CIS399: The Science of Data Ethics Lecture 18: March 26, 2019
Instructor: Michael Kearns & Ani Nenkova Scribes: Sam Holland, Thomas Kumpf

1 Recap

First, let’s recap our discussion on privacy and security issues from our last meeting. We discussed
the privacy and security issues associated with databases of human information. Each row contains
information (features) about each individual, which is fed into an algorithm that predicts, for ex-
ample, the probability that you have some disease. The output could then be some sort of useful
statistic or a neural network.

When discussing privacy, it’s conceptually helpful to distinguish the difference between the se-
curity of the database and the output. Security of the database consists of making sure only allowed
parties are able to see it (cryptography), while security of the output is a bit different, because
these results may be released to the general public — especially if they shed light on what features
can cause a certain type of disease. The danger here is when looking at this public output, it’s
possible to derive unwanted inferences about specific personal information in the database.

This example brings up topics of cryptography, network security, and data security, all of which
are big topics in computer science. Importantly, cryptography actually predates computers — peo-
ple have been sending encoded messages forever, although with the creation of computers it became
far more important and many algorithms were developed in the last 50 years. When talking about
these social norms like privacy, security, fairness, it’s important to think about definitions, what we
want to ask for, what we don’t want to ask for, so that we can design algorithms that meet these
conditions.

2 Cryptography

2.1 One-time Pad

The one-time pad is an encryption technique originally proposed in the 1950s by Claude Shannon,
often referred to as the inventor of information theory. This method produces a nice “upper bound”
definition of privacy, so what you see as the output is actually indistinguishable from a random
string. In other words, the output looks exactly like a coin flip. The procedure is described below:

One-Time Pad
One party has some message to send: a = {ay,az, ...,a,}, a; € {0,1}
Both parties privately decide on a random sequence of bits: b = {by, ba, ..., b, }, b; € {0,1}
The sending party outputs: ¢ = {¢; = a; ® b;}
The ideal desiderata for this encryption algorithm are as follows:

1. An observer cannot distinguish ¢ from a random string of bits

2. The receiving party can retrieve a from c

We can see that the first claim is true. Regardless of value of a;, if b; is chosen randomly, then ¢;
will look like a coin flip. This is easy to verify:

[Cizl b =0,p=

N =N | =

a; =1 =
c; =0 bi:1,p:
1
CZ'ZO bizo,pzf
a; =0 = %
=1 bizlang

No matter what the bit of a; is, ¢; is 1 with probability % and 0 with probability % This means
we fit the absolute ideal for encryption, that the attacker cannot distinguish ¢ from a completely
random string of bits.

Now we look to the second desideratum. An encryption scheme has no value if the receiver
cannot retrieve the original message from our encrypted message. Thankfully, this is easy to do
with one-time pass due to the associative nature of the exclusive or operation:

(a; ®b;)®dbi=0a;®(b;Db)=0a;,®0=q;

Despite achieving both of our desiderata, this method has its drawbacks. We need to meet in
a secret location every time we want to send a message, because the pads are randomly drawn
for one-time use. If we were to re-use the same pad, and our opposition knew we were using a
one-time pad strategy, information from the original message would become public. In addition,
storing these pads doubles the size of every message we want to send, as the encryption string b
must be as long as the original string a.

2.2 Rivest-Shamir-Adleman (RSA) System

The RSA system is another method of cryptographyE] Two prime numbers p and ¢ represent the
secret key and N = p-¢q. From p and ¢, we can compute exponents e (for encryption) and d
(for decryption). We can then present our information x as ¢ mod N — without using p and ¢
specifically, so it looks like a random string to an outside observer. Someone who knows the value
of d can compute (z¢ mod N)? mod N = z, which results in the original expression because of
how e and d are calculated. This is an easy computation if you know d and e, but these values can
only be determined if you know p and q.

In theory, one can obtain p and a simply by factoring N. However, all currently known fac-
toring algorithms take exponential time, making them intractable problems to compute. So, RSA
is protected by the speed (or rather slowness) of factoring a large number. This means that if
someone were to find a factoring algorithm which worked in a reasonable time, RSA would be a
much more vulnerable system. Unlike many algorithmic challenges, it is not true that if we find a
faster factoring algorithm then P = N P. However, much work has been done on the subject, and
it is not likely we can find a faster than exponential algorithm.

One final twist makes RSA especially appealing in comparison to the one-time pad. If p and
q are randomly generated privately, N and e are published, and d is kept private, the recipient

"https://en.wikipedia.org/wiki/RSA_(cryptosystem)

can generate p and ¢ by themselves, avoiding any private meeting. This is known as public key
cryptography, which is often seen on the internet today. Some people have massive public keys
on their websites, allowing them to receive secure messages. You only need N and e to encrypt a
message, but you need d to decrypt it. Because of this, RSA is a one-directional form of encryption.
To send a message, all you need to do is look up the recipients public N and e to encrypt your
message, and then they’ll use their private d, p, and g to decrypt it.

We talk about cryptography more generally to discuss the concept of proving things in math-
ematics, whether that be proving your identity or that something was not forged (using a private
key to sign documents). We can also talk about the concept of a zero-knowledge proof. Let’s say
I want to prove to you that I have a valid credit card number. One way to do this is to simply
tell you my Mastercard credit card number and have you verify it. But of course this solution has
some issues, as you now have my credit card number. In cryptography, I want to convince you that
I do in fact have a Mastercard without giving you the number. I want to prove to you that I
know something without telling you what I knowﬂ

3 Privacy

We now look at how we can keep databases private. This definition of privacy is more about keeping
information hidden from what we publicly release, rather than the cryptographic notion of trying
to send messages without an observer being able to interpret them. The desiderata for this problem
can be described as follows:

1. We have some algorithm which will compute and publicly output a summary or variant of a
database

2. Everyone can see this output, but we want to protect the privacy of the data in the database
using some notion of anonymity

3. This anonymity to individuals in the database should protect them from being identified from
the summary /variant /output database

3.1 k-anonymity

Let’s say we want to anonymize a database D. We want to compute and publicly release a useful
version of D, call it D’, that does not let you know about the specific contents of D. We can say
that D’ is k-anonymous if for every row in D’, there are > k identical rows. Imagine the various
specifications: certain columns could contain “sensitive” attributes like smoking habits or medical
test results. This database could be k-anonymous such that those protected columns have k copies.
This is a flawed definition of privacy, but why is it bad? E|

Consider the medical database taken from the Wikipedia page on k-anonymity. This database
does not meet k-anonymity for any interesting value of k because there are no two people with
the same name. Remember that k£ is a parameter such that as it increases, anonymity becomes
more and more indistinguishable. You could remove all personal identifying information and the
database could still only be 1-anonymous and contain a lot of information about you.

https://en.wikipedia.org/wiki/Zero-knowledge_proof
Shttps://en.wikipedia.org/wiki/K-anonymity

Name | Age Gender State of domicile Religion Disease
Ramsha 30 | Female | Tamil Nadu Hindu Cancer
Yadu 24 | Female | Kerala Hindu Viral infection
Salima 28 | Female | Tamil Nadu Muslim | TB
sunny 27 | Male Karnataka Parsi No iliness
Joan 24 | Female | Kerala Christian | Heart-related
Bahuksana | 23 | Male Karnataka Buddhist | TB
Rambha 19 | Male Kerala Hindu Cancer
Kishor 29 | Male Karmnataka Hindu Heart-related
Johnson 17 | Male Kerala Christian | Heart-related
John 19 | Male Kerala Christian | Viral infection

An example database. This does not meet k-anonymity for k > 2, because at least one row is

Let’s propose a modification of the database where we remove the name and religion columns and
“bin” or “coarsen” ages (meaning that two people aged 24 and 28 are now both aged “20-30”).
We now have less information, but the total number of data points remains the same. Now, we
have 2-anonymity with respect to age, state, and gender. This definition is precisely related to this
database, as we have achieved 2-anonymity while keeping utility of our database. In general, it’s
very easy to meet a contrived definition where the output is just a new database with k identical

rows and no additional restrictions.

UNIque.

Name Age Gender State of domicile | Religion Disease

- 20 < Age = 30 | Female | Tamil Nadu - Cancer

* 20 = Age =30 | Female |Kerala * Wiral infection
* 20 = Age = 30 | Female | Tamil Nadu * B

- 20 = Age = 30 | Male Karnataka - Mo illness

- 20 < Age = 30 | Female | Kerala - Heart-related
* 20 = Age = 30 | Male Karnataka * TB

* Age =20 Male Kerala * Cancer

- 20 = Age = 30 | Male Karnataka - Heart-related
- Age = 20 Male Kerala - Heart-related
* Age =20 Male Kerala * Wiral infection

After altering our previous database, we have achieved 2-anonymity with meaningful data still in

the database.

"How can we ensure that k-anonymity keeps information? One operation on the database is deleting
a feature entirely, while another is coarsening, where you replace a continuous quantity like age with
different buckets. Of course, we could trivially delete every column so that every row is identical,
but while that would meet our definition, the output would be useless. Therefore, we always want
to do the minimum amount of coarsening and redacting necessary in order to get a k-anonymous
database, ensuring that our output database is as similar to the original one as possible.

How would you write an algorithm that transforms a database D into a k-anonymous database
D’? Perhaps an iterative algorithm that checks if D has a certain property (in this case k-
anonymity), and if not, find a row that doesn’t have k copies and do a sequence of operations on
that. This practice is NP-complete, but there are approximation/computation algorithms which
can be useful in practice. (See more on Wikipedia page linked above)

3.2 Problems with k-anonymity

What are the algorithmic problems with this definition? There’s a utility problem: let’s say you
can find everything in reasonable time. What do you actually know about the original D from D’?
You have no idea because there’s no utility guarantee. Depending on what summary statistics you
want, this strategy could be very bad.

Even ignoring utility concerns, there’s a much bigger fundamental problem. Let’s say Penn
released medical records using 1000-anonymity. The conceptual problem of k-anonymity is that it
assumes the only thing you’re worried about is what will happen to you from this 1000-anonymous
database, which isn’t really the fundamental issue.

Let’s make this concept clear using another example from Prof. Kearn’s forthcoming book,
“The Ethical Algorithm.” Say there’s a patient, Rebecca, who is your neighbor, so you know her
age, gender, and ZIP code. If you looked in the database below of hospital patients, you'd clearly
be able to determine Rebecca has HIV.

Ninig g e i 3

_jR_ig;hm___i_______ ‘gf—-—-— Gender Zip Code Smoker | Diagnosis |

Susan '“'5—1--———--l-:-___.__l"k"le 19146 Y Heart disease |

—'——'———-_________ 0

Matthew K i M“fﬂe 19118 N Arthritis |

e e =Y -

Alice = i le 19104 e Lung cancer J|

-_‘_-__-__‘—-——__ H

Thhas o cmale 19146 N Crohn’s Disease |

Rebteway, Male 19115 Y ancer |

ccca 56

B e e 19103 N HI |

Nl S| o Mai: 19146 i NoymeDisease : ‘\

T = 19130 Y Seasonal Allergies
Female 19146 N Ulcerative Colitis -

Hyp!:);:hericai database of patient records, in which there is only one 56 year-old female, thus
enaoting anyone who knows Rebecca and the fact that she is a patient can infer she has HIV.

Our first instinct here is to redact first names and partial ZIP codes (we leave them as “191xx”
since this represents all of Philadelphia). This gives us a 2-anonymous database:

Using this database, we can conclude that Rebecca has either HIV or Colitis — still a lot about
her, but there’s at least some ambiguity about a sensitive variable. But Rebecca doesn’t even
want you to know the realm of the ambiguity, and here’s the real issue. Rebecca also visited a
different hospital whose database that is 3-anonymous (the same as above, but ages are coarsened).
The real issue comes here: you can join the two anonymous databases together and triangulate
what Rebecca has, since the databases are not anonymous with respect to each other. So even
if the database is very large or k is very big, there’s just too much information available. If you
hear of databases like these, be skeptical and concerned! Many breaches of privacy these days
happen through this notion of re-identification that combines data from multiple sources. This is
the fundamental problem with k-anonymity that stops it from being a particularly useful definition
of privacy.

3.3 Second proposal for privacy

Can we delineate the “bad things” and/or “attacks” we are trying to prevent? In 1977, Tor Delaneus
said: let D be any database, and anything that somebody can learn about you from D, should
be something that they can learn about you without access to that dataset. So essentially, all the
data was public to begin with. We can promise that for all of the worlds data we can figure out
everything about you without having access to any of that data. This definition is too strong — it
tries to protect us from so much that we can’t actually do anything useful.

3.4 A Thought Experiment

Suppose it’s 1950 and you're a smoker, along with nearly everyone else (there’s no social stigma to
smoking, just ask Kearns’ parents). Would you be willing to let your medical records be used in
a study which eventually causes the correlation between smoking and lung cancer? What if your
insurer knows this correlation and the fact that you're a smoker, since you made no efforts to hide
this? Your premiums would skyrocket because your chances of lung cancer are now significantly
higher than before. Financial harm came to you as a result of a study, but this harm was going
to come to you whether you contributed your data or not. Consider the database which has the
original data, and one with the original data subtracted by your data. You withholding your data
doesn’t change the fact that smoking causes cancer, but a good definition of privacy protects you
from harms that result in your record specifically being included in the database, but not from the
results of the aggregate study as a whole. This the idea of differential privacy, which is explored
in the following lectures.

	Recap
	Cryptography
	One-time Pad
	Rivest-Shamir-Adleman (RSA) System

	Privacy
	k-anonymity
	Problems with k-anonymity
	Second proposal for privacy
	A Thought Experiment

