
WebGL Massively Multiplayer Online Game

Student
Gianni Chen

giannic@seas.upenn.edu
University of Pennsylvania

Advisor
Professor Norm Badler
badler@seas.upenn.edu

University of Pennsylvania

Advisor
Aline Normoyle

alinen@seas.upenn.edu
University of Pennsylvania

Figure 1: Hexmki, HexGL’s main model

Abstract

We will build a multiplayer online game using WebGL and web
sockets. Players will connect to a server in their browsers and
be able to view other players who are also connected. The
goal of each player is to eliminate the others in a free for all
format. The players are ranked through the prescribed cal-
culations involving eliminations, deaths, and other properties.
This is a simplified combination of current approaches which
are either solely WebGL demonstrations or HTML5 and web
socket games. One of our primary goals is to provide a stepping
stone to build more sophisticated multiplayer online WebGL games.

Project Blog: http://webglmmo.blogspot.com

1 Introduction

Since the late 1990s, Massively multiplayer online games (MMOG)
have been a popular alternative to other games as well as a pleasant
escape from everyday life. This was made possible not only by the
improvements to our internet systems, but also by the increased
power of our local machines. More recently, many classic games
have been making reimagined appearances as MMOGs in our
browsers. Common ways to achieve the real-time aspect include
Comet, a model which allows pushing of data to a browser without
request, and sockets, which has a variety of implementations on
the web for asynchronous input and output. We have also seen a
movement of 3D graphics towards the web, starting from Flash to
Canvas 3D and in 2011, the first stable release of the Web Graphics
Library (WebGL). While WebGL allows for both 2D and 3D
rendering, the multiplayer games we currently see are often in 2D.
It is rare to see a multiplayer online game built in 3D using WebGL.

In the initial time frame of this project, we will implement a
barebone game. The motivation is not to build the next World

of Warcraft, but to set a base for those who would like to build
full-feature multiplayer WebGL games in the future. Though the
code base will be presented as a game instead of a boilerplate, parts
of it should be adaptable to new environments for their respective
purposes. This will be helpful to the games community as well as
related researchers because it can be used as a rapid prototyping
tool. There are parallels that can be drawn between this project
and tools such as Twitter Bootstrap for their base functionalities in
different fields.

Our project aims to combine the two very new technologies,
WebGL and WebSocket, to build a very simple 3D MMOG. We
will start by learning the technologies required for implementation.
Once some familiarity is established, we will first implement an
interactive 2D environment in WebGL for a local machine. Then,
we will build upon that to make a 3D environment, bringing it
a step closer to the desired look and feel. At this stage, we will
begin to prototype some game features and dynamics. Then, we
can begin experimenting with the WebSocket protocol on the 2D
prototype to support multiple players. Once we successfully have
multiplayer input, we will generalize it to the 3D environment to
achieve our desired outcome.

This project makes the following contributions:

• Explores a new alternative for gamers on the web

• Establishes a new front and back end combination for web
games and developers who may be interested

• Provides base code for future WebGL multiplayer environ-
ments

1.1 Design Goals

There are two major audiences for this project: casual online
gamers and web game developers. The target consumer is any per-
son who has access to the web and has an interest in interacting with



others through games. This is a broad audience, but we have seen
in the past that many people are fascinated by interactions as sim-
ple as seeing people in another continent through a camera in the
shape of a telescope on the street (Appendix). We want users to feel
a competitive connection with others who are in the same virtual
space. On the other end of the spectrum, this framework will target
game developers, especially those interested in web technologies.
Like Twitter Bootstrap provides website developers a quick way to
host content, this project will allow game developers a quick way
to build a functional game.

1.2 Project Proposed Features and Functionality

This project implements the following features and functionality:

• An interactive 3D environment accessible by anyone with a
WebGL supported browser

• Support for multiple players to interact in the environment

• A way for players to navigate the environment

• A way for players to eliminate one another

e.g. weapons, elements etc.

• A competitive way for players to avoid being eliminated

e.g. jumping, shielding, etc.

• A presentable and deliverable open source base code

2 Related Work

Web games in the browser collectively have the largest user base.
This reason has driven development for this particular medium for
games to explode in the past two years. While the traditional tools
used to build these were Java and Flash, more and more developers
have chosen to move to HTML5 due to its advantages in efficiency
and compatibility. More recently, with the release of WebGL, some
developers have experimented with it in conjunction with HTML5
for its advanced rendering capabilities. It is difficult to find offi-
cial papers on this subject in graphics conferences, but there have
been some presentations and courses. One such example that I will
be using as a tool for learning this technology is Introduction to
WebGL [Jacob 2012]. Found across the web, we see a variety of
projects from individual developers to larger organizations. We
have described a few notable ones.

2.1 Khronos Group SIGGRAPH

The Khronos Group consists of media centric companies such as
NVIDIA, Electronic Arts, and Google, among others. They focus
on creating "open standard, royalty-free APIs" which allow graph-
ics developers to create content for interested users or consumers.
At SIGGRAPH, they have a variety of presentations on these stan-
dards and libraries, including tutorials which give an overview of
their current capabilities. For example, at SIGGRAPH 2012, they
presented Graphics Programming for the Web: WebGL [Russel and
Mo 2012].

2.2 Chrome Experiments

Chrome Experiments, hosted by Google, is a collection of some
of the most creative web experiments using cutting edge web tech-
nologies such as HTML5 and WebGL. They demonstrate just how
powerful these tools are and provide a point of references for state-
of-the-art web technologies. Many developers have built their ap-
plications with this collection as a driving force for improvement.
Many of these submissions have are open source and provide a use-
ful means of learning the standards, conventions, and techniques in
developing with these tools. For instance, in the projects tagged
multiplayer, DCubic has implemented a space where multiple users
can connect and create cubes in space of various colors and anima-
tion features [Perez-Fadon 2012].

2.3 BrowserQuest

BrowserQuest is a MMORPG adventure game built by Mozilla
Foundation [allergic 2013] and Little Workshop. Little Workshop
is a duo, Guillaume Lecollinet and Frank Lecollinet, based in Paris,
France [Lecollinet and Lecollinet 2012]. It is implemented using
HTML5 Canvas and WebSockets. It is now an open source project
hosted on Github. It was originally meant to be a demo of how these
technologies can be used to implement a game, explaining why
the in-game population has declined since. It hosts several load-
balanced servers, with multiple environment in each one. Upon
connection, the player can interact with other players in the envi-
ronment they were connected to. Another notable contribution of
BrowserQuest is its compatibility with mobile devices (iOS, An-
droid, Firefox).

2.4 HexGL

HexGL is a HTML5 and WebGL game single player racing game
built by Thibaut Despoulain, a senior Computer Engineering stu-
dent at Université de technologie Belfort-Montbéliard. This too,
had optimizations to bring the game to mobile. This impressive
demo was one of the first noted to use three.js, a library built on top
of WebGL. For that reason, it was later added as an entry to Chrome
Experiments [Despoulain 2012].

3 Project Proposal

This project aims to create a functional 3-dimensional Mas-
sively Multiplayer Online Game. Its core components will
be implemented with WebGL and the WebSockets protocol.
We will first build a 3D environment. This will likely be a
simple terrain, but is a means for interaction between multiple
players. This space will be populated by users connecting from
remote locations. Each user may be represented by something as
simple as geometry moving in perspective space on keyboard input.

The key here is that the users can interact with each other
with minimal delay. To demonstrate this, the game will be a
standard deathmatch, where any given player tries to eliminate
as many other players as possible in order to climb the rankings.
Upon elimination, a player will respawn in a random location.



The means of attack for a player will be via a "shockwave" that
radially emanates from the player itself in the horizontal plane.
Other players can avoid elimination by jumping, that is changing
their vertical height temporarily. This is a simple framework that
will set a starting point for more sophisticated renderings of future
MMOGs built with the same stack.

3.1 Anticipated Approach

The environment for this game will be in a finite space. We will
define the terrain first with a simple rectangle, then import a terrain
defined by an object file with changes in elevation at different
points. This terrain will be the minimum y value any player can be
at. That is, it will be a rigid collision object.

Suppose for now our players are represented by spheres.
Each player has 2 possible actions: to attack or jump. To attack,
a circle, representing a shockwave, concentric with the player in
the horizontal plane will be generated. Over a short period of time,
this circle will expand in radius and decay in power until it reaches
0, at which point it will disappear. To jump, the player will follow
a simple f = mg update of the player given some initial velocity
in the y direction and a constant horizontal velocity at the point
of take off [Kankaanpaa 2004]. For any player, if their model
intersects with another player’s shockwave, their HP will decrease.
Once a player’s HP falls below 0, they are pronounced eliminated
and will respawn after a delay in another location.

This will be implemented by keeping lists of players and
shockwaves. At each timestep in the game, each player will be
checked against the list of shockwaves for intersections. For each
intersection, their HP will fall a predefined constant amount. At
the end of each time step, players who died will have their deaths
incremented by 1 and players who eliminated others will have their
kills incremented by the number of players they eliminated. These
statistics will be used to rank players.

The multiplayer portion will be implemented through han-
dling WebSockets using the socket.io API. We will use node.js to
host a server to which multiple computers can connect to. Socket.io
then allows us to pass data back and forth between the server and
each client. This way, when one client has a state change, everyone
else will get the same update.

3.2 Target Platforms

I will be using the standard web front-end technologies, HTML,
CSS, and Javascript. Building on top of this, I will be using
WebGL and related libraries such as three.js. For socket handling,
I will be using socket.io. Finally, I will likely be using node.js
to host the server. The user will be able to access this online
game through any browser and machine that supports WebGL (e.g.
Chrome, Firefox, etc.).

3.3 Evaluation Criteria

This MMOG will be evaluated under these criteria:

• Is this method a step forward from traditional methods of cre-
ating online games?

• Does the game show that WebGL and WebSockets is a feasi-
ble future direction in online gaming?

• How well are players synchronized in the world with the rest
of the population?

• Does the game have potential to be adapted and morphed into
more sophisticated games?

• How easy is it to get started building a larger game off of this
one?

4 Research Timeline

4.1 Project Milestone Report (Alpha Version)

• Complete all background reading

• Experiment with simple prototypes of 2D games combined
with WebSockets

• Experiment with 3D WebGL renderings of simple geometry

• Architect the modular pieces of the code and how their con-
tracts with other parts

4.2 Project Final Deliverables

• Fully functional 3D MMOG built in WebGL with WebSock-
ets

• Hosted game so users have access from anywhere on the in-
ternet

• Documentation that makes it easy for a user to build off of this
game

4.3 Project Future Tasks

• Optimize connections and renderings to scale the application
for more connections

• Integrate more physically based calculations into player inter-
actions

e.g. pushback from another player’s attack

• Assign object models to players to make for a better demon-
stration

• Apply more sophisticated renderings of animations

e.g. particle systems, lights

• Create more detailed terrains so they can be full maps with
obstacles



5 Appendix

A list of resources that I used, but did not quite belong in references.

• Multiplayer Chrome Experiments

http://www.chromeexperiments.com/tag/multiplayer

• WebSocket Wikipedia

http://en.wikipedia.org/wiki/WebSocket

• Comet Applications Wikipedia

http://en.wikipedia.org/wiki/Comet_(programming)

• Telescope between New York and London

http://www.cnn.com/2008/WORLD/europe/05/22/scope.project

• SketchFab

https://www.sketchfab.com

• Learning WebGL

http://learningwebgl.com

I will fill in the following sections as I make progress on my project,
particularly for the alpha review and the final deliverable.

6 Method

7 Results

8 Conclusions

9 Future Work

References

ALLERGIC, JSWISHER, K. E. A., 2013. Mozilla developer network:
Webgl. https://developer.mozilla.org/en-US/docs/WebGL.

DESPOULAIN, T., 2012. Hexgl. http://hexgl.bkcore.com.

I. FETTE, A. M., 2011. Websockets.
http://www.websocket.org/aboutwebsocket.html, December.

JACOB, B., 2012. Fitc spotlight javascript: Introduction to webgl.
http://people.mozilla.org/ bjacob/webgl-spotlight-js-2012/.

KANKAANPAA, H., 2004. Doing gravity right @ONLINE.
http://www.niksula.hut.fi/ hkankaan/Homepages/gravity.html.

LECOLLINET, G., AND LECOLLINET, F., 2012. Browserquest.
http://www.littleworkshop.fr/browserquest.html.

MARRIN, C., 2011. Webgl specification.
https://www.khronos.org/registry/webgl/specs/1.0/.

PEREZ-FADON, D., 2012. Dcubic. http://www.dcubic.net/html5/.

RUSSEL, K., AND MO, Z., 2012. Graphics programming for the
web: Webgl. ACM SIGGRAPH 2012 Course Slides, August.

VANIK, B., 2012. Acm siggraph presentation:
Multiplayer javascript/webgl voxel world game.
https://github.com/benvanik/blk-game.



Figure 2: Gantt Chart Tentative Schedule


