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1 Recap of Laplace Mechanism

Last lecture, we discussed a mechanism, Laplace Mechanism, for implementing Differential Privacy
on some function f that is to be executed on a database. The Laplace Mechanism accomplishes
this by adding noise to the output of f, where the noise is computed under some given parameter
ε as follows:
Let f(x1, x2, ..., xn) be a function on some data in a database x=(x1, x2, ..., xn). For example, f
can be a function computing the average or the standard deviation on a set of values.
Let ∆f = Maxx,x′ |f(x)−f(x′)| over all neighboring databases x and x ’. Thus, ∆f is the ”sensitiv-
ity” of f, the maximum difference in values f can take on when executed on neighboring databases
x and x ’, databases that differ in exactly 1 piece of data. For example, if f computes the average
of a set of values, then ∆f = 1

n , and if f computes the standard deviation on a set of values, then
∆f = 1√

n

Finally, let v be the noise added to the output of f, where v is drawn randomly from the following
probability distribution that is symmetric around 0:

Pr[v] =
1

2b
e
−|v|
b where b =

∆f

ε

Therefore, the output of executing f on some database x is f (x ) + v.

1.1 Analysis of Laplace Mechanism

Let x and x ’ be 2 neighboring databases, and let px and px′ be output distributions. Let o be an
arbitrary output value of f. Consider the ratio probabilities of f outputting o using the Laplace
Mechanism on databases x and x ’.

px(o)

px′(o)
=

1
2be

−|f(x)−o|
b

1
2be

−|f(x′)−o|
b

= e
|f(x′)−o|−|f(x)−o|

b ≤ e
|f(x′)−f(x)|

b

Note that b = ∆f
ε , and ∆f ≥ |f(x′)− f(x)| on all neighboring databases. Therefore,

e
|f(x′)−f(x)|

b ≤ e
∆f
∆f
ε = eε → px(o)

px′(o)
≤ eε

Therefore, the ratio of the probabilities, px(o)
px′ (o)

is upper bounded by eε. In other words, as ε de-

creases, eε approaches 1. Thus, we see that applying the Laplace Mechanism to a function f with
parameter ε allows the function to satisfy ε-DP.
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2 Motivation for another mechanism

The Laplace Mechanism gives a general purpose way of adding noise to satisfy differential privacy.
The Laplace Mechanism assumes that computing f accurately is the best measure of what we want
to extract from our data. However, consider the following case we may want to apply differential
privacy:
Input: x = A database of training data
Goal/Output: y = A neural network that minimizes the training error on x
The neural network returned is defined by a series of weights. If we were to apply the Laplace
Mechanism to this function, Laplace noise would be added to the weights before returning the
network. However, even small fluctuations in weights in a neural network may severely impact the
performance of that network. Therefore, the returned network (with added noise) will likely behave
very differently than the initial network found (before adding noise) that minimized error, and thus
would have a unpredictably higher error than the minimal error network we desired. Thus, this
presents us with motivation to create another mechanism to satisfy Differential Privacy in such
cases where the Laplace Mechanism fails.

3 Exponential Mechanism Setup

Consider the generalized problem:
Input: x ∈ X where X is a generic input space
Output: o ∈ O where O is a generic output space
Let us define u as function that takes 2 parameters, x and o, and returns a real value r ∈ R such
that r is a measure of ”how good” a solution o is for input x. Therefore, when solving this problem
in the absence of any privacy constraint we desire to find maxo∈O{u(x, o)} i.e. the ”best” solution
for input x.
Now let us define a generalized sensitivity given some utility function u, ∆u, as follows:

∆u = maxo∈O{maxx,x′{|u(x, o)− u(x′, o)|}} over all neighboring databases x and x’

4 The Exponential Mechanism

Rather than adding noise to the output of a function f, the exponential mechanism draws an output
o from a probability distribution. Given a parameter ε, an input x, and a utility function u with
generalized sensitivity ∆u, we draw an output o from the following distribution:

Pr[o] = e
ε∗u(x,o)

2∆u

5 Composition Theorem for Differential Privacy

We have now learned two different mechanisms to increase privacy. The composition theorem for
differential privacy works as follows:

Suppose we have two algorithms A1 and A2 with corresponding epsilon values of ε1 and ε2. Now
let us create a new algorithm A3 that runs A1 on x and then A2 on the result of the first algorithm.
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The composition theorem states that ε3 = ε1 + ε2.

This holds true in the scenario that an algorithm is applied multiple times. For example, if al-
gorithm A1 is applied to an input x, m times, epsilon would be ε1 × m.

6 Privacy Budget

An individuals privacy budget is the limit of how much privacy they are ok with leaking. The
concept arises from the issue that even though no single operation being done on data reveals who
the subjects might be, by combining the data from multiple trials, one might be able to figure out
details about an individual.
As a result, every person has a ”privacy budget”. Each time an individual is included in a differen-
tial privacy calculation, it eats away at their privacy budget (by ε). Most calculations in Machine
Learning can done to give a differential privacy guarantee and a utility guarantee. This means that
all these calculations can also be accounted for in the privacy budget.

7 Real World Examples

1. Apple and privacy budgets:
A recent issue arose with apple as news came out that they were using differential privacy in
order to maintain their users’ privacy. They were running operations of the app data they
were receiving from their devices and made sure to use ε values that would ensure the privacy
budget for the users would not be exceeded. However, they broke the standard by resetting
the privacy budget every day. Since the privacy budget is a value that is used cumulatively
for life, this became a problem. Users were now no longer guaranteed privacy because no
one was keeping track of their overall privacy budgets, they just knew that no single day’s
operations would result in a breach of privacy for a user.

2. 2020 Census:
The 2020 Census announced that it would be using differential privacy in order to maintain
the privacy of the American people. Specifically, they will do so by releasing all statistics in
a deferentially private way. It has not yet been determined how epsilon and randomization
of the data will occur. This is considered a big step forward because previous methods for
maintaining privacy were dependent on a bunch of tricks that caused the data to be convo-
luted.
This decision faces some backlash from the leaders of academic subfields devoted to interpret-
ing the census. These people believe that the increased privacy provided by the new methods
is not worth the trade-off for accuracy. A key point to learn from this example is that society
needs to make the decision of which point in the privacy-accuracy spectrum we want to be
at.
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