
CIS 497 Senior Capstone Design Project

Project Proposal Specification

Instructors: Norman I. Badler and Aline Normoyle

CIS 496/EAS499 Senior Design Project

Advanced Game Engine

Ian Lilley and Sean Lilley

Advisor: Norman I. Badler

University of Pennsylvania

ABSTRACT

Game engines are complicated. They require up-to-date knowledge of many areas of real-time rendering as well

as physics, sound, and animation. Although it is usually straightforward to implement individual components of an

engine, putting everything together elegantly can be a challenge. Our project will focus primarily on implementing

the newest techniques in several areas of real-time rendering, including cascaded shadow maps, advanced frustum

and occlusion culling, forward plus rendering, and more. Finally, we hope to engage with the graphics community

by making this project open source.

Project Blog: http://gameengineers.blogspot.com/

1. INTRODUCTION

Even the simplest of games needs a functional game en-

gine. There are three components to a good game engine:

speed, adaptability, and simplicity. A game engine must be

fast. It must be optimized at all levels, especially for graph-

ics and scene management. If a game has too much lag,

users will stop playing it. Next, a game engine must be

adaptable. It should be able to gracefully handle many

different objects, scenes, and inputs. Finally, it should be

simple. And artist or designer should be able to add things

to the game without worrying about the low level details.

Our goal is to make a game engine that incorporates these

three qualities.

Making a game engine is an interesting challenge be-

cause it forces us to combine the best techniques from

many areas of real-time rendering into one package. Al-

though individual components of an engine make for good

tech demos, there is value in putting them all together

while maintaining high quality and performance. Finally,

the source code for most popular game engines is not pub-

licly available, so it would be good to expose these tech-

niques to the graphics community in our own public repo-

sitory.

The first step towards accomplishing these goals is to re-

search the newest advancements in real-time rendering,

specifically forward plus rendering (discussed later). We

must design a system that makes it easy to add these new

features to ones we have implemented in previous projects.

By the end we hope to have a robust game engine that per-

forms well and incorporates the best aspects of game ren-

dering.

1.1 Design Goals

This project is geared towards the game development

community. Game programmers benefit because they will

be able to read our code and see how we organize the dif-

ferent structures as well as get a glimpse of some interest-

ing graphics techniques. Game artists and designers will

benefit because we will develop tools for fast content crea-

tion.

1.2 Projects Proposed Features and Functionality

A game engine is composed of many parts. Some of the

features we would like to target (in no particular order):

character animation, transparency, cascaded shadow maps

[DIM07][EIS11], rigid body physics, asset loading pipe-

line, materials and BRDFs, object instancing, frustum and

occlusion culling [RAK11], level of detail, reflections and

refractions, bump mapping [LEN11], post processing ef-

fects (like motion blur, depth of field, and ambient occlu-

sion) [MOL08], game event system, level editor, user inter-

faces, audio, multiplayer/networking, and forward plus

rendering [HIR12]. In general, these features do not de-

pend on each other so we have the freedom to decide the

order in which we implement them. A parallel goal of this

project is to always render above 60 fps for complex scenes

on our target hardware.

2. RELATED WORK

 We are largely inspired by the amazing results of modern

game engines like Unreal Engine 4 and CryEngine 3. Al-

though we do not have the manpower to match the output

of those companies, we have access to a lot of their tech-

niques through books and papers. We will be consulting

books like Real Time Rendering [MOL08] and Mathemat-

ics for 3D Game Programming and Computer Graphics

[LEN11] as well as SIGGRAPH demos and papers. Also,

companies like AMD and NVIDIA are constantly creating

demos for their new research. We plan take from all these

different sources.

© SIG Center for Computer Graphics 2010.

3. PROJECT PROPOSAL

We will be creating a game engine from scratch. In doing

so we hope to accomplish two main goals: first, to explore

the newest techniques that real-time rendering has to offer,

and second, to make a game. This means not only writing a

lot of code, but also thinking about game design and creat-

ing art assets.

3.1 Anticipated Approach

Here we discuss some of more interesting features of our

game engine:

GPU accelerated object instancing, frustum and occlu-

sion culling, and level of detail selection – Typical game

environments are quite large and contain many instances of

common objects like trees, rocks, enemies, etc. We propose

a completely dynamic system that updates the number of

instances to draw and their level of detail based on occlu-

sion and frustum culling tests that are performed in a com-

pute shader. Most engines perform these tests on a per-

object basis on the CPU, with constant round trips to the

GPU to get results from occlusion queries. Our GPU-only

technique uses some of the newest features of OpenGL

including compute shaders, atomic counters, and draw

indirect buffers.

Forward plus rendering [HIR12] has the performance

benefits of deferred shading without the high memory cost.

In addition, forward plus rendering easily supports multi-

sampling and transparency where deferred rendering does

not. The steps for doing forward plus rendering are as fol-

lows: first do a Z-prepass of the scene. Next, use a compute

shader to perform light culling and create light linked lists

for each pixel or tile of the screen. Finally, render the scene

again and compute the color of each pixel based on the

lights in that tile and the material properties of the object.

3.2 Target Platforms

Languages: C++ and OpenGL 4.3

Operating Systems: Windows and Linux. No OSX be-

cause it is unlikely that they will have OpenGL 4.3 drivers

by the time we do this project

Hardware: AMD and Nvidia OpenGL 4.3 compliant

graphics cards

Code Libraries:

 GLFW/GLEW for handling OpenGL context and

user input

 Bullet Physics for physics

 TinyXML for XML parsing

 GLM for linear algebra math library

 GLI for texture loading utilities

 OpenAL for audio

 Freetype for text

Software:

 Blender for 3D model creation, rigging, and ani-

mation

 Gimp for texture editing

3.3 Evaluation Criteria

We will compare the visual quality of our results against

those of popular game engines. We will also be ben-

chmarking our engine, timing different areas of code and

fixing bottlenecks. Our goal is to stay above 60 fps for

complex scenes.

4. RESEARCH TIMELINE

In order to complete most of the features in section 1.2,

we will implement smaller features on a weekly basis and

larger features on a monthly basis.

Project Milestone Report (Alpha Version)

 Complete all background reading

 Complete forward plus rendering and object in-

stancing pipeline (essentially the core graphics

engine)

Project Final Deliverables

 Implement as many features as possible from the

list in section 1.2. In order to do this we will first

complete the core rendering engine. With the re-

maining time we will implement some of the less

critical features like UI, networking, and level

editor.

 Tech demos showing off the various features

separately and together.

 Open source repository.

Project Future Tasks

 Continue to add more features. A game engine is

never complete because there is always new re-

search on the horizon.

5. Method

The backbone of our rendering engine is a deferred pipe-

line. First the scene geometry is rendered. The fragment

attributes (color, normal, specular, and depth) are outputted

into the G-Buffer, which consists of color, normal, specu-

lar, and depth textures. Afterwards we perform a series of

screen space effects including lighting, decals, reflections,

and ambient occlusion.

Decals - projecting a 3d volume onto an area in the

screen. This allows us to simulate bullet holes, footsteps,

and other effects.

Reflection - for every reflective fragment, cast a 2D ray

and traverse through the depth buffer to find an intersection

point. Sample the color at this point to use as the reflective

color.

Ambient Occlusion - For every pixel, send some feeler

rays in screen space to determine the percentage of neigh-

boring pixels that are intersected. A high percentage results

in a darker appearance. Afterwards we blur the ambient

occlusion texture to create a smoother look.

CIS 497 Senior Capstone Design Project

Project Proposal Specification

Instructors: Norman I. Badler and Aline Normoyle

CIS 496/EAS499 Senior Design Project

There are a variety of other rendering techniques that we

implemented that are not directly involved with the de-

ferred pipeline. This includes parallax mapping for simulat-

ing complex geometry on flat surfaces, specular mapping

for added realism, skeletal animation through vertex-shader

skinning, order independent transparency, cascaded sha-

dow maps, and GPU instancing and culling.

Order independent transparency - Render the transparent

geometry in a separate render pass and store transparent

fragments in per-pixel linked lists. Afterwards, for each

pixel sort and blend the fragments in the linked lists and

alpha blend with the color texture in the GBuffer.

Cascaded shadow maps - in order to draw realistic sha-

dows efficiently across large open areas. This technique

involves constructing multiple shadow maps which expand

across increasingly large areas in the world. In this way

shadow quality adapts to the distance from the camera.

Rendering was the largest aspect of our game engine, but

we explored other areas including physics, sound, user

interface, and scene loading. To tie all our game subsys-

tems together we use an event-driven component system

similar to other game engines like Unity.

Supported physics features include rigid bodies, soft bo-

dies, cloth, terrain, vehicles, and characters. One area

where physics and rendering intersects is the creation of

decals. When the user clicks the mouse, a physics ray is

sent into the world and a physics object is retrieved. The

decal cube is then added to the scene graph and trans-

formed appropriately before being rendered by the decal

manager.

For scene loading, we created a series of custom XML

formats to suit our needs. This includes formats for meshes,

materials, entities, and scenes. In addition we wrote some

Python scripts for Blender to export content into our en-

gine quickly. Our scene loading is sufficiently advanced

enough that we no longer hard code any information in the

engine itself, and even game behavior is stored in the XML

files.

6. RESULTS

Although we did not perform very fine-grained ben-

chmarking tests, we managed to stay above 60fps for all

scenes with maximum visual quality. We noticed that the

main bottleneck in the rendering pipeline is the screen-

space passes, primarily reflections and ambient occlusion.

Both of these effects handle about 30 operations per pixel

which results in slower speeds the larger the window reso-

lution. To counter these slowdowns, we give an option to

lower the resolution of these effects to half or quarter the

size, improving the frame rate significantly. On the other

end of the spectrum, we did not observe any major perfor-

mance hits from having many objects in the scene, unless

there are hundreds of physics objects in a large pile (which

is fairly uncommon in most games). This means we have a

lot of freedom to make complex scene without worrying

about bad performance. As far as we can tell, the GPU side

of our application accounts for over 99% of the frame time.

Images from our application can be found inside the

screenshots folder.

7. CONCLUSIONS and FUTURE WORK

Overall we are happy with the number of features we

able to add over the course of the project. Although our

focus was graphics techniques like deferred rendering,

shadows, and animations, we managed to add a number of

other features that make our program not just a rendering

engine, but a full-featured game engine. Although each

feature presented its own challenges, the greatest challenge

of all was combining everything without compromising

code quality and performance.

There is a lot more work to be done for this project. The

main rendering feature we have not yet included is real-

time global illumination. We wanted to hold off on this

feature because there is a lot of new research in this area

and it can be hard to gauge the performance-quality tra-

deoff just by reading papers. Next, we plan to add more

post-processing effects like depth of field, motion blur,

HDR, and tone-mapping for a more realistic look. On the

content creation side, we plan on improving our level edi-

tor and object creation process with the ultimate goal of

having a completely data-driven game, a necessity for art-

ists and modders. One interesting approach might be to use

a scripting language to accelerate in-game actions for cha-

racters and other game objects.

References

[HIR12] Takahiro Hirada, Jay McKee, Jason C.

Yang: Technology Behind AMD's Leo

Demo (GDC 2012).

[MOL08] Tomas Akenine-Moller, Eric Haines, Naty

Hoffman: Real-Time Rendering. AK Pe-

ters, 2008.

[LEN11] Eric Lengyel: Mathematics for 3D Game

Programming and Computer Graphics.

Course Technology PTR, 2011.

[DIM07] Rouslan Dimitrov: Cascaded Shadow

Maps. NVIDIA Corporation, 2007.

[EIS11] Elmar Eisemann, Michael Schwartz, Ulf

Assarsson, Michael Wimmer: Real-Time

Shadows. CRC Press, 2011.

[RAK11] Daniel Rakos: Hierarchical-Z Map Based

Occlusion Culling,

http://rastergrid.com/blog/2010/10/hierarc

hical-z-map-based-occlusion-culling/

