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Announcements

• HW5: Oat v. 2
– Due tomorrow at midnight!

• HW6: Analysis & Optimizations
– Alias analysis, constant propagation, dead code elimination, register 

allocation
– Available Thursday or Friday
– Due: Wednesday, April 27th

• Final Exam: 
– According to registrar: Monday, May 2nd noon - 2:00pm
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CODE ANALYSIS
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Liveness information
• Consider this program:
int f(int x) {

int a = x + 2;
int b = a * a;
int c = b + x;
return c;

}

• The scopes of a,b,c,x all overlap – they’re all in scope at the end of the 
block.

• But, a, b, c are never live at the same time.
– So they can share the same stack slot / register
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x is live

a and x are live
b and x are live

c is live



Live Variable Analysis
• A variable v is live at a program point if v is defined before the 

program point and used after it.
• Liveness is defined in terms of where variables are defined and where 

variables are used

• Liveness analysis: Compute the live variables between each statement.
– May be conservative (i.e. it may claim a variable is live when it isn’t) so 

because that’s a safe approximation
– To be useful, it should be more precise than simple scoping rules.

• Liveness analysis is one example of dataflow analysis
– Other examples: Available Expressions, Reaching Definitions, Constant-

Propagation Analysis, …
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Control-flow Graphs Revisited
• For the purposes of dataflow analysis, we use the control-flow graph (CFG) 

intermediate form.
• Recall that a basic block is a sequence of instructions such that:

– There is a distinguished, labeled entry point (no jumps into the middle of a basic block)
– There is a (possibly empty) sequence of non-control-flow instructions
– The block ends with a single control-flow instruction (jump, conditional branch, return, 

etc.)

• A control flow graph 
– Nodes are blocks
– There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the 

entry label of B2
– There are no “dangling” edges – there is a block for every jump target. 
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Note: the following slides are intentionally a bit ambiguous about the exact nature of the code in the 
control flow graphs:  

an “imperative” C-like source level
at the x86 assembly level
the LLVM IR level

Each setting applies the same general idea, but the exact details will differ. 
• e.g., LLVM IR doesn’t have “imperative” update of %uid temporaries. 

(The SSA structure of the LLVM IR (by design!) makes some of these analyses simpler.)



Dataflow over CFGs
• For precision, it is helpful to think of the “fall through” between 

sequential instructions as an edge of the control-flow graph too.
– Different implementation tradeoffs in practice…
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Liveness is Associated with Edges

• This is useful so that the same register can be used for different 
temporaries in the same statement.

• Example:   a = b + 1

• Compiles to:  
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Instr

Live: a, b

Live:  b, d, e

Mov a, b

Add a, 1

Live: b

Live: a

Live: a (maybe)

Mov rax, rax

Add rax, 1

Register Allocate:
a à rax, b à rax



Uses and Definitions
• Every instruction/statement uses some set of variables

– i.e. reads from them

• Every instruction/statement defines some set of variables
– i.e. writes to them

• For a node/statement s define:
– use[s] : set of variables used by s
– def[s] : set of variables defined by s

• Examples:
– a = b + c use[s] = {b,c} def[s] = {a}
– a = a + 1 use[s] = {a} def[s] = {a}
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Liveness, Formally
• A variable v is live on edge e if:

There is
– a node n in the CFG such that use[n] contains v, and
– a directed path from e to n such that for every statement s’ on the path, 

def[s’] does not contain v

• The first clause says that v will be used on some path starting from 
edge e.

• The second clause says that v won’t be redefined on that path before 
the use.

• Questions:
– How to compute this efficiently?
– How to use this information (e.g. for register allocation)?
– How does the choice of  IR affect this?  

(e.g. LLVM IR uses SSA, so it doesn’t allow redefinition ⇒ simplify liveness
analysis)
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Simple, inefficient algorithm
• “A variable v is live on an edge e if there is a node n in the CFG using 

it  and a directed path from e to n pasing through no def of v.”

• Backtracking Algorithm:
– For each variable v…
– Try all paths from each use of v, tracing backwards through the control-

flow graph until either v is defined or a previously visited node has been 
reached.

– Mark the variable v live across each edge traversed.

• Inefficient because it explores the same paths many times 
(for different uses and different variables)
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Dataflow Analysis
• Idea:  compute liveness information for all variables simultaneously.

– Keep track of sets of information about each node

• Approach: define equations that must be satisfied by any liveness
determination.
– Equations based on “obvious” constraints.

• Solve the equations by iteratively converging on a solution.
– Start with a “rough” approximation to the answer
– Refine the answer at each iteration
– Keep going until no more refinement is possible: a fixpoint has been 

reached

• This is an instance of a general framework for computing program 
properties: dataflow analysis
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Dataflow Value Sets for Liveness
• Nodes are program statements, so: 
• use[n] : set of variables used by n
• def[n] : set of variables defined by n

• in[n] : set of variables live on entry to n
• out[n] : set of variables live on exit from n

• Associate in[n] and out[n] with the “collected”
information about incoming/outgoing edges 

• For Liveness: what constraints are there 
among these sets?

• Clearly:
in[n] ⊇ use[n]

• What other constraints?
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Other Dataflow Constraints
• We have: in[n] ⊇ use[n]

– “A variable must be live on entry to n if it is used by n”

• Also:  in[n] ⊇ out[n] - def[n]
– “If a variable is live on exit from n, and n doesn’t

define it, it is live on entry to n”
– Note: here ‘-’ means “set difference”

• And:  out[n] ⊇ in[n’] if n’ ∈ succ[n]
– “If a variable is live on entry to a successor 

node of n, it must be live  on exit from n.”
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Iterative Dataflow Analysis
• Find a solution to those constraints by starting from a rough guess.

– Start with: in[n] = Ø  and out[n] = Ø

• The guesses don’t satisfy the constraints:
– in[n] ⊇ use[n]
– in[n] ⊇ out[n] - def[n]
– out[n] ⊇ in[n’] if n’ ∈ succ[n]

• Idea: iteratively re-compute in[n] and out[n] where forced to by the 
constraints.
– Each iteration will add variables to the sets in[n] and out[n] 

(i.e. the live variable sets will increase monotonically)

• We stop when in[n] and out[n] satisfy these equations:
(which are derived from the constraints above)
– in[n] = use[n] ∪ (out[n] - def[n])

– out[n] = ∪n’∈succ[n]in[n’]
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Complete Liveness Analysis Algorithm
for all n, in[n] := Ø, out[n] := Ø
repeat until no change in ‘in’ and ‘out’

for all n

out[n] := ∪n’∈succ[n]in[n’]

in[n] := use[n] ∪ (out[n] - def[n])
end

end

• Finds a fixpoint of the in and out equations.
– The algorithm is guaranteed to terminate… Why?

• Why do we start with Ø?
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Example Liveness Analysis
• Example flow graph:
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e = 1;
while(x>0) {

z = e * e;
y = e * x;
x = x – 1;
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} else {
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}

}
return x;
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Example Liveness Analysis
Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 1:
in[2] = x
in[3] = e
in[4] = x
in[5] = e,x
in[6] = x
in[7] = x
in[8] = z
in[9] = y

(showing only updates
that make a change)
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Example Liveness Analysis
Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 2:
out[1]= x
in[1] = x
out[2] = e,x
in[2] = e,x
out[3] = e,x
in[3] = e,x
out[5] = x
out[6] = x
out[7] = z,y
in[7] = x,z,y
out[8] = x
in[8] = x,z
out[9] = x
in[9] = x,y
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Example Liveness Analysis
Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 3:
out[1]= e,x
out[6]= x,y,z
in[6]= x,y,z
out[7]= x,y,z
out[8]= e,x
out[9]= e,x
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Example Liveness Analysis
Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 4:
out[5]= x,y,z
in[5]= e,x,z
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Example Liveness Analysis
Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

• Iteration 5:
out[3]= e,x,z

Done!
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Improving the Algorithm
• Can we do better?

• Observe: the only way information propagates from one node to 

another is using: out[n] := ∪n’∈succ[n]in[n’]
– This is the only rule that involves more than one node

• If a node’s successors haven’t changed, then the node itself won’t 
change.

• Idea for an improved version of the algorithm:
– Keep track of which node’s successors have changed
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A Worklist Algorithm
• Use a FIFO queue of nodes that might need to be updated.

for all n, in[n] := Ø, out[n] := Ø

w = new queue with all nodes
repeat until w is empty

let n = w.pop() // pull a node off the queue
old_in = in[n] // remember old in[n]

out[n] := ∪n’∈succ[n]in[n’]

in[n] := use[n] ∪ (out[n] - def[n])
if (old_in != in[n]), // if in[n] has changed 

for all m in pred[n], w.push(m) // add to worklist

end
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OTHER DATAFLOW ANALYSES
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Generalizing Dataflow Analyses
• The kind of iterative constraint solving used for liveness analysis 

applies to other kinds of analyses as well.
– Reaching definitions analysis
– Available expressions analysis
– Alias Analysis
– Constant Propagation
– These analyses follow the same 3-step approach as for liveness.

• To see these as an instance of the same kind of algorithm, the next few 
examples to work over a canonical intermediate instruction 
representation called quadruples
– Allows easy definition of def[n] and use[n]
– A slightly “looser” variant of LLVM’s IR that doesn’t require the “static 

single assignment” – i.e. it has mutable local variables
– We will use LLVM-IR-like syntax

CIS 341: Compilers 26



Def / Use for SSA
• Instructions n: def[n] use[n] description

a = op b c {a} {b,c} arithmetic
a = load b {a} {b} load
store a, b Ø {b} store
a = alloca t {a} Ø alloca
a = bitcast b to u {a} {b} bitcast
a = gep b [c,d, …] {a} {b,c,d,…} getelementptr
a = f(b1,…,bn) {a} {b1,…,bn} call w/return
f(b1,…,bn) Ø {b1,…,bn} void call (no return)

• Terminators
br L Ø Ø jump
br a L1 L2 Ø {a} conditional branch
return a Ø {a} return
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REACHING DEFINITIONS
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Reaching Definition Analysis
• Question: what uses in a program does a given variable definition 

reach?

• This analysis is used for constant propagation & copy prop.
– If only one definition reaches a particular use, can replace use by the 

definition (for constant propagation).
– Copy propagation additionally requires that the copied value still has its 

same value – computed using an available expressions analysis (next)

• Input: Quadruple CFG
• Output: in[n] (resp. out[n]) is the set of nodes defining some variable 

such that the definition may reach the beginning (resp. end) of node n
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Example of Reaching Definitions
• Results of computing reaching definitions on this simple CFG:
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b = a + 2

c = b * b

b = c + 1

1

2

3

return b * a
4

out[1]: {1}
in[2]:    {1}

out[2]: {1,2}
in[3]:    {1,2}

out[3]: {2,3}
in[4]:    {2,3}



Reaching Definitions Step 1
• Define the sets of interest for the analysis
• Let defs[a] be the set of nodes that define the variable a
• Define gen[n] and kill[n] as follows:

• Quadruple forms n: gen[n] kill[n]
a = b op c {n} defs[a] - {n}
a = load b {n} defs[a] - {n}
store b, a Ø Ø
a = f(b1,…,bn) {n} defs[a] - {n}
f(b1,…,bn) Ø Ø
br L Ø Ø
br a L1  L2 Ø Ø
return a Ø Ø
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Reaching Definitions Step 2
• Define the constraints that a reaching definitions solution must satisfy.
• out[n] ⊇ gen[n]

“The definitions that reach the end of a node at least include the 
definitions generated by the node”

• in[n] ⊇ out[n’]    if n’ is in pred[n]
“The definitions that reach the beginning of a node include those that 
reach the exit of any predecessor”

• out[n] ∪ kill[n] ⊇ in[n]
“The definitions that come in to a node either reach the end of the 
node or are killed by it.”
– Equivalently:   out[n] ⊇ in[n] - kill[n]
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Reaching Definitions Step 3
• Convert constraints to iterated update equations:

• in[n] := ∪n’∈pred[n]out[n’]

• out[n] := gen[n] ∪ (in[n] - kill[n])

• Algorithm: initialize in[n] and out[n] to Ø
– Iterate the update equations until a fixed point is reached

• The algorithm terminates because in[n] and out[n] increase only 
monotonically
– At most to a maximum set that includes all variables in the program

• The algorithm is precise because it finds the smallest sets that satisfy 
the constraints.
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AVAILABLE EXPRESSIONS
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Available Expressions
• Idea: want to perform common subexpression elimination:

– a = x + 1 a = x + 1
… …
b = x + 1 b = a

• This transformation is safe if x+1 means computes the same value at 
both places (i.e. x hasn’t been assigned).
– “x+1” is an available expression

• Dataflow values:
– in[n] = set of nodes whose values are available on entry to n
– out[n] = set of nodes whose values are available on exit of n
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Available Expressions Step 1
• Define the sets of values
• Define gen[n] and kill[n] as follows:
• Quadruple forms n: gen[n] kill[n]

a = b op c {n} - kill[n] uses[a]
a = load b {n} - kill[n] uses[a]
store b, a Ø uses[ [x] ]

(for all x that may equal a)
br L Ø Ø
br a L1  L2 Ø Ø
a = f(b1,…,bn) Ø uses[a]∪ uses[ [x] ]   

(for all x)
f(b1,…,bn) Ø uses[ [x] ] (for all x)
return a Ø Ø
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Note the need for “may 
alias” information…

Note that functions are 
assumed to be impure…



Available Expressions Step 2
• Define the constraints that an available expressions solution must 

satisfy.
• out[n] ⊇ gen[n]

“The expressions made available by n that reach the end of the  node”

• in[n] ⊆ out[n’]    if n’ is in pred[n]
“The expressions available  at the beginning of a node include those 
that reach the exit of every predecessor”

• out[n] ∪ kill[n] ⊇ in[n]
“The expressions available on entry either reach the end of the node or 
are killed by it.”
– Equivalently:   out[n] ⊇ in[n] - kill[n]
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Available Expressions Step 3
• Convert constraints to iterated update equations:

• in[n] := ∩n’∈pred[n]out[n’]

• out[n] := gen[n] ∪ (in[n] - kill[n])

• Algorithm: initialize in[n] and out[n] to {set of all nodes}
– Iterate the update equations until a fixed point is reached

• The algorithm terminates because in[n] and out[n] decrease only 
monotonically
– At most to a minimum of the empty set

• The algorithm is precise because it finds the largest sets that satisfy the 
constraints.
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GENERAL DATAFLOW ANALYSIS
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Comparing Dataflow Analyses
• Look at the update equations in the inner loop of the analyses
• Liveness: (backward)

– Let gen[n] = use[n] and kill[n] = def[n]

– out[n] := = ∪n’∈succ[n]in[n’]

– in[n] := gen[n] ∪ (out[n] - kill[n])

• Reaching Definitions: (forward)

– in[n] := ∪n’∈pred[n]out[n’]

– out[n] := gen[n] ∪ (in[n] - kill[n])

• Available Expressions: (forward)

– in[n] := ∩n’∈pred[n]out[n’]

– out[n] := gen[n] ∪ (in[n] - kill[n])
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Common Features
• All of these analyses have a domain over which they solve constraints.

– Liveness, the domain is sets of variables
– Reaching defns.,  Available exprs. the domain is sets of nodes

• Each analysis has a notion of gen[n] and kill[n]
– Used to explain how information propagates across a node.

• Each analysis is propagates information either forward or backward
– Forward: in[n] defined in terms of predecessor nodes’ out[]
– Backward: out[n] defined in terms of successor nodes’ in[]

• Each analysis has a way of aggregating information
– Liveness & reaching definitions take union (∪)
– Available expressions uses intersection (∩)
– Union expresses a property that holds for some path (existential)
– Intersection expresses a property that holds for all paths (universal)
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(Forward) Dataflow Analysis Framework
A forward dataflow analysis can be characterized by:
1. A domain of dataflow values L

– e.g. L = the powerset of all variables
– Think of  ℓ∈L as a property, then “x ∈ ℓ” 

means “x has the property”

2. For each node n, a flow function Fn : L → L
– So far we’ve seen Fn(ℓ) = gen[n] ∪ (ℓ - kill[n])
– So:  out[n] = Fn(in[n])
– “If ℓ is a property that holds before the node n,

then Fn(ℓ) holds after n”

3. A combining operator ⨅
– “If we know either ℓ1 or ℓ2 holds on entry

to node n, we know at most ℓ1 ⨅ ℓ2”

– in[n] := ⨅n’∈pred[n]out[n’]

CIS 341: Compilers 43

n

ℓ

Fn(ℓ)

n

ℓ1 ℓ2

ℓ1 ⨅ ℓ2



Generic Iterative (Forward) Analysis
for all n, in[n] := ⟙, out[n] := ⟙
repeat until no change

for all n

in[n] := ⨅n’∈pred[n]out[n’]
out[n] := Fn(in[n])

end
end

• Here, ⟙ ∈ L (“top”) represents having the “maximum” amount of 
information.
– Having “more” information enables more optimizations
– “Maximum” amount could be inconsistent with the constraints.
– Iteration refines the answer, eliminating inconsistencies
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Structure of L
• The domain has structure that reflects the “amount” of information  

contained in each dataflow value.
• Some dataflow values are more informative than others:

– Write ℓ1 ⊑ ℓ2 whenever ℓ2 provides at least as much information as ℓ1.
– The dataflow value ℓ2 is “better” for enabling optimizations.

• Example 1: for liveness analysis, smaller sets of variables are more 
informative.
– Having smaller sets of variables live across an edge means that there are 

fewer conflicts for register allocation assignments.
– So:   ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊇ ℓ2

• Example 2: for available expressions analysis, larger sets of nodes are 
more informative.
– Having a larger set of nodes (equivalently, expressions) available means 

that there is more opportunity for common subexpression elimination.
– So: ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊆ ℓ2
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L as a Partial Order
• L is a partial order defined by the ordering relation ⊑.

• A partial order is an ordered set.
• Some of the elements might be incomparable.

– That is, there might be ℓ1, ℓ2 ∈ L such that neither ℓ1 ⊑ ℓ2 nor ℓ2 ⊑ ℓ1

• Properties of a partial order:
– Reflexivity:   ℓ ⊑ ℓ
– Transitivity:  ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ3 implies ℓ1 ⊑ ℓ2

– Anti-symmetry: ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ1 implies ℓ1 = ℓ2

• Examples:
– Integers ordered by ≤
– Types ordered by <:
– Sets ordered by ⊆ or ⊇
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Subsets of {a,b,c} ordered by ⊆
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{a,c}

{c}

{b,c}
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ℓ1 ⊑ ℓ2

ℓ1

ℓ2

= ⟙

= ⟘

order  ⊑ is ⊆ meet ⨅ is ∩ join ⨆ is ∪

Partial order presented as a Hasse diagram.
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Meets and Joins
• The combining operator ⨅ is called the “meet” operation.
• It constructs the greatest lower bound:

– ℓ1 ⨅ ℓ2   ⊑ ℓ1 and ℓ1 ⨅ ℓ2   ⊑ ℓ2
“the meet is a lower bound”

– If ℓ ⊑ ℓ1 and ℓ ⊑ ℓ2 then ℓ ⊑ ℓ1 ⨅ ℓ2   
“there is no greater lower bound” 

• Dually, the ⨆ operator is called the “join” operation.
• It constructs the least upper bound:

– ℓ1 ⊑ ℓ1 ⨆ ℓ2   and   ℓ2 ⊑ ℓ1 ⨆ ℓ2   
“the join is an upper bound”

– If ℓ1 ⊑ ℓ and ℓ2 ⊑ ℓ then ℓ1 ⨆ ℓ2   ⊑ ℓ
“there is no smaller upper bound” 

• A partial order that has all meets and joins is called a lattice.
– If it has just meets, it’s called a meet semi-lattice.
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Another Way to Describe the Algorithm
• Algorithm repeatedly computes (for each node n):
• out[n] := Fn(in[n])  

• Equivalently:   out[n] := Fn(⨅n’∈pred[n]out[n’])

– By definition of in[n]

• We can write this as a simultaneous update of the vector of out[n] 
values:
– let xn = out[n]
– Let X = (x1, x2, … , xn)      it’s a vector of points in L

– F(X) = (F1(⨅j∈pred[1]out[j]), F2(⨅j∈pred[2]out[j]), …, Fn(⨅j∈pred[n]out[j]))

• Any solution to the constraints is a fixpoint X of F
– i.e. F(X) = X
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Iteration Computes Fixpoints
• Let X0 = (⟙,⟙, …, ⟙)
• Each loop through the algorithm apply F to the old vector:

X1 = F(X0)
X2 = F(X1)
…

• Fk+1(X) = F(Fk(X))

• A fixpoint is reached when Fk(X) = Fk+1(X)
– That’s when the algorithm stops.

• Wanted: a maximal fixpoint
– Because that one is more informative/useful for performing optimizations

CIS 341: Compilers 50



Monotonicity & Termination
• Each flow function Fn maps lattice elements to lattice elements; to be 

sensible is should be monotonic:
• F : L → L is monotonic iff:

ℓ1 ⊑ ℓ2 implies that F(ℓ1) ⊑ F(ℓ2) 
– Intuitively:  “If you have more information entering a node, then you have 

more information leaving the node.”

• Monotonicity lifts point-wise to the function: F : Ln → Ln

– vector (x1, x2, … , xn) ⊑ (y1, y2, … , yn)  iff xi ⊑ yi for each i

• Note that F is consistent: F(X0) ⊑ X0

– So each iteration moves at least one step down the lattice (for some 
component of the vector)

– … ⊑ F(F(X0)) ⊑ F(X0)  ⊑ X0

• Therefore, # steps needed to reach a fixpoint is at most the height H of 
L times the number of nodes:  O(Hn)
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Building Lattices?
• Information about individual nodes or variables can be lifted 

pointwise:  
– If L is a lattice, then so is  { f : X → L } where f ⊑ g if and only if

f(x) ⊑ g(x) for all x ∊ X.

• Like types, the dataflow lattices are static approximations to the 
dynamic behavior:
– Could pick a lattice based on subtyping:  

– Or other information:   

• Points in the lattice are sometimes called dataflow “facts”  
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“Classic” Constant Propagation
• Constant propagation can be formulated as a dataflow analysis.

• Idea: propagate and fold integer constants in one pass:
x = 1; x = 1;
y = 5 + x; y = 6;
z = y * y; z = 36;

• Information about a single variable:
– Variable is never defined.
– Variable has a single, constant value.
– Variable is assigned multiple values.
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Domains for Constant Propagation
• We can make a constant propagation lattice L for one variable like 

this:

• To accommodate multiple variables, we take the product lattice, with 
one element per variable.
– Assuming there are three variables, x, y, and z, the elements of the 

product lattice are of the form (ℓx, ℓy, ℓz).
– Alternatively, think of the product domain as a context that maps variable 

names to their “abstract interpretations”

• What are “meet” and “join” in this product lattice?
• What is the height of the product lattice?
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⟙ = multiple values

⟘ = never defined

…, -3, -2, -1, 0, 1, 2, 3, …



Flow Functions
• Consider the node           x = y op z
• F(ℓx, ℓy, ℓz) = ?

• F(ℓx, ⟙, ℓz) = (⟙, ⟙, ℓz) 
• F(ℓx, ℓy, ⟙) = (⟙, ℓy, ⟙)

• F(ℓx, ⟘, ℓz) = (⟘, ⟘, ℓz) 
• F(ℓx, ℓy, ⟘) = (⟘, ℓy, ⟘)

• F(ℓx, i, j) = (i op j, i, j)                    

• Flow functions for the other nodes are easy…
• Monotonic?
• Distributes over meets?
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“If either input might have multiple values
the result of the operation might too.”

“If either input is undefined
the result of the operation is too.”

”If the inputs are known constants, 
calculate the output statically.”



QUALITY OF DATAFLOW 
ANALYSIS SOLUTIONS
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Best Possible Solution
• Suppose we have a control-flow graph.
• If there is a path p1 starting from the 

root node (entry point of the function) 
traversing the nodes 
n0, n1, n2, … nk

• The best possible information along 
the path p1 is:
ℓp1 = Fnk(…Fn2(Fn1(Fn0(T)))…)

• Best solution at the output is some 
ℓ ⊑ ℓp for all paths p.

• Meet-over-paths (MOP) solution:

⨅p∈paths_to[n]ℓp
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e = 1

if x > 0

e = y * 5e = y * 3

e = y * x

1

2

3 4

5

Best answer here is: 

F5(F3(F2(F1(T))))  ⨅ F5(F4(F2(F1(T))))    



What about quality of iterative solution?

• Does the iterative solution: out[n] = Fn(⨅n’∈pred[n]out[n’]) compute the 
MOP solution?

• MOP Solution:  ⨅p∈paths_to[n] ℓp

• Answer:  Yes, if the flow functions distribute over ⨅
– Distributive means: ⨅i Fn(ℓi) = Fn(⨅i ℓi)

– Proof is a bit tricky & beyond the scope of this class.  (Difficulty: loops in 
the control flow graph might mean there are infinitely many paths…)

• Not all analyses give MOP solution
– They are more conservative.
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Reaching Definitions is MOP
• Fn[x] = gen[n] ∪ (x - kill[n])   

• Does Fn distribute over meet ⨅ =∪?

• Fn[x ⨅ y] 
=  gen[n] ∪ ((x ∪ y) - kill[n]) 
=  gen[n] ∪ ((x - kill[n]) ∪ (y - kill[n]))
=  (gen[n] ∪(x - kill[n])) ∪ (gen[n]∪(y - kill[n])
=  Fn[x] ∪ Fn[y]

=  Fn[x] ⨅ Fn[y]

• Therefore: Reaching Definitions with iterative analysis always 
terminates with the MOP (i.e. best) solution.
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Constprop Iterative Solution
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z = 1z = 2

x = y + z

y = 1 y = 2

if x > 0

(⟘, ⟘, ⟘) 

(⟘, ⟘, ⟘) (⟘, ⟘, ⟘) 

(⟘, 2, ⟘) 

(⟘, 2, 1) (⟘, 1, 2) 

(⟘, 1, ⟘) 

(⟘, 1, 2) ⨅ (⟘, 2, 1) = (⟘, ⟙, ⟙)  

(⟙, ⟙, ⟙) iterative solution



MOP Solution ≠ Iterative Solution
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z = 1z = 2

x = y + z

y = 1 y = 2

if x > 0

(⟘, ⟘, ⟘) 

(⟘, ⟘, ⟘) (⟘, ⟘, ⟘) 

(⟘, 2, ⟘) 

(⟘, 2, 1) (⟘, 1, 2) 

(⟘, 1, ⟘) 

(3, 1, 2) ⨅ (3, 2, 1) = (3, ⟙, ⟙)  MOP solution



Why not compute MOP Solution?
• If MOP is better than the iterative analysis, why not compute it instead?

– ANS: exponentially many paths (even in graph without loops)

• O(n) nodes
• O(n) edges

• O(2n) paths*
– At each branch

there is a choice
of 2 directions
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* Incidentally, a similar idea
can be used to force ML / Haskell
type inference to need to construct
a type that is exponentially big
in the size of the program!



Dataflow Analysis: Summary
• Many dataflow analyses fit into a common framework.
• Key idea: Iterative solution of a system of equations over a lattice of 

constraints.
– Iteration terminates if flow functions are monotonic.
– Solution is equivalent to meet-over-paths answer if the flow functions 

distribute over meet (⨅).

• Dataflow analyses as presented work for an “imperative” intermediate 
representation.
– The values of temporary variables are updated (“mutated”) during 

evaluation.
– Such mutation complicates calculations
– SSA = “Single Static Assignment” eliminates this problem, by introducing 

more temporaries – each one assigned to only once.
– Next up: Converting to SSA, finding loops and dominators in CFGs
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IMPLEMENTATION
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See HW6: Dataflow Analysis


