference"
- And: $out[n] \supseteq in[n']$ if $n' \in succ[n]$
 - "If a variable is live on entry to a successor node of n, it must be live on exit from n."

Iterative Dataflow Analysis

- Find a solution to those constraints by starting from a rough guess.
 - Start with: $in[n] = \emptyset$ and $out[n] = \emptyset$
- The guesses don't satisfy the constraints:
 - in[n] ⊇ use[n]
 - in[n] ⊇ out[n] def[n]
 - out[n] ⊇ in[n'] if n' ∈ succ[n]
- Idea: iteratively re-compute in[n] and out[n] where forced to by the constraints.
 - Each iteration will add variables to the sets in[n] and out[n] (i.e. the live variable sets will increase monotonically)
- We stop when in[n] and out[n] satisfy these equations: (which are derived from the constraints above)
 - $in[n] = use[n] \cup (out[n] def[n])$
 - out[n] = $U_{n' \in succ[n]}in[n']$

Complete Liveness Analysis Algorithm

```
for all n, in[n] := Ø, out[n] := Ø
repeat until no change in 'in' and 'out'
for all n
```

```
out[n] := U_{n' \in succ[n]}in[n']
in[n] := use[n] U (out[n] - def[n])
end
```

```
end
```

- Finds a *fixpoint* of the in and out equations.
 - The algorithm is guaranteed to terminate... Why?
- Why do we start with Ø?

CIS 341: Compilers

•

CIS 341: Compilers

CIS 341: Compilers

Improving the Algorithm

- Can we do better?
- Observe: the only way information propagates from one node to another is using: out[n] := U_{n'∈succ[n]}in[n']
 - This is the only rule that involves more than one node
- If a node's successors haven't changed, then the node itself won't change.
- Idea for an improved version of the algorithm:
 - Keep track of which node's successors have changed

A Worklist Algorithm

• Use a FIFO queue of nodes that might need to be updated.

```
for all n, in[n] := \emptyset, out[n] := \emptyset
w = new queue with all nodes
repeat until w is empty
   let n = w.pop()
                                          // pull a node off the queue
                                          // remember old in[n]
    old_in = in[n]
    out[n] := U_{n' \in succ[n]}in[n']
     in[n] := use[n] \cup (out[n] - def[n])
     if (old_in != in[n]),
                                          // if in[n] has changed
       for all m in pred[n], w.push(m) // add to worklist
end
```

OTHER DATAFLOW ANALYSES

Zdancewic CIS 341: Compilers

Generalizing Dataflow Analyses

- The kind of iterative constraint solving used for liveness analysis applies to other kinds of analyses as well.
 - Reaching definitions analysis
 - Available expressions analysis
 - Alias Analysis
 - Constant Propagation
 - These analyses follow the same 3-step approach as for liveness.
- To see these as an instance of the same kind of algorithm, the next few examples to work over a canonical intermediate instruction representation called *quadruples*
 - Allows easy definition of def[n] and use[n]
 - A slightly "looser" variant of LLVM's IR that doesn't require the "static single assignment" – i.e. it has *mutable* local variables
 - We will use LLVM-IR-like syntax

Def / Use for SSA

- def[n] description use[n] Instructions n: ٠ arithmetic a = op b c{b,c} {a} a = load b{b} load {a} store a, b {b} \bigcirc store a = alloca t{a} Ø alloca a = bitcast b to u{b} {a} bitcast $a = gep b [c,d, ...] {a}$ {b,c,d,...} getelementptr $\{b_1, \dots, b_n\}$ call w/return $\mathbf{a} = \mathbf{f}(\mathbf{b}_1, \dots, \mathbf{b}_n)$ {a} $f(b_1,...,b_n)$ $\{b_1, \dots, b_n\}$ void call (no return) \bigcirc **Terminators** ٠ br L \bigcirc \bigcirc
 - br a L1 L2 {a} Ø {a} \bigcirc return a

jump	
conditional	branch
return	

REACHING DEFINITIONS

Zdancewic CIS 341: Compilers

Reaching Definition Analysis

- Question: what uses in a program does a given variable definition reach?
- This analysis is used for constant propagation & copy prop.
 - If only one definition reaches a particular use, can replace use by the definition (for constant propagation).
 - Copy propagation additionally requires that the copied value still has its same value – computed using an *available expressions* analysis (next)
- Input: Quadruple CFG
- Output: in[n] (resp. out[n]) is the set of nodes defining some variable such that the definition may reach the beginning (resp. end) of node n

Example of Reaching Definitions

• Results of computing reaching definitions on this simple CFG:

Reaching Definitions Step 1

- Define the sets of interest for the analysis
- Let defs[a] be the set of *nodes* that define the variable a
- Define gen[n] and kill[n] as follows:

•	Quadruple forms n:	gen[n]	kill[n]
	a = b op c	{n}	defs[a] - {n}
	a = load b	{n}	defs[a] - {n}
	store b, a	Ø	Ø
	$\mathbf{a} = \mathbf{f}(\mathbf{b}_1, \dots, \mathbf{b}_n)$	{n}	defs[a] - {n}
	$f(b_1,,b_n)$	Ø	Ø
	br L	Ø	Ø
	braL1 L2	Ø	Ø
	return a	Ø	Ø

Reaching Definitions Step 2

- Define the constraints that a reaching definitions solution must satisfy.
- out[n] ⊇ gen[n]
 "The definitions that reach the end of a node at least include the definitions generated by the node"
- $in[n] \supseteq out[n']$ if n' is in pred[n]

"The definitions that reach the beginning of a node include those that reach the exit of *any* predecessor"

• $out[n] \cup kill[n] \supseteq in[n]$

"The definitions that come in to a node either reach the end of the node or are killed by it."

- Equivalently: $out[n] \supseteq in[n] - kill[n]$

Reaching Definitions Step 3

- Convert constraints to iterated update equations:
- $in[n] := U_{n' \in pred[n]}out[n']$
- $out[n] := gen[n] \cup (in[n] kill[n])$
- Algorithm: initialize in[n] and out[n] to Ø
 - Iterate the update equations until a fixed point is reached
- The algorithm terminates because in[n] and out[n] increase only *monotonically*
 - At most to a maximum set that includes all variables in the program
- The algorithm is precise because it finds the *smallest* sets that satisfy the constraints.

AVAILABLE EXPRESSIONS

Zdancewic CIS 341: Compilers

Available Expressions

• Idea: want to perform common subexpression elimination:

$$-a = x + 1 \qquad a = x + 1$$

$$\cdots \qquad b = x + 1 \qquad b = a$$

• This transformation is safe if x+1 means computes the same value at both places (i.e. x hasn't been assigned).

- "x+1" is an available expression

- Dataflow values:
 - in[n] = set of nodes whose values are available on entry to n
 - out[n] = set of nodes whose values are available on exit of n

Available Expressions Step 1

- Define the sets of values
- Define gen[n] and kill[n] as follows:

Quadruple form	s n: gen[n]	kill[n]
a = b op c	{n} - kill[n]	uses[a]
a = load b	{n} - kill[n]	uses[a]
store b, a	Ø	uses[[x]]
		(for all x that may equal a)
br L	Ø	Ø Note the need for "may
braL1 L2	Ø	Ø alias" information
$\mathbf{a} = \mathbf{f}(\mathbf{b}_1, \dots, \mathbf{b}_n)$	Ø	uses[a]U uses[[x]]
		(for all x)
$f(b_1,,b_n)$	Ø	uses[[x]] (for all x)
return a	Ø	Note that functions are assumed to be impure

Available Expressions Step 2

- Define the constraints that an available expressions solution must satisfy.
- $out[n] \supseteq gen[n]$

"The expressions made available by n that reach the end of the node"

• $in[n] \subseteq out[n']$ if n' is in pred[n]

"The expressions available at the beginning of a node include those that reach the exit of *every* predecessor"

• $out[n] \cup kill[n] \supseteq in[n]$

"The expressions available on entry either reach the end of the node or are killed by it."

- Equivalently: $out[n] \supseteq in[n] - kill[n]$

Note similarities and differences with constraints for "reaching definitions".

Available Expressions Step 3

- Convert constraints to iterated update equations:
- $in[n] := \bigcap_{n' \in pred[n]} out[n']$
- $out[n] := gen[n] \cup (in[n] kill[n])$
- Algorithm: initialize in[n] and out[n] to {set of all nodes}
 - Iterate the update equations until a fixed point is reached
- The algorithm terminates because in[n] and out[n] *decrease* only *monotonically*
 - At most to a minimum of the empty set
- The algorithm is precise because it finds the *largest* sets that satisfy the constraints.

GENERAL DATAFLOW ANALYSIS

Zdancewic CIS 341: Compilers

Comparing Dataflow Analyses

- Look at the update equations in the inner loop of the analyses
- Liveness:

(backward)

- Let gen[n] = use[n] and kill[n] = def[n]
- out[n] := = $U_{n' \in succ[n]}in[n']$
- $in[n] := gen[n] \cup (out[n] kill[n])$
- Reaching Definitions:

(forward)

- in[n] := $U_{n' \in pred[n]}out[n']$
- $out[n] := gen[n] \cup (in[n] kill[n])$
- Available Expressions:

(forward)

- in[n] := $\bigcap_{n' \in pred[n]} out[n']$
- $out[n] := gen[n] \cup (in[n] kill[n])$

Common Features

- All of these analyses have a *domain* over which they solve constraints.
 - Liveness, the domain is sets of variables
 - Reaching defns., Available exprs. the domain is sets of nodes
- Each analysis has a notion of gen[n] and kill[n]
 - Used to explain how information propagates across a node.
- Each analysis is propagates information either *forward* or *backward*
 - Forward: in[n] defined in terms of predecessor nodes' out[]
 - Backward: out[n] defined in terms of successor nodes' in[]
- Each analysis has a way of aggregating information
 - Liveness & reaching definitions take union (U)
 - Available expressions uses intersection (\cap)
 - Union expresses a property that holds for *some* path (existential)
 - Intersection expresses a property that holds for *all* paths (universal)

(Forward) Dataflow Analysis Framework

A forward dataflow analysis can be characterized by:

- 1. A domain of dataflow values \mathcal{L}
 - e.g. \mathcal{L} = the powerset of all variables
 - Think of $\ell \in \mathcal{L}$ as a property, then " $x \in \ell$ " means "x has the property"
- 2. For each node n, a flow function $F_n : \mathcal{L} \to \mathcal{L}$
 - So far we've seen $F_n(\ell) = gen[n] \cup (\ell kill[n])$
 - So: $out[n] = F_n(in[n])$
 - "If ℓ is a property that holds before the node n, then $F_n(\ell)$ holds after n"
- 3. A combining operator Π
 - "If we know *either* ℓ_1 *or* ℓ_2 holds on entry to node n, we know at most $\ell_1 \prod \ell_2$ "
 - $in[n] := \prod_{n' \in pred[n]} out[n']$

Generic Iterative (Forward) Analysis

```
for all n, in[n] := T, out[n] := T
repeat until no change
for all n
```

```
in[n] := \prod_{n' \in pred[n]} out[n']out[n] := F_n(in[n])end
```

end

- Here, ⊤ ∈ *L* ("top") represents having the "maximum" amount of information.
 - Having "more" information enables more optimizations
 - "Maximum" amount could be inconsistent with the constraints.
 - Iteration refines the answer, eliminating inconsistencies

Structure of \mathcal{L}

- The domain has structure that reflects the "amount" of information contained in each dataflow value.
- Some dataflow values are more informative than others:
 - Write $\ell_1 \subseteq \ell_2$ whenever ℓ_2 provides at least as much information as ℓ_1 .
 - The dataflow value ℓ_2 is "better" for enabling optimizations.
- Example 1: for liveness analysis, *smaller* sets of variables are more informative.
 - Having smaller sets of variables live across an edge means that there are fewer conflicts for register allocation assignments.
 - So: $\ell_1 \sqsubseteq \ell_2$ if and only if $\ell_1 \supseteq \ell_2$
- Example 2: for available expressions analysis, larger sets of nodes are more informative.
 - Having a larger set of nodes (equivalently, expressions) available means that there is more opportunity for common subexpression elimination.
 - So: $\ell_1 \sqsubseteq \ell_2$ if and only if $\ell_1 \subseteq \ell_2$

L as a Partial Order

- \mathcal{L} is a *partial order* defined by the ordering relation \sqsubseteq .
- A partial order is an ordered set.
- Some of the elements might be *incomparable*.
 - That is, there might be $\ell_1, \ell_2 \in \mathcal{L}$ such that neither $\ell_1 \sqsubseteq \ell_2$ nor $\ell_2 \sqsubseteq \ell_1$
- Properties of a partial order:
 - Reflexivity: $\ell \sqsubseteq \ell$
 - *Transitivity*: $\ell_1 \subseteq \ell_2$ and $\ell_2 \subseteq \ell_3$ implies $\ell_1 \subseteq \ell_2$
 - Anti-symmetry: $\ell_1 \subseteq \ell_2$ and $\ell_2 \subseteq \ell_1$ implies $\ell_1 = \ell_2$
- Examples:
 - Integers ordered by \leq
 - Types ordered by <:
 - Sets ordered by \subseteq or \supseteq

Subsets of {a,b,c} ordered by ⊆

Partial order presented as a Hasse diagram.

order \sqsubseteq is \subseteq meet \sqcap is \cap join \sqcup is \cup

Meets and Joins

- The combining operator **□** is called the "meet" operation.
- It constructs the *greatest lower bound*:
 - $\ell_1 \prod \ell_2 \subseteq \ell_1$ and $\ell_1 \prod \ell_2 \subseteq \ell_2$ "the meet is a lower bound"
 - If $\ell \sqsubseteq \ell_1$ and $\ell \sqsubseteq \ell_2$ then $\ell \sqsubseteq \ell_1 \sqcap \ell_2$ "there is no greater lower bound"
- Dually, the ∐ operator is called the "join" operation.
- It constructs the *least upper bound*:
 - $\ell_1 \sqsubseteq \ell_1 \sqcup \ell_2$ and $\ell_2 \sqsubseteq \ell_1 \sqcup \ell_2$ "the join is an upper bound"
 - If $\ell_1 \sqsubseteq \ell$ and $\ell_2 \sqsubseteq \ell$ then $\ell_1 \sqcup \ell_2 \sqsubseteq \ell$ "there is no smaller upper bound"
- A partial order that has all meets and joins is called a *lattice*.
 - If it has just meets, it's called a meet semi-lattice.

Another Way to Describe the Algorithm

- Algorithm repeatedly computes (for each node n):
- $out[n] := F_n(in[n])$
- Equivalently: $out[n] := F_n(\bigcap_{n' \in pred[n]} out[n'])$
 - By definition of in[n]
- We can write this as a simultaneous update of the vector of out[n] values:
 - let $x_n = out[n]$
 - Let $\mathbf{X} = (x_1, x_2, \dots, x_n)$ it's a vector of points in \mathcal{L}
 - $\mathbf{F}(\mathbf{X}) = (F_1(\prod_{j \in pred[1]} out[j]), F_2(\prod_{j \in pred[2]} out[j]), \dots, F_n(\prod_{j \in pred[n]} out[j]))$
- Any solution to the constraints is a *fixpoint* X of F
 i.e. F(X) = X

Iteration Computes Fixpoints

- Let $\mathbf{X}_0 = (\top, \top, ..., \top)$
- Each loop through the algorithm apply F to the old vector:
 X₁ = F(X₀)
 X₂ = F(X₁)
- $\bullet \quad \boldsymbol{\mathsf{F}}^{k+1}(\boldsymbol{\mathsf{X}}) = \boldsymbol{\mathsf{F}}(\boldsymbol{\mathsf{F}}^k(\boldsymbol{\mathsf{X}}))$

. . .

- A fixpoint is reached when $\mathbf{F}^{k}(\mathbf{X}) = \mathbf{F}^{k+1}(\mathbf{X})$
 - That's when the algorithm stops.
- Wanted: a maximal fixpoint
 - Because that one is more informative/useful for performing optimizations

Monotonicity & Termination

- Each flow function F_n maps lattice elements to lattice elements; to be sensible is should be *monotonic*:
- $F: \mathcal{L} \to \mathcal{L}$ is monotonic iff: $\ell_1 \sqsubseteq \ell_2$ implies that $F(\ell_1) \sqsubseteq F(\ell_2)$
 - Intuitively: "If you have more information entering a node, then you have more information leaving the node."
- Monotonicity lifts point-wise to the function: $\mathbf{F} : \mathcal{L}^n \to \mathcal{L}^n$

- vector $(x_1, x_2, ..., x_n) \sqsubseteq (y_1, y_2, ..., y_n)$ iff $x_i \sqsubseteq y_i$ for each i

- Note that **F** is consistent: $\mathbf{F}(\mathbf{X}_0) \sqsubseteq \mathbf{X}_0$
 - So each iteration moves at least one step down the lattice (for some component of the vector)
 - $\ldots \sqsubseteq \mathbf{F}(\mathbf{F}(\mathbf{X}_0)) \sqsubseteq \mathbf{F}(\mathbf{X}_0) \sqsubseteq \mathbf{X}_0$
- Therefore, # steps needed to reach a fixpoint is at most the height H of *L* times the number of nodes: O(Hn)

Building Lattices?

- Information about individual nodes or variables can be lifted *pointwise:*
 - If \mathcal{L} is a lattice, then so is $\{f : X \to \mathcal{L}\}$ where $f \sqsubseteq g$ if and only if $f(x) \sqsubseteq g(x)$ for all $x \in X$.

• Like *types*, the dataflow lattices are *static approximations* to the dynamic behavior:

Points in the lattice are sometimes called dataflow "facts"

"Classic" Constant Propagation

- Constant propagation can be formulated as a dataflow analysis.
- Idea: propagate and fold integer constants in one pass:

$$x = 1;$$
 $x = 1;$
 $y = 5 + x;$ $y = 6;$
 $z = y * y;$ $z = 36;$

- Information about a single variable:
 - Variable is never defined.
 - Variable has a single, constant value.
 - Variable is assigned multiple values.

Domains for Constant Propagation

• We can make a constant propagation lattice \mathcal{L} for *one variable* like this:

- To accommodate multiple variables, we take the product lattice, with one element per variable.
 - Assuming there are three variables, x, y, and z, the elements of the product lattice are of the form (ℓ_x, ℓ_y, ℓ_z) .
 - Alternatively, think of the product domain as a context that maps variable names to their "*abstract interpretations*"
- What are "meet" and "join" in this product lattice?
- What is the height of the product lattice?

Flow Functions

- Consider the node ٠
 - $\mathbf{x} = \mathbf{y} \mathbf{o} \mathbf{p} \mathbf{z}$
- $F(\ell_x, \ell_y, \ell_z) = ?$

- $F(\ell_x, \top, \ell_z) = (\top, \top, \ell_z)$ "If either input might have multiple values • $F(\ell_x, \ell_y, T) = (T, \ell_y, T)$ the result of the operation might too."
- F(ℓ_x, ⊥, ℓ_z) = (⊥, ⊥, ℓ_z)
 F(ℓ_x, ℓ_y, ⊥) = (⊥, ℓ_y, ⊥)
 "If either input is undefined the result of the operation is too."
- $F(\ell_x, i, j) = (i \text{ op } j, i, j)$ "If the inputs are known constants, calculate the output statically."
- Flow functions for the other nodes are easy... ۲
- Monotonic? •
- Distributes over meets? ٠

QUALITY OF DATAFLOW ANALYSIS SOLUTIONS

Best Possible Solution

- Suppose we have a control-flow graph.
- If there is a path p₁ starting from the root node (entry point of the function) traversing the nodes

 $n_0, n_1, n_2, \dots n_k$

- The best possible information along the path p_1 is: $\ell_{p1} = F_{nk}(...F_{n2}(F_{n1}(F_{n0}(T)))...)$
- Best solution at the output is some $\ell \sqsubseteq \ell_p$ for *all* paths p.
- Meet-over-paths (MOP) solution:

 $\square_{p \in paths_{to[n]}} \ell_{p}$

What about quality of iterative solution?

- Does the iterative solution: $out[n] = F_n([]_{n' \in pred[n]}out[n'])$ compute the MOP solution?
- MOP Solution: $|_{p \in paths_{to[n]}} \ell_p$
- Answer: Yes, *if* the flow functions *distribute* over
 - Distributive means: $\prod_i F_n(\ell_i) = F_n(\prod_i \ell_i)$
 - Proof is a bit tricky & beyond the scope of this class. (Difficulty: loops in the control flow graph might mean there are *infinitely* many paths...)
- Not all analyses give MOP solution
 - They are more conservative.

Reaching Definitions is MOP

- $F_n[x] = gen[n] \cup (x kill[n])$
- Does F_n distribute over meet $\square = \cup$?
- $F_n[x \sqcap y]$
 - $= gen[n] \cup ((x \cup y) kill[n])$
 - $= gen[n] \cup ((x kill[n]) \cup (y kill[n]))$
 - = $(gen[n] \cup (x kill[n])) \cup (gen[n] \cup (y kill[n]))$
 - $= F_n[x] \cup F_n[y]$
 - $= F_n[x] \prod F_n[y]$
- Therefore: Reaching Definitions with iterative analysis always terminates with the MOP (i.e. best) solution.

Constprop Iterative Solution

MOP Solution *≠* **Iterative Solution**

Why not compute MOP Solution?

- If MOP is better than the iterative analysis, why not compute it instead?
 - ANS: exponentially many paths (even in graph without loops)
- O(n) nodes
- O(n) edges
- O(2ⁿ) paths*
 - At each branch there is a choice of 2 directions

* Incidentally, a similar idea can be used to force ML / Haskell type inference to need to construct a type that is exponentially big in the size of the program!

Dataflow Analysis: Summary

- Many dataflow analyses fit into a common framework.
- Key idea: *Iterative solution* of a system of equations over a *lattice* of constraints.
 - Iteration terminates if flow functions are monotonic.
 - Solution is equivalent to meet-over-paths answer if the flow functions distribute over meet (□).
- Dataflow analyses as presented work for an "imperative" intermediate representation.
 - The values of temporary variables are updated ("mutated") during evaluation.
 - Such mutation complicates calculations
 - SSA = "Single Static Assignment" eliminates this problem, by introducing more temporaries – each one assigned to only once.
 - Next up: Converting to SSA, finding loops and dominators in CFGs

See HW6: Dataflow Analysis

IMPLEMENTATION

Zdancewic CIS 341: Compilers