
CIS 341: COMPILERS
Lecture 23

Announcements

• HW6: Analysis & Optimizations
– Alias analysis, constant propagation, dead code elimination, register

allocation
– Available Soon
– Due: Wednesday, April 27th

• Final Exam:
– According to registrar: Monday, May 2nd noon - 2:00pm

Zdancewic CIS 341: Compilers 2

CODE ANALYSIS

Zdancewic CIS 341: Compilers 3

GENERAL DATAFLOW ANALYSIS

Zdancewic CIS 341: Compilers 4

A Worklist Algorithm
• Use a FIFO queue of nodes that might need to be updated.

for all n, in[n] := Ø, out[n] := Ø
w = new queue with all nodes

repeat until w is empty
let n = w.pop() // pull a node off the queue

old_in = in[n] // remember old in[n]

out[n] := ∪n’∈succ[n]in[n’]

in[n] := use[n] ∪ (out[n] - def[n])
if (old_in != in[n]), // if in[n] has changed

for all m in pred[n], w.push(m) // add to worklist

end

CIS 341: Compilers 5

Comparing Dataflow Analyses
• Look at the update equations in the inner loop of the analyses
• Liveness: (backward)

– Let gen[n] = use[n] and kill[n] = def[n]

– out[n] := = ∪n’∈succ[n]in[n’]

– in[n] := gen[n] ∪ (out[n] - kill[n])

• Reaching Definitions: (forward)

– in[n] := ∪n’∈pred[n]out[n’]

– out[n] := gen[n] ∪ (in[n] - kill[n])

• Available Expressions: (forward)

– in[n] := ∩n’∈pred[n]out[n’]

– out[n] := gen[n] ∪ (in[n] - kill[n])

CIS 341: Compilers 6

Common Features
• All of these analyses have a domain over which they solve constraints.

– Liveness, the domain is sets of variables
– Reaching defns., Available exprs. the domain is sets of nodes

• Each analysis has a notion of gen[n] and kill[n]
– Used to explain how information propagates across a node.

• Each analysis is propagates information either forward or backward
– Forward: in[n] defined in terms of predecessor nodes’ out[]
– Backward: out[n] defined in terms of successor nodes’ in[]

• Each analysis has a way of aggregating information
– Liveness & reaching definitions take union (∪)
– Available expressions uses intersection (∩)
– Union expresses a property that holds for some path (existential)
– Intersection expresses a property that holds for all paths (universal)

CIS 341: Compilers 7

(Forward) Dataflow Analysis Framework
A forward dataflow analysis can be characterized by:
1. A domain of dataflow values L

– e.g. L = the powerset of all variables
– Think of ℓ∈L as a property, then “x ∈ ℓ”

means “x has the property”

2. For each node n, a flow function Fn : L → L
– So far we’ve seen Fn(ℓ) = gen[n] ∪ (ℓ - kill[n])
– So: out[n] = Fn(in[n])
– “If ℓ is a property that holds before the node n,

then Fn(ℓ) holds after n”

3. A combining operator ⨅
– “If we know either ℓ1 or ℓ2 holds on entry

to node n, we know at most ℓ1 ⨅ ℓ2”

– in[n] := ⨅n’∈pred[n]out[n’]

CIS 341: Compilers 8

n

ℓ

Fn(ℓ)

n

ℓ1 ℓ2

ℓ1 ⨅ ℓ2

Generic Iterative (Forward) Analysis
for all n, in[n] := ⟙, out[n] := ⟙
repeat until no change

for all n

in[n] := ⨅n’∈pred[n]out[n’]
out[n] := Fn(in[n])

end
end

• Here, ⟙ ∈ L (“top”) represents having the “maximum” amount of
information.
– Having “more” information enables more optimizations
– “Maximum” amount could be inconsistent with the constraints.
– Iteration refines the answer, eliminating inconsistencies

CIS 341: Compilers 9

Structure of L
• The domain has structure that reflects the “amount” of information

contained in each dataflow value.
• Some dataflow values are more informative than others:

– Write ℓ1 ⊑ ℓ2 whenever ℓ2 provides at least as much information as ℓ1.
– The dataflow value ℓ2 is “better” for enabling optimizations.

• Example 1: for liveness analysis, smaller sets of variables are more
informative.
– Having smaller sets of variables live across an edge means that there are

fewer conflicts for register allocation assignments.
– So: ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊇ ℓ2

• Example 2: for available expressions analysis, larger sets of nodes are
more informative.
– Having a larger set of nodes (equivalently, expressions) available means

that there is more opportunity for common subexpression elimination.
– So: ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊆ ℓ2

CIS 341: Compilers 10

L as a Partial Order
• L is a partial order defined by the ordering relation ⊑.

• A partial order is an ordered set.
• Some of the elements might be incomparable.

– That is, there might be ℓ1, ℓ2 ∈ L such that neither ℓ1 ⊑ ℓ2 nor ℓ2 ⊑ ℓ1

• Properties of a partial order:
– Reflexivity: ℓ ⊑ ℓ
– Transitivity: ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ3 implies ℓ1 ⊑ ℓ2

– Anti-symmetry: ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ1 implies ℓ1 = ℓ2

• Examples:
– Integers ordered by ≤
– Types ordered by <:
– Sets ordered by ⊆ or ⊇

CIS 341: Compilers 11

Subsets of {a,b,c} ordered by ⊆

CIS 341: Compilers 12

{a,b,c}

{a,c}

{c}

{b,c}

{a,b}

{a}

{ }

{b}

ℓ1 ⊑ ℓ2

ℓ1

ℓ2

= ⟙

= ⟘

order ⊑ is ⊆ meet ⨅ is ∩ join ⨆ is ∪

Partial order presented as a Hasse diagram.
H

ei
gh

t i
s

3

Meets and Joins
• The combining operator ⨅ is called the “meet” operation.
• It constructs the greatest lower bound:

– ℓ1 ⨅ ℓ2 ⊑ ℓ1 and ℓ1 ⨅ ℓ2 ⊑ ℓ2
“the meet is a lower bound”

– If ℓ ⊑ ℓ1 and ℓ ⊑ ℓ2 then ℓ ⊑ ℓ1 ⨅ ℓ2
“there is no greater lower bound”

• Dually, the ⨆ operator is called the “join” operation.

• It constructs the least upper bound:
– ℓ1 ⊑ ℓ1 ⨆ ℓ2 and ℓ2 ⊑ ℓ1 ⨆ ℓ2

“the join is an upper bound”
– If ℓ1 ⊑ ℓ and ℓ2 ⊑ ℓ then ℓ1 ⨆ ℓ2 ⊑ ℓ

“there is no smaller upper bound”

• A partial order that has all meets and joins is called a lattice.
– If it has just meets, it’s called a meet semi-lattice.

CIS 341: Compilers 13

Another Way to Describe the Algorithm
• Algorithm repeatedly computes (for each node n):
• out[n] := Fn(in[n])

• Equivalently: out[n] := Fn(⨅n’∈pred[n]out[n’])

– By definition of in[n]

• We can write this as a simultaneous update of the vector of out[n]
values:
– let xn = out[n]
– Let X = (x1, x2, … , xn) it’s a vector of points in L

– F(X) = (F1(⨅j∈pred[1]out[j]), F2(⨅j∈pred[2]out[j]), …, Fn(⨅j∈pred[n]out[j]))

• Any solution to the constraints is a fixpoint X of F
– i.e. F(X) = X

CIS 341: Compilers 14

Iteration Computes Fixpoints
• Let X0 = (⟙,⟙, …, ⟙)
• Each loop through the algorithm apply F to the old vector:

X1 = F(X0)
X2 = F(X1)
…

• Fk+1(X) = F(Fk(X))
• A fixpoint is reached when Fk(X) = Fk+1(X)

– That’s when the algorithm stops.

• Wanted: a maximal fixpoint
– Because that one is more informative/useful for performing optimizations

CIS 341: Compilers 15

Monotonicity & Termination
• Each flow function Fn maps lattice elements to lattice elements; to be

sensible is should be monotonic:
• F : L → L is monotonic iff:

ℓ1 ⊑ ℓ2 implies that F(ℓ1) ⊑ F(ℓ2)
– Intuitively: “If you have more information entering a node, then you have

more information leaving the node.”

• Monotonicity lifts point-wise to the function: F : Ln → Ln

– vector (x1, x2, … , xn) ⊑ (y1, y2, … , yn) iff xi ⊑ yi for each i

• Note that F is consistent: F(X0) ⊑ X0

– So each iteration moves at least one step down the lattice (for some
component of the vector)

– … ⊑ F(F(X0)) ⊑ F(X0) ⊑ X0

• Therefore, # steps needed to reach a fixpoint is at most the height H of
L times the number of nodes: O(Hn)

CIS 341: Compilers 16

Building Lattices?
• Information about individual nodes or variables can be lifted

pointwise:
– If L is a lattice, then so is { f : X → L } where f ⊑ g if and only if

f(x) ⊑ g(x) for all x ∊ X.

• Like types, the dataflow lattices are static approximations to the
dynamic behavior:
– Could pick a lattice based on subtyping:

– Or other information:

• Points in the lattice are sometimes called dataflow “facts”

Zdancewic CIS 341: Compilers 17

Any

Int

Neg Zero Pos

Bool

True False

<:

<:
<:

:>

:> :>

:>

Aliased

Unaliased

“Classic” Constant Propagation
• Constant propagation can be formulated as a dataflow analysis.

• Idea: propagate and fold integer constants in one pass:
x = 1; x = 1;
y = 5 + x; y = 6;
z = y * y; z = 36;

• Information about a single variable:
– Variable is never defined.
– Variable has a single, constant value.
– Variable is assigned multiple values.

CIS 341: Compilers 18

Domains for Constant Propagation
• We can make a constant propagation lattice L for one variable like

this:

• To accommodate multiple variables, we take the product lattice, with
one element per variable.
– Assuming there are three variables, x, y, and z, the elements of the

product lattice are of the form (ℓx, ℓy, ℓz).
– Alternatively, think of the product domain as a context that maps variable

names to their “abstract interpretations”

• What are “meet” and “join” in this product lattice?

• What is the height of the product lattice?

CIS 341: Compilers 19

⟙ = multiple values

⟘ = never defined

…, -3, -2, -1, 0, 1, 2, 3, …

Flow Functions
• Consider the node x = y op z
• F(ℓx, ℓy, ℓz) = ?

• F(ℓx, ⟙, ℓz) = (⟙, ⟙, ℓz)
• F(ℓx, ℓy, ⟙) = (⟙, ℓy, ⟙)

• F(ℓx, ⟘, ℓz) = (⟘, ⟘, ℓz)
• F(ℓx, ℓy, ⟘) = (⟘, ℓy, ⟘)

• F(ℓx, i, j) = (i op j, i, j)

• Flow functions for the other nodes are easy…
• Monotonic?
• Distributes over meets?

CIS 341: Compilers 20

“If either input might have multiple values
the result of the operation might too.”

“If either input is undefined
the result of the operation is too.”

”If the inputs are known constants,
calculate the output statically.”

QUALITY OF DATAFLOW
ANALYSIS SOLUTIONS

Zdancewic CIS 341: Compilers 21

Best Possible Solution
• Suppose we have a control-flow graph.
• If there is a path p1 starting from the

root node (entry point of the function)
traversing the nodes
n0, n1, n2, … nk

• The best possible information along
the path p1 is:
ℓp1 = Fnk(…Fn2(Fn1(Fn0(T)))…)

• Best solution at the output is some
ℓ ⊑ ℓp for all paths p.

• Meet-over-paths (MOP) solution:

⨅p∈paths_to[n]ℓp

CIS 341: Compilers 22

e = 1

if x > 0

e = y * 5e = y * 3

e = y * x

1

2

3 4

5

Best answer here is:

F5(F3(F2(F1(T)))) ⨅ F5(F4(F2(F1(T))))

What about quality of iterative solution?

• Does the iterative solution: out[n] = Fn(⨅n’∈pred[n]out[n’]) compute the
MOP solution?

• MOP Solution: ⨅p∈paths_to[n] ℓp

• Answer: Yes, if the flow functions distribute over ⨅
– Distributive means: ⨅i Fn(ℓi) = Fn(⨅i ℓi)

– Proof is a bit tricky & beyond the scope of this class. (Difficulty: loops in
the control flow graph might mean there are infinitely many paths…)

• Not all analyses give MOP solution
– They are more conservative.

CIS 341: Compilers 23

Reaching Definitions is MOP
• Fn[x] = gen[n] ∪ (x - kill[n])

• Does Fn distribute over meet ⨅ =∪?

• Fn[x ⨅ y]
= gen[n] ∪ ((x ∪ y) - kill[n])
= gen[n] ∪ ((x - kill[n]) ∪ (y - kill[n]))
= (gen[n] ∪(x - kill[n])) ∪ (gen[n]∪(y - kill[n])
= Fn[x] ∪ Fn[y]

= Fn[x] ⨅ Fn[y]

• Therefore: Reaching Definitions with iterative analysis always
terminates with the MOP (i.e. best) solution.

CIS 341: Compilers 24

Constprop Iterative Solution

CIS 341: Compilers 25

z = 1z = 2

x = y + z

y = 1 y = 2

if x > 0

(⟘, ⟘, ⟘)

(⟘, ⟘, ⟘) (⟘, ⟘, ⟘)

(⟘, 2, ⟘)

(⟘, 2, 1) (⟘, 1, 2)

(⟘, 1, ⟘)

(⟘, 1, 2) ⨅ (⟘, 2, 1) = (⟘, ⟙, ⟙)

(⟙, ⟙, ⟙) iterative solution

MOP Solution ≠ Iterative Solution

CIS 341: Compilers 26

z = 1z = 2

x = y + z

y = 1 y = 2

if x > 0

(⟘, ⟘, ⟘)

(⟘, ⟘, ⟘) (⟘, ⟘, ⟘)

(⟘, 2, ⟘)

(⟘, 2, 1) (⟘, 1, 2)

(⟘, 1, ⟘)

(3, 1, 2) ⨅ (3, 2, 1) = (3, ⟙, ⟙) MOP solution

Why not compute MOP Solution?
• If MOP is better than the iterative analysis, why not compute it instead?

– ANS: exponentially many paths (even in graph without loops)

• O(n) nodes
• O(n) edges
• O(2n) paths*

– At each branch
there is a choice
of 2 directions

Zdancewic CIS 341: Compilers 27

* Incidentally, a similar idea
can be used to force ML / Haskell
type inference to need to construct
a type that is exponentially big
in the size of the program!

Dataflow Analysis: Summary
• Many dataflow analyses fit into a common framework.
• Key idea: Iterative solution of a system of equations over a lattice of

constraints.
– Iteration terminates if flow functions are monotonic.
– Solution is equivalent to meet-over-paths answer if the flow functions

distribute over meet (⨅).

• Dataflow analyses as presented work for an “imperative” intermediate
representation.
– The values of temporary variables are updated (“mutated”) during

evaluation.
– Such mutation complicates calculations
– SSA = “Single Static Assignment” eliminates this problem, by introducing

more temporaries – each one assigned to only once.
– Next up: Converting to SSA, finding loops and dominators in CFGs

CIS 341: Compilers 28

LOOPS AND DOMINATORS

Zdancewic CIS 341: Compilers 29

Loops in Control-flow Graphs
• Taking into account loops is important for optimizations.

– The 90/10 rule applies, so optimizing loop bodies is important

• Should we apply loop optimizations at the AST level or at a lower
representation?
– Loop optimizations benefit from other IR-level optimizations and vice-

versa, so it is good to interleave them.

• Loops may be hard to recognize at the quadruple / LLVM IR level.
– Many kinds of loops: while, do/while, for, continue, goto…

• Problem: How do we identify loops in the control-flow graph?

CIS 341: Compilers 30

Definition of a Loop
• A loop is a set of nodes in the control flow graph.

– One distinguished entry point called the header

• Every node is reachable
from the header &
the header is reachable
from every node.
– A loop is a strongly

connected component

• No edges enter the loop
except to the header

• Nodes with outgoing edges
are called loop exit nodes

CIS 341: Compilers 31

header

exit node

loop
nodes

Nested Loops
• Control-flow graphs may contain many loops
• Loops may contain other loops:

CIS 341: Compilers 32

Control Tree:

The control tree
depicts the nesting
structure of the
program.

Control-flow Analysis
• Goal: Identify the loops and nesting structure of the CFG.

• Control flow analysis is based on the idea of dominators:
• Node A dominates node B if the only way to reach B from the start

node is through node A.

• An edge in the graph
is a back edge if the
target node dominates
the source node.

• A loop contains at least
one back edge.

CIS 341: Compilers 33

Back Edge

Dominator Trees
• Domination is transitive:

– if A dominates B and B dominates C then A dominates C

• Domination is anti-symmetric:
– if A dominates B and B dominates A then A = B

• Every flow graph has a dominator tree
– The Hasse diagram of the dominates relation

CIS 341: Compilers 34

1

2

3 4

5 6

7 8

9 0

1

2

3 4

5 6

7 8

9 0

Dominator Dataflow Analysis
• We can define Dom[n] as a forward dataflow analysis.

– Using the framework we saw earlier: Dom[n] = out[n] where:

• “A node B is dominated by another node A if A dominates all of the
predecessors of B.”

– in[n] := ∩n’∈pred[n]out[n’]

• “Every node dominates itself.”
– out[n] := in[n] ∪ {n}

• Formally: L = set of nodes ordered by ⊆
– T = {all nodes}
– Fn(x) = x ∪ {n}
– ⨅ is ∩

• Easy to show monotonicity and that Fn distributes over meet.
– So algorithm terminates and is MOP

CIS 341: Compilers 35

Improving the Algorithm
• Dom[b] contains just those nodes along the path in the dominator tree

from the root to b:
– e.g. Dom[8] = {1,2,4,8}, Dom[7] = {1,2,4,5,7}
– There is a lot of sharing among the nodes

• More efficient way to represent Dom sets is
to store the dominator tree.
– doms[b] = immediate dominator of b
– doms[8] = 4, doms[7] = 5

• To compute Dom[b] walk through doms[b]
• Need to efficiently compute intersections

of Dom[a] and Dom[b]
– Traverse up tree, looking for least common

ancestor:
– Dom[8] ∩Dom[7] = Dom[4]

• See: “A Simple, Fast Dominance Algorithm” Cooper, Harvey, and
Kennedy

CIS 341: Compilers 36

1

2

3 4

5 6

7 8

9 0

Completing Control-flow Analysis
• Dominator analysis identifies back edges:

– Edge n à h where h dominates n

• Each back edge has a natural loop:
– h is the header
– All nodes reachable from h that also reach

n without going through h

• For each back edge n à h, find the natural loop:
– {n’ | n is reachable from n’ in G – {h}} ∪ {h}

• Two loops may share the same header:
merge them

• Nesting structure of loops is determined by set inclusion
– Can be used to build the control tree

CIS 341: Compilers 37

h

n

h

n m

Example Natural Loops

CIS 341: Compilers 38

1

2

3 4

5 6

7 8

9 0

Control Tree:

The control tree
depicts the nesting
structure of the
program.

Natural Loops

Uses of Control-flow Information
• Loop nesting depth plays an important role in optimization heuristics.

– Deeply nested loops pay off the most for optimization.

• Need to know loop headers / back edges for doing
– loop invariant code motion
– loop unrolling

• Dominance information also plays a role in converting to SSA form
– Used internally by LLVM to do register allocation.

CIS 341: Compilers 39

REVISITING SSA

Zdancewic CIS 341: Compilers 40

Phi nodes
Alloc “promotion”
Register allocation

Single Static Assignment (SSA)
• LLVM IR names (via %uids) all intermediate values computed by the

program.
• It makes the order of evaluation explicit.
• Each %uid is assigned to only once

– Contrast with the mutable quadruple form
– Note that dataflow analyses had these kill[n] sets because of updates to

variables…
• Naïve implementation of backend: map %uids to stack slots
• Better implementation: map %uids to registers (as much as possible)

• Question: How do we convert a source program to make maximal use
of %uids, rather than alloca-created storage?
– two problems: control flow & location in memory

• Then: How do we convert SSA code to x86, mapping %uids to
registers?
– Register allocation.

CIS 341: Compilers 41

Alloca vs. %UID
• Current compilation strategy:

• Directly map source variables into %uids?

• Does this always work?

Zdancewic CIS 341: Compilers 42

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

%x = alloca i64
%y = alloca i64
store i64* %x, 3
store i64* %y, 0
%x1 = load %i64* %x
%tmp1 = add i64 %x1, 1
store i64* %x, %tmp1
%x2 = load %i64* %x
%tmp2 = add i64 %x2, 2
store i64* %y, %tmp2

int x = 3;
int y = 0;
x = x + 1;
y = x + 2;

int x1 = 3;
int y1 = 0;
x2 = x1 + 1;
y2 = x2 + 2;

%x1 = add i64 3, 0
%y1 = add i64 0, 0
%x2 = add i64 %x1, 1
%y2 = add i64 %x2, 2

What about If-then-else?
• How do we translate this into SSA?

• What do we put for ???

CIS 341: Compilers 43

int y = …
int x = …
int z = …
if (p) {

x = y + 1;
} else {

x = y * 2;
}
z = x + 3;

entry:
%y1 = …
%x1 = …
%z1 = …
%p = icmp …
br i1 %p, label %then, label %else

then:
%x2 = add i64 %y1, 1
br label %merge

else:
%x3 = mult i64 %y1, 2

merge:
%z2 = %add i64 ???, 3

Phi Functions
• Solution: f functions

– Fictitious operator, used only for analysis
• implemented by Mov at x86 level

– Chooses among different versions of a variable based on the path by
which control enters the phi node.
%uid = phi <ty> v1, <label1>, … , vn, <labeln>

Zdancewic CIS 341: Compilers 44

int y = …
int x = …
int z = …
if (p) {

x = y + 1;
} else {

x = y * 2;
}
z = x + 3;

entry:
%y1 = …
%x1 = …
%z1 = …
%p = icmp …
br i1 %p, label %then, label %else

then:
%x2 = add i64 %y1, 1
br label %merge

else:
%x3 = mult i64 %y1, 2

merge:
%x4 = phi i64 %x2, %then, %x3, %else
%z2 = %add i64 %x4, 3

Phi Nodes and Loops
• Importantly, the %uids on the right-hand side of a phi node can be

defined “later” in the control-flow graph.
– Means that %uids can hold values “around a loop”

– Scope of %uids is defined by dominance

Zdancewic CIS 341: Compilers 45

entry:
%y1 = …
%x1 = …
br label %body

body:
%x2 = phi i64 %x1, %entry, %x3, %body
%x3 = add i64 %x2, %y1
%p = icmp slt i64, %x3, 10
br i1 %p, label %body, label %after

after:
…

Alloca Promotion
• Not all source variables can be allocated to registers

– If the address of the variable is taken (as permitted in C, for example)
– If the address of the variable “escapes” (by being passed to a function)

• An alloca instruction is called promotable if neither of the two
conditions above holds

• Happily, most local variables declared in source programs are
promotable
– That means they can be register allocated

Zdancewic CIS 341: Compilers 46

entry:
%x = alloca i64 // %x cannot be promoted
%y = call malloc(i64 8)
%ptr = bitcast i8* %y to i64**
store i65** %ptr, %x // store the pointer into the heap

entry:
%x = alloca i64 // %x cannot be promoted
%y = call foo(i64* %x) // foo may store the pointer into the heap

Converting to SSA: Overview
• Start with the ordinary control flow graph that uses allocas

– Identify “promotable” allocas

• Compute dominator tree information
• Calculate def/use information for each such allocated variable
• Insert f functions for each variable at necessary “join points”

• Replace loads/stores to alloc’ed variables with freshly-generated
%uids

• Eliminate the now unneeded load/store/alloca instructions.

CIS 341: Compilers 47

Where to Place f functions?
• Need to calculate the “Dominance Frontier”

• Node A strictly dominates node B if A dominates B and A ≠ B.
– Note: A does not strictly dominate B if A does not dominate B or A = B.

• The dominance frontier of a node B is the set of all CFG nodes y such
that B dominates a predecessor of y but does not strictly dominate y
– Intuitively: starting at B, there is a path to y, but there is another route to y

that does not go through B

• Write DF[n] for the dominance frontier of node n.

CIS 341: Compilers 48

Dominance Frontiers
• Example of a dominance frontier calculation results
• DF[1] = {1}, DF[2] = {1,2}, DF[3] = {2}, DF[4] = {1}, DF[5] = {8,0},

DF[6] = {8}, DF[7] = {7,0}, DF[8] = {0}, DF[9] = {7,0}, DF[0] = {}

CIS 341: Compilers 49

1

2

3 4

5 6

7 8

9 0

1

2

3 4

5 6

7 8

9 0

Control-flow Graph Dominator Tree

Algorithm For Computing DF[n]
• Assume that doms[n] stores the dominator tree (so that

doms[n] is the immediate dominator of n in the tree)

• Adds each B to the DF sets to which it belongs

for all nodes B
if #(pred[B]) ≥ 2 // (just an optimization)
for each p ∈pred[B] {

runner := p // start at the predecessor of B
while (runner ≠ doms[B]) // walk up the tree adding B

DF[runner] := DF[runner] ∪ {B}
runner := doms[runner]

}

CIS 341: Compilers 50

Insert f at Join Points
• Lift the DF[n] to a set of nodes N in the obvious way:

DF[N] = ∪n∈NDF[n]
• Suppose that at variable x is defined at a set of nodes N.

DF0[N] = DF[N]
DFi+1[N] = DF[DFi[N]∪ N]

Let J[N] be the least fixed point of the sequence:
DF0[N]⊆ DF1[N] ⊆ DF2[N] ⊆ DF3[N] ⊆…

That is, J[N] = DFk[N] for some k such that DFk[N] = DFk+1[N]
– J[N] is called the “join points” for the set N

• We insert f functions for the variable x at each node in J[N].
– x = f(x, x, …, x); (one “x” argument for each predecessor of the node)
– In practice, J[N] is never directly computed, instead you use a worklist

algorithm that keeps adding nodes for DFk[N] until there are no changes, just
as in the dataflow solver.

• Intuition:
– If N is the set of places where x is modified, then DF[N] is the places where

phi nodes need to be added, but those also “count” as modifications of x, so
we need to insert the phi nodes to capture those modifications too…

CIS 341: Compilers 51

Example Join-point Calculation
• Suppose the variable x is modified at nodes 3 and 6

– Where would we need to add phi nodes?

• DF0[{3,6}] = DF[{3,6}] = DF[3] ∪ DF[6] = {2,8}
• DF1[{3,6}]

= DF[DF0{3,6} ∪ {3,6}]
= DF[{2,3,6,8}]
= DF[2] ∪ DF[3] ∪ DF[6] ∪ DF[8]
= {1,2} ∪ {2} ∪ {8} ∪ {0} = {1,2,8,0}

• DF2[{3,6}]
= ...
= {1,2,8,0}

• So J[{3,6}] = {1,2,8,0} and we need to add phi nodes at those four
spots.

Zdancewic CIS 341: Compilers 52

Phi Placement Alternative
• Less efficient, but easier to understand:

• Place phi nodes "maximally" (i.e. at every node with > 2 predecessors)

• If all values flowing into phi node are the same, then eliminate it:
%x = phi t %y, %pred1 t %y %pred2 … t %y %predK
// code that uses %x
⇒
// code with %x replaced by %y

• Interleave with other optimizations
– copy propagation
– constant propagation
– etc.

Zdancewic CIS 341: Compilers 53

Example SSA Optimizations

• How to place phi
nodes without
breaking SSA?

• Note: the “real”
implementation
combines many of these
steps into one pass.
– Places phis directly at the

dominance frontier

• This example also
illustrates other common
optimizations:
– Load after store/alloca
– Dead store/alloca

elimination

l1: %p = alloca i64
store 0, %p
%b = %y > 0

br %b, %l2, %l3

l2:

store 1, %p

br %l3

l3:

%x = load %p
ret %x

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• How to place phi
nodes without
breaking SSA?

• Insert
– Loads at the

end of each
block

l1: %p = alloca i64
store 0, %p
%b = %y > 0
%x1 = load %p
br %b, %l2, %l3

l2:

store 1, %p
%x2 = load %p
br %l3

l3:

%x = load %p
ret %x

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• How to place phi
nodes without
breaking SSA?

• Insert
– Loads at the

end of each
block

– Insert φ-nodes
at each block

l1: %p = alloca i64
store 0, %p
%b = %y > 0
%x1 = load %p
br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]

store 1, %p
%x2 = load %p
br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]

%x = load %p
ret %x

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• How to place phi
nodes without
breaking SSA?

• Insert
– Loads at the

end of each
block

– Insert φ-nodes
at each block

– Insert stores
after φ-nodes

l1: %p = alloca i64
store 0, %p
%b = %y > 0
%x1 = load %p
br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]
store %x3, %p
store 1, %p
%x2 = load %p
br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]
store %x4, %p
%x = load %p
ret %x

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• For loads after
stores (LAS):
– Substitute all

uses of the load
by the value
being stored

– Remove the load

l1: %p = alloca i64
store 0, %p
%b = %y > 0
%x1 = load %p
br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]
store %x3, %p
store 1, %p
%x2 = load %p
br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]
store %x4, %p
%x = load %p
ret %x

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• For loads after
stores (LAS):
– Substitute all

uses of the load
by the value
being stored

– Remove the load

l1: %p = alloca i64
store 0, %p
%b = %y > 0
%x1 = load %p
br %b, %l2, %l3

l2: %x3 = φ[%x1,%l1]
store %x3, %p
store 1, %p
%x2 = load %p
br %l3

l3: %x4 = φ[%x1;%l1, %x2:%l2]
store %x4, %p
%x = load %p
ret %x

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• For loads after
stores (LAS):
– Substitute all

uses of the load
by the value
being stored

– Remove the load

l1: %p = alloca i64
store 0, %p
%b = %y > 0
%x1 = load %p
br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
store %x3, %p
store 1, %p
%x2 = load %p
br %l3

l3: %x4 = φ[0;%l1, %x2:%l2]
store %x4, %p
%x = load %p
ret %x

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• For loads after
stores (LAS):
– Substitute all

uses of the load
by the value
being stored

– Remove the load

l1: %p = alloca i64
store 0, %p
%b = %y > 0

br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
store %x3, %p
store 1, %p
%x2 = load %p
br %l3

l3: %x4 = φ[0;%l1, %x2:%l2]
store %x4, %p
%x = load %p
ret %x

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• For loads after
stores (LAS):
– Substitute all

uses of the load
by the value
being stored

– Remove the load

l1: %p = alloca i64
store 0, %p
%b = %y > 0

br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
store %x3, %p
store 1, %p
%x2 = load %p
br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
store %x4, %p
%x = load %p
ret %x

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• For loads after
stores (LAS):
– Substitute all

uses of the load
by the value
being stored

– Remove the load

l1: %p = alloca i64
store 0, %p
%b = %y > 0

br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
store %x3, %p
store 1, %p

br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
store %x4, %p
%x = load %p
ret %x

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• For loads after
stores (LAS):
– Substitute all

uses of the load
by the value
being stored

– Remove the load

l1: %p = alloca i64
store 0, %p
%b = %y > 0

br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
store %x3, %p
store 1, %p

br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
store %x4, %p
%x = load %p
ret %x4

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• Dead Store
Elimination (DSE)
– Eliminate all

stores with no
subsequent
loads.

• Dead Alloca
Elimination
(DAE)
– Eliminate all

allocas with no
subsequent
loads/stores.

l1: %p = alloca i64
store 0, %p
%b = %y > 0

br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
store %x3, %p
store 1, %p

br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
store %x4, %p

ret %x4

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

• Dead Store
Elimination (DSE)
– Eliminate all

stores with no
subsequent
loads.

• Dead Alloca
Elimination
(DAE)
– Eliminate all

allocas with no
subsequent
loads/stores.

l1: %p = alloca i64
store 0, %p
%b = %y > 0

br %b, %l2, %l3

l2: %x3 = φ[0,%l1]
store %x3, %p
store 1, %p

br %l3

l3: %x4 = φ[0;%l1, 1:%l2]
store %x4, %p

ret %x4

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

Example SSA Optimizations

l1:

%b = %y > 0

br %b, %l2, %l3

l2: %x3 = φ[0,%l1]

br %l3

l3: %x4 = φ[0;%l1, 1:%l2]

ret %x4

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

• Eliminate φ nodes:
– Singletons
– With identical

values from
each
predecessor

– See Aycock &
Horspool, 2002

Example SSA Optimizations

l1:

%b = %y > 0

br %b, %l2, %l3

l2: %x3 = φ[0,%l1]

br %l3

l3: %x4 = φ[0;%l1, 1:%l2]

ret %x4

max φs

LAS/LA
A

DSE

DAE

elim φs

Find
alloca

• Eliminate φ nodes:
– Singletons
– With identical

values from
each
predecessor

Example SSA Optimizations

l1:

%b = %y > 0

br %b, %l2, %l3

l2:

br %l3

l3: %x4 = φ[0;%l1, 1:%l2]

ret %x4

max φs

LAS/LA
A

DSE

DAE

elim φ

Find
alloca

• Done!

LLVM Phi Placement
• This transformation is also sometimes called register promotion

– older versions of LLVM called this “mem2reg” memory to register
promotion

• In practice, LLVM combines this transformation with scalar
replacement of aggregates (SROA)
– i.e. transforming loads/stores of structured data into loads/stores on

register-sized data

• These algorithms are (one reason) why LLVM IR allows annotation of
predecessor information in the .ll files
– Simplifies computing the DF

Zdancewic CIS 341: Compilers 70

