
Chocolate Milk: A Fluid Simulation Framework and Implementation

Daniel Knowlton
dtknowlton@gmail.com

University of Pennsylvania

Norman I. Badler
badler@seas.upenn.edu

University of Pennsylvania

Aline Normoyle
alinen@seas.upenn.edu

University of Pennsylvania

Abstract

In recent years physically based fluid simulations in the computer
graphics field have become increasingly realistic both in their vi-
sual appearance as well as in their physical characteristics. These
methods for realistic fluid simulation are being used throughout
both the Animation and Visual Effects industries to create stunning
and realistic images of liquids and gases. New methods for mod-
eling fluids such as hybrid particle-grid, FLIP, and particle level
set methods have pushed the limits of fluid simulation allowing for
even more realistic simulations.

The goal of this project is to build a fluid simulation framework
using many of these new techniques in physically based animation.
Based on recent papers published at SIGGRAPH, the framework
will include some of the state of the art methods in fluid simulation
and serve as a foundation that is easily extensible for new methods
that may become available in the coming years.

Project Blog: http://chocolatemilkfluids.wordpress.com

1 Introduction

The Animation and Visual Effects industries today rely heavily on
the use of realistic physically based effects in order to create truly
dynamic and interesting worlds for the cinema. A large problem
within the realm of physically based effects is the topic of fluid sim-
ulation that includes smoke, water, etc. SIGGRAPH is constantly
accepting papers that deal with new methods of fluid simulation to
both increase the efficiency of the simulations and to create more
and more realistic models of physical phenomena.

With this in mind, the end goal and the main problem that this
project will address is making physically based simulations as real-
istic and efficient as possible. In computer graphics, the challenge
is to develop methods to model the physical world, which is contin-
uous, in a digital form. This has led to a variety of SIGGRAPH
papers dealing with many techniques for modeling the complex
behavior of fluids. A main issue with the increasing number of
methods and systems for fluid simulation is that to some degree the
methods seem to diverge between grid based methods and particle
based methods. In order to get the best of both worlds, a hybrid
method is needed that makes use of ideas in both the grid-based
and particle-based simulation techniques.

This problem of realistic fluid simulation is growing more impor-
tant in the animation and visual effects industries as films continue
to push the limits of realism and physical effects. With movies
such as Rango and Battleship , Industrial Light & Magic faced huge
challenges with the amount of fluid simulation that was required to

bring these environments to life on the big screen. In the future, the
need for fluid effects will only increase. This is important because it
has led to a lot of research into fluid simulation for computer graph-
ics and the next large step for this field is how to combine the many
diverse methods to create the most realistic simulation possible.

This project aims to build a fluid simulation framework that com-
bines many of the cutting edge papers. The framework utilizes a
semi-lagrangian MAC-Grid fluid solver, but also uses marker par-
ticles to define the fluid and help define smaller details of the fluid
simulation. It is the goal of the project to implement a few recent
SIGGRAPH papers into this framework and create a system that
can produce realistic fluid effects.

Upon the completion of the project, the main contributions of the
project will include 1) a complete and well documented fluid sim-
ulation framework that can be easily extended and added to at later
dates, 2) a hybrid particle-grid method for fluid simulation that uses
a semi-lagrangian approach as well as fluid marker particles, and
3) implementations of a variety (at least 2) of recent SIGGRAPH
papers dealing with fluid simulation. The possible SIGGRAPH im-
plementations include such topics as mass conservation, rigid body
interaction with fluids, the FLIP method, and new fluid grid struc-
tures such as octrees and the OpenVDB library.

1.1 Design Goals

The target audience for the fluid simulation will at first be the com-
puter graphics community, as the focus early on will be simply im-
plementing the physical effects accurately without focusing on how
to integrate these effects into an artistic package such as Autodesk
Maya. The main goal of the project is to create a fluid simulation
that is as physically accurate as possible by reviewing and imple-
menting a variety of recent SIGGRAPH papers on the topic. The
secondary goal is to create a fluid simulation framework that can
easily by extended and maintained. The framework will allow for
the simple addition of new features and hopefully be able to be a
working demonstration of many state of the art techniques in fluid
simulation.

Although another goal of the project is to create the framework in
such a way that it can easily be rendered out and integrated with
a production environment, the emphasis will be places on imple-
menting the physical effects. As such, the framework will support
simple OBJ importing and exporting in order to render through sys-
tems such as Autodesk Maya. However, if time allows an additional
goal of the project would be to create an efficient pipeline between
Maya and the fluid simulation to allow artists a streamlined way to
create physically based effects in their scenes.



1.2 Project Proposed Features and Functionality

The primary functionality that will be implemented within the fluid
framework includes:

• Basic MAC-Grid based simulation with PCGSolver

• Viscosity Implementation

• Methods for mass conservation to avoid volume loss

• Fluid interactions with rigid bodies

• Multiphase fluid grid to model liquid/air interactions

• Better support for interactions between multiple fluids and
Particle Level Sets

The following features are secondary goals which will be imple-
mented if there is time:

• Efficient pipeline for integration with the Maya environment

• Octree grid data structure for adaptive grids

2 Related Work

In terms of related work, recent years have seen a dramatic increase
in the quantity and quality of fluid simulations and SIGGRAPH pa-
pers pertaining to fluid simulations. Production quality physically
based simulations such as Naiad and PhysBam as well as software
suites such as Realflow and Houdini are constantly being updated
with these newest simulation methods. The basis for my project is
to implement a few existing SIGGRAPH papers and integrate these
effects into a fluid simulation framework based on the foundation
described by Robert Bridson [2008]. The following sections detail
some of the new techniques that may be implemented as part of the
simulation framework.

2.1 Multiple Interacting Liquids

The starting point for the fluid framework will be the “Chocolate
Syrup” multiple fluids simulation developed by Dan Knowlton and
Yining Karl Li. This simulation was built based on the paper “Mul-
tiple Interacting Liquids” by Losasso et al. The main contribution
of the paper was to develop a method for tracking multiple fluids
on the same simulation grid. The fluids could have different prop-
erties (viscosity, density, etc) and thus would behave differently in
the grid. The method utilized multiple level sets to keep track of the
surface of each of the fluids and then would have an extra step in
which all overlap between the different level sets would be solved
for. [Losasso et al. 2006] also deals with methods for dealing with
attributes such as viscosity and surface tension within the multiple
fluid system.

One area that will need to be revisited in the new fluid framework
of this project is the idea of Particle Level Sets to help maintain the
boundaries between different types of fluids. While the “Chocolate
Syrup” base used particles to track the location of the fluid as a
whole, particle level sets were not used to track the surface of each
level set and ensure the boundaries between fluids remained intact

and the fluids remained distinct. In addition, [Enright et al. 2002]
proposes a hybrid particle level set method that can be used in this
attempt to track the boundary between different types of fluids.

2.2 Mass and Momentum Conservation

Another challenge to be addressed in the fluid simulation frame-
work is the problem of mass conservation as well as momentum
conservation. The problem arises due to the fact that through the
semi-lagrangian method details of the fluid surface are sometimes
lost leading to volume loss and a decrease in mass.

[Lentine et al. 2011a] describes that semi-lagrangian advection as
well as the vorticity confinement steps which are very common to
fluid simulations do not conserve mass or momentum in their na-
tive form. It is important to note that the non-conservative nature of
fluid simulations is a result of the need to take discrete time steps
and work on a grid rather than a continuous space. Lentine pro-
poses new steps in the advection and vorticity confinement steps
of the fluid simulation that ensure that momentum and mass are
conserved at each timestep of the simulation. [Lentine et al. 2011b]
also proposes a second step to “forward advect” any additional mass
that is traditionally missed and unaccounted for in semi-lagrangian
simulations. Adding this mass and momentum conservation will be
essential to making the fluid framework appear realistic and behave
in a physically accurate way.

2.3 Fluid Interactions with Solids

One other area that is important to fluid simulation that this project
will explore is the interaction between fluid and rigid bodies
within the fluid. This interaction is rather complicated and can be
very computationally expensive with traditional pressure projection
methods. [Batty et al. 2007] presents a method to deal with the in-
teraction of rigid bodies and fluids greatly reduces the cost of the
simulation and allows these complex interactions to be simulated
efficiently. In their simulation, by thinking of the pressure projec-
tion as a minimization of kinetic energy, they are able to draw a con-
nection between rigid body interactions and fluid interactions. This
makes it feasible to simulate such complex situations efficiently.

2.4 Fluid Grid Data Structures

Another area of interest in modern fluid simulations is the actual
data structure and representation of the simulation grid. In a stan-
dard simulation, the fluid grid remains a constant, uniform size for
the simulation. This results in the loss of details in the fluid that are
smaller than the grid dimensions. However, some methods exist
to help deal with these problems. [Losasso et al. 2004] presented
an octree data structure for fluid simulation which is capable of
capturing smaller surface details than traditional grids could. They
also presented a method to ensure that the standard preconditioned
conjugate gradient method could still be used even with the octree
structure.

In addition to the octree technique, other data structures and li-
braries have become available specifically for the storage of vol-
umetric data. One such method, OpenVDB, which was released



last year, is a library that may be worth investigating as an add-on
to the fluid simulation framework.

3 Project Proposal

The overall goal of the fluid simulation framework is to produce
an extensible and well-documented code base capable of simulat-
ing a variety of fluids and the interactions between them. At a
high level, the simulation will use a semi-lagrangian MAC-Grid
approach and contain many modifications and additions based on
recent SIGGRAPH papers. The framework will run as an OpenGL
app as well as allow the export of the simulation data for more so-
phisticated rendering.

3.1 Anticipated Approach

At its core, the simulation framework will be based off of the
“Chocolate Syrup” fluid simulator that Dan Knowlton and Yin-
ing Karl Li developed for the final project of CIS563 at the Uni-
versity of Pennsylvania. This base framework consists of a semi-
lagrangian MAC-Grid structure with the addition of marker parti-
cles to mark the location of the fluid on the grid implemented in
C++ and OpenGL. The simulation also makes use of the a Precon-
ditioned Conjugate Gradient solver based on the solver proposed
by Bridson [2008]. The “Chocolate Syrup” project is in turn based
on a viscosity framework and simulation developed by Christopher
Batty. This code base will serve as a reference and starting point for
the new simulation framework, but the plan is to rewrite the entire
source from the ground up in order to create the most successful
and extensible framework as possible.

The first step in the creation of the fluid framework will be to re-
visit the base code of the “Chocolate Syrup” project and rewrite this
basic functionality. The functionality to be built and rewritten for
the base framework includes a semi-lagrangian MAC-Grid struc-
ture with marker particles to represent the fluid. The base frame-
work will include basic viscosity solvers but these will need to be
updated. The framework will define a scene file format as well as
utilities for importing and exporting scene data for use with render-
ing and scene setup. The base framework also includes an OpenGL
environment to view the simulation as it is running as well as tools
to screen capture the simulation as it runs. Finally, the basic frame-
work will allow for multiple types of fluids to be simulated on the
same grid although there is much additional work required to fin-
ish the implementation of “Multiple Interacting Liquids” [Losasso
et al. 2006]. The initial framework will also require the implemen-
tation of more complete boundary conditions for fluids’ interactions
with objects and walls.

A part of the implementation of the framework will be a OpenGL
viewer and interaction window that has a working camera and tools
for creating fluids or different viscosities/properties, importing OBJ
meshes as fluids and rigid bodies, as well a tools to visualize the
various fluid simulation components including the velocity field,
level sets, pressure, temperature, particles, etc. An important aspect
of the viewer that will be included with the framework is that the
scene should be easy to manipulate and alter from directly within
the OpenGL view to allow for making quick changes to a simula-

tion.

The next step of the project will involve beginning to implement
some of the SIGGRAPH papers and integrating them with the
framework. The first two challenges that I propose to solve are
better mass conservation as well as fluid/rigid body interactions.
These papers will most likely have to be adapted to function within
the context of the fluid simulation framework that was laid out pre-
viously. This is the part in which most of the creativity and new
ideas will be formed in that there will most likely not be a one to
one mapping between the SIGGRAPH implementation and an im-
plementation that will fit within the framework.

A secondary goal of the project will be to integrate the framework
with a new grid data structure to both speed up the fluid simulation
as well as give more detail to the simulation. Possible new grid
methods will include implementing a fluid octree grid structure or
possibly integrating the simulation with the OpenVDB grid library.

3.2 Target Platforms

The target platform will initially be for Unix based x64 machines
using the GLUT OpenGL bindings. All integration with renderers
will be through Autodesk Maya 2012. A secondary goal is to build
the framework so it is completely cross platform and able to be
compiled and run through Visual Studio 2010 on Windows as well
as Unix machines.

3.3 Evaluation Criteria

The evaluation of the project will involve reviewing the SIG-
GRAPH papers implemented and visualizing the final simulation
results of the fluid simulation. Final results should be as realistic
as possible while using the physically based SIGGRAPH papers as
guides for implementation and design choices. In addition to the
basic fluid framework, the final simulation should include as many
new features and physically based algorithms as possible with the
minimum standard for implementation being 2 of the SIGGRAPH
papers discussed previously. Furthermore the framework for the
simulation should be well documented and easily extensible for fu-
ture projects.

4 Research Timeline

The research timeline is broken down into three main components:
the preliminary Alpha Version Report, the Final Project Deliver-
ables, and the Future Tasks of the project. (Please consult the
GANT Chart on the final page of the proposal.)

4.1 Project Milestone Report (Alpha Version - Feb. 15)

• Background Reading ([Bridson 2008] and [Losasso et al.
2006])

• Basic fluid framework built and documented without new
SIGGRAPH paper implementations

• Start reading SIGGRAPH papers and decide on 2 that will be
tackled first



4.2 Project Final Deliverables

• Fluid Framework with at least 2 SIGGRAPH paper imple-
mentations

• Demo of fluid functionality in OpenGL environment

• Final renders of fluid simulations

• Final presentation of work accomplished

• Poster for the final project poster session

4.3 Project Future Tasks

• Octree Data Structure/OpenVDB integration

• Better integration with Maya environment

5 Method

The main methodology that I followed was broken down into two
main components. The first phase of the project was to create a
simulation base on which the rest of the methods and the frame-
work would rely upon. Some of the elements of this phase included
handling the basic grid data structures as well as core pieces of the
functionality such as the matrix solver and the code for advection
and other shared functions.

As a first step in tackling a major fluid simulation project, I thought
it would be a good idea to do some review of the basic math and
science (and breaks from this science) before I get started doing
any major modifications and implementation. My methodology for
reviewing Navier-Stokes involved loading up an article, then read-
ing until I needed to look something else up, then opening a new
tab for that new topic, and so on. It turns out the rabbit hole is
very deep, and I wound up with upwards of 40 tabs of fluid related
documents and webpages. I tried to compile some basic Navier
Stokes notes not necessarily just for computer simulations, but on
the Navier Stokes equations in general.

At this stage, I also began working on completely refactoring and
re-architecting the smoke simulation from Physically Based Ani-
mation as well as the fluid simulator developed by me and Karl.
Some specific items I have focused on in the refactoring process
is isolating the OpenGL aspects of the code and separating all GL
calls and functions from the core of the fluid simulation. This was
a problem with the previous version as the fluid simulation was
tightly linked with the GL framework and somewhat hard to ex-
tend and organize. Another aspect I was working on in this stage
was to isolate the pressure solver so I can experiment with different
solvers and be able to plug in any solver that I want without a large
change in the codebase. For example, Robert Bridsons example
PCG solver available online is one solver that I was looking to test
and play with as part of the simulation.

Finally, another aspect of the refactor is just to make the code more
consistent and readable. Both the original smoke simulator and
the fluid simulator suffered from late nights and lots of compet-
ing styles and formatting (probably due to integrating with existing

basecode frameworks). I aimed to rewrite the new fluid simulation
in a consistent style and a more readable and extensible structure.

While building the core framework, I first developed the smoke
simulation, as this simulation relies on the core functonality but at
the same time it is rather straight forward to implement and verify
its accuracy. While refactoring and rewriting the fluid solver, I dis-
covered a problem with my original smoke implementation that in
certain scenarios has pretty drastic effects. It comes down to how
interpolation is handled at fluid boundaries. In the previous version,
when the point being interpolated was outside of the grid, the value
returned for that point (density, temperature, etc) was given a de-
fault value. This value in my original framework was 0. This is a
source of a *huge* amount of volume loss and value loss. Every
time an advection step needs to sample a point that ends up being
outside of the grid, this interpolation would end up averaging in a
0 value rather than a value representative of the values in the grid.
The solution to this is fairly simple and involves averaging the value
from the nearest grid cell rather than a zero when you need to in-
terpolate a density/velocity/temperature value that exists outside of
the grid.

In addition to the basic framework, other things that I added pretty
early on included a CFL condition to calculate the substep to take in
the simulation. The substep is chosen so that it is less than or equal
to five times the cell size divided by the max velocity. In essence
this ensures that the farthest away an advection uses in a calculation
is 5 grid cells away. I also implemented 2nd order Runge Kutta
integration for the advection steps. Finally, I reworked the OpenGL
viewer for the fluid so that it can be completely isolated from the
solver itself. I added a better camera to the GL viewer and have
included the previous functionality of screen capture, visualization
of the velocity field, viewing of density/temperature, etc. I also
implemented a debug view for the GL view that allows the user to
inspect certain areas of the grid and check values in that grid cell
such as the divergence or the change in density (and later the value
of the signed distance field for the level set).

In the next stage I focused on implementing the particle level set
method and various methods on top in order to render the fluid sim-
ulation with a ray tracer. More precisely, I added the ability for the
MACGrid to hold signed distance quantities so that it will be able
to store the level set function. I also added a system to initialize the
signed distance field that revolves around passing a signed distance
function as input and constructing the whole signed distance field
for the grid. An example of this is that for a sphere, the function
takes in a position and returns the value of: length(position sphere-
¿center) sphere-¿radius. Thus, a position inside of the sphere will
have a negative value and a position outside of the sphere will have
a positive value.

The method for creating the signed distance field can be used to
initialize the MACGrids different properties and will eventually be
used to initialize the fluid region as well as set the boundary objects.
The method for calculating the signed distance on the grid is able to
combine multiple functions and create pretty complex signed dis-
tance fields by combining smaller signed distance functions. For
example in the following two images, the grid is initialized with
two different sets of signed distance functions:



The next steps involved implementing a series of papers as support
for the particle level set method. One of the key papers that I had
to review and implement was the fast sweeping method for eikonal
equations. This paper by Hongkau Zhao outlines the method in
which the signed distance values can be extrapolated outward from
the interface of the fluid and expanded to the rest of the grid. This is
an important stage for the particle level set method because in order
for the interpolation used in the advection step to remain accurate
the signed distance field must remain valid. Since the validity of
the signed distance field is not guaranteed after the advection step,
a fast sweeping pass must be carried out.

The main idea behind the fast sweep is that you sweep the grid
multiple times from different directions and calculate values of the
grid based on the lesser magnitude values surrounding it. In effect,
this boils down to propagating the signed distance values from the
values closest to the surface of the fluid to areas farther from the
fluid. This propagation is also very important to the rendering of
the signed distance field.

In the simulator that Karl and I produced previously, in order to
render the results, we ran marching cubes on the grid to output a
mesh representing the fluid. While this was mostly successful there
are a couple major issues with this approach. First of all, since the
marching cubes algorithm is run at each frame to output a mesh,
there is no consistency between the meshes from frame to frame.
Each mesh could have entirely different triangle counts and topol-
ogy. This leads to artifacts such as flickering in the final rendered
result. Another issue is the amount of disk space required to store
all of the OBJ data files for the liquid. Each frame must produce its
own OBJ mesh and for large simulations the amount of mesh data
is very very large.

These problems led me to implement raytracing of signed distance
fields in my own renderer instead of outputting a mesh for every
frame. There are some nice qualities of the signed distance field that
help in the raytracing step. First of all, for any point in the 3D grid,
you can determine how far away you are from the surface of the
liquid. (Each value in the signed distance field represents exactly
this distance; negative inside the fluid, and positive outside). This
helps with the ray marching through the grid, because instead of
taking steps of a constant size, the step size can vary based on the
values of the signed distance field. This works because although
this value may not be the closest surface in the rays direction, it is
guaranteed that the the surface is no closer than this value so you
will not overshoot. After sampling the signed distance field, a step
of that size is taken and the signed distance field is resampled at
this new point. This process is continued until the ray is within one
grid cell of the surface in which case simple interpolation is used to
calculate the intersection point with the surface.

The second quality of the signed distance field that helps with the
raytracing method is that at any point in the grid, the gradient of the
signed distance values at that point provide you with the direction
of the steepest increase in signed distance values. Thus, when you
calculate an intersection point with the liquid through ray marching,
you can determine the normal of the surface by taking the gradient
of the signed distance field at this point.

As a final stage of the project, and as a jumping off point for fu-

ture work, I started to implement specific fluid simulation methods
such as the particle levelset method and the fluid implicit particle
method. In regards to the particle level set method, I developed the
functionality to seed particles along the interface to serve as marker
particles for the fluid. There are two sets of particles: one repre-
senting the inside of the interface and one representing the outside
of the interface. The particle level set method works by advecting
both the particles and the levelset through the velocity field. At each
time step, there is a check to ensure that the levelset matches up to
the positions of the particles, i.e. the inner particles are on the in-
terior of the level set and the outer particles remain on the exterior
of the levelset. If this is not the case after advection, the levelset is
moved to match the particles.

The other simulation method I tackled was the fluid implicit parti-
cle method. This method relies on much of the same functionality
as the particle in cell method with the major difference of instead of
storing the velocities on the grid, the FLIP method stores the fluid
velocities in the particles themselved. In order to run the projection
step in the simulation, the particle velocities are then projected onto
the grid and used for the pressure solve. Once the pressure solve
is complete, the updated velocities are translated back onto the par-
ticles and used to advect the particles through the grid. The main
gain from using this method is that particles retain more of their
motion and are not damped by interpolation effects like they are in
the particle in cell method.

For my final simulation videos, I actually used a combination of the
particle in cell methods and the fluid implicit particle method. The
reason for this weighted average between the two methods was that
it allows for less interpolation artifacts in the FLIP method but it
also limits the amount of noise caused by using FLIP by itself.

6 Results

Below are some of the results images and diagrams from the fluid
simulation framework project.

Figure 1: Diagram of the framework structure with emphasis on
independent modules that can be connected together independently
of the other modules. The end goal was to make the frameowork as
extensible as possible and allow for new modules to be added in the
future.

See more figures near the end of the document.



Figure 2: Basic demonstration of the smoke solver rendered out
using the OpenGL renderer.

Figure 3: Volume loss caused by the boundary conditions and the
updated boundary condition to preserve smoke volume.

7 Conclusions

At the end of the senior project period, I believe that I have made
good progress towards building a fluid simulation framework. I
have been able to build the base implementation and system for
connecting different simulation methods as well as a variety of
methods on top of the simulation framework. Some of these meth-
ods include: the Particle In Cell method, a basic Particle Level Set
method, and the Fluid Implicit Particle method.

Although I was unable to complete all of the functionality that I
originally set out to complete in my proposal, I was able to tackle
a large set of problems in the area of fluid simulation and build a
strong base on which to build onto in the future. I think the main
reason for this lesser extent of papers implemented was due to the
fact that there are so many underlying methods and papers that one
must implement before reaching the core of higher level papers. As
I started working to develop the system I began to realize the extent
of the “rabbit hole”. However, I am very happy with the current

Figure 4: Basic OpenGL render of the particle in cell method and
some complex fluid boundaries.

status of the simulation, and I again feel like it is a great jumping
off point for future work.

8 Future Work

There is much future work that I will consider as I move foward
with constructing the simulator. Some of these ideas for future work
include different matrix solvers for the pressure solve. The other
solvers might include a different form of solver besides the basic
PCG solver with Modified Incomplete Cholesky solver or a GPU
implementation of the Preconditioned Conjugate Gradient method.

I also want to continue to explore different simulations and develop
the existing simulations I have further. At the moment the Particle
Level Set implementation is not at the same level of physical real-
ness as the FLIP and Particle in Cell methods. I want to change this
so that I can implement other SIGGRAPH papers which are based
on the Particle Level Set method. I am also interested in exploring
the recent Position Based Fluids approach to fluid simulation.

A long term problem that I also wish to explore in the future is how
can I integrate the simulation framework more easily and efficiently
with a production pipeline. This will include finding a way to out-
put the simulation data to Maya, how to better raytrace against the
fluid grid, and how to render the fluid with other renderers such as
Krakatoa.

References

BATTY, C., BERTAILS, F., AND BRIDSON, R. 2007. A fast varia-
tional framework for accurate solid-fluid coupling. In ACM SIG-
GRAPH 2007 papers, ACM, New York, NY, USA, SIGGRAPH
’07.

BRIDSON, R. 2008. Fluid Simulation for Computer Graphics. A.
K. Peters.

ENRIGHT, D., FEDKIW, R., FERZIGER, J., AND MITCHELL, I.
2002. A hybrid particle level set method for improved interface
capturing. J. Comput. Phys. 183, 1 (Nov.), 83–116.



Figure 5: Dropping raindrops into the fluid using the particle in
cell method.

JAMRISKA, O. 2010. Interactive ray tracing of distance fields.

LENTINE, M., AANJANEYA, M., AND FEDKIW, R. 2011. Mass
and momentum conservation for fluid simulation. In Proceed-
ings of the 2011 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, ACM, New York, NY, USA, SCA ’11, 91–
100.

LENTINE, M., GRÉTARSSON, J. T., AND FEDKIW, R. 2011.
An unconditionally stable fully conservative semi-lagrangian
method. J. Comput. Phys. 230, 8 (Apr.), 2857–2879.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating
water and smoke with an octree data structure. In ACM SIG-
GRAPH 2004 Papers, ACM, New York, NY, USA, SIGGRAPH
’04, 457–462.

LOSASSO, F., SHINAR, T., SELLE, A., AND FEDKIW, R. 2006.
Multiple interacting liquids. In ACM SIGGRAPH 2006 Papers,
ACM, New York, NY, USA, SIGGRAPH ’06, 812–819.

Figure 6: Difference between simulation with extrapolation and
simulation without extrapolation.

Figure 7: Viscosity running with the particle level set method sim-
ulating a highly viscous fluid.

Figure 8: Particle Level Set base comparing levelset advection to
particle advection for preserving surface detail.



Figure 9: Combination of FLIP and Particle in cell methods to
simulate dropping a fluid dragon.

Figure 10: View of the levelset function defined on a 2D grid.



Figure 11: Comparison of various raytracing of signed distance
field methods with the last method using interpolation of multiple
gradients.

Figure 12: Number of steps required to raytrace the signed dis-
tance field. Red is more steps required.

Figure 13: Signed distance field render of the Stanford bunny.



Figure 14: Signed distance render of a fluid dragon.

Figure 15: FLIP and Particle in Cell with OpenGL render.

Figure 16: Chocolate Milk being poured into a glass with FLIP
and Particle in Cell

Figure 17: Wave simulation with FLIP and the Particle in Cell
method.

Figure 18: Waterfall simulation against an OBJ imported from
Maya with FLIP and Particle in Cell.



Figure 19: Giving the Stanford dragon a shower with the FLIP and
Particle in Cell method.



Figure 20: Gant Chart of projected progress throughout semester


