
CIS 497 Senior Capstone Design Project
Project Proposal Specification
Instructors: Norman I. Badler and Aline Normoyle

Advanced Game Engine
Ian Lilley and Sean Lilley

Advisor: Norman I. Badler

University of Pennsylvania

ABSTRACT

Game engines are complicated. They require up-to-date knowledge of many areas of real-time rendering as well
as physics, sound, and animation. Although it is usually straightforward to implement individual components of an
engine, putting everything together elegantly can be a challenge. Our project will focus primarily on implementing
the newest techniques in several areas of real-time rendering, including cascaded shadow maps, advanced frustum
and occlusion culling, forward plus rendering, and more. Finally, we hope to engage with the graphics community
by making this project open source.

Project Blog: http://gameengineers.blogspot.com/

1. INTRODUCTION

Even the simplest of games needs a functional game en-
gine. There are three components to a good game engine:
speed, adaptability, and simplicity. A game engine must be
fast. It must be optimized at all levels, especially for graph-
ics and scene management. If a game has too much lag,
users will stop playing it. Next, a game engine must be ad-
aptable. It should be able to gracefully handle many differ-
ent objects, scenes, and inputs. Finally, it should be simple.
And artist or designer should be able to add things to the
game without worrying about the low level details. Our
goal is to make a game engine that incorporates these three
qualities.

Making a game engine is an interesting challenge be-
cause it forces us to combine the best techniques from
many areas of real-time rendering into one package. Al-
though individual components of an engine make for good
tech demos, there is value in putting them all together
while maintaining high quality and performance. Finally,
the source code for most popular game engines is not pub-
licly available, so it would be good to expose these tech-
niques to the graphics community in our own public repos-
itory.

The first step towards accomplishing these goals is to re-
search the newest advancements in real-time rendering,
specifically forward plus rendering (discussed later). We
must design a system that makes it easy to add these new
features to ones we have implemented in previous projects.
By the end we hope to have a robust game engine that per-
forms well and incorporates the best aspects of game ren-
dering.

1.1 Design Goals

This project is geared towards the game development
community. Game programmers benefit because they will
be able to read our code and see how we organize the dif-
ferent structures as well as get a glimpse of some interest-

ing graphics techniques. Game artists and designers will
benefit because we will develop tools for fast content cre-
ation.

1.2 Projects Proposed Features and Functionality

A game engine is composed of many parts. Some of the
features we would like to target (in no particular order):
character animation, transparency, cascaded shadow maps
[DIM07][EIS11], rigid body physics, asset loading
pipeline, materials and BRDFs, object instancing, frustum
and occlusion culling [RAK11], level of detail, reflections
and refractions, bump mapping [LEN11], post processing
effects (like motion blur, depth of field, and ambient occlu-
sion) [MOL08], game event system, level editor, user inter-
faces, audio, multiplayer/networking, and forward plus ren-
dering [HIR12]. In general, these features do not depend
on each other so we have the freedom to decide the order in
which we implement them. A parallel goal of this project is
to always render above 60 fps for complex scenes on our
target hardware.

2. RELATED WORK

 We are largely inspired by the amazing results of modern
game engines like Unreal Engine 4 and CryEngine 3. Al-
though we do not have the manpower to match the output
of those companies, we have access to a lot of their tech-
niques through books and papers. We will be consulting
books like Real Time Rendering [MOL08] and Mathemat-
ics for 3D Game Programming and Computer Graphics
[LEN11] as well as SIGGRAPH demos and papers. Also,
companies like AMD and NVIDIA are constantly creating
demos for their new research. We plan take from all these
different sources.

CIS 496/EAS499 Senior Design Project

3. PROJECT PROPOSAL

We will be creating a game engine from scratch. In doing
so we hope to accomplish two main goals: first, to explore
the newest techniques that real-time rendering has to offer,
and second, to make a game. This means not only writing a
lot of code, but also thinking about game design and creat-
ing art assets.

3.1 Anticipated Approach

Here we discuss some of more interesting features of our
game engine:

GPU accelerated object instancing, frustum and occlu-
sion culling, and level of detail selection – Typical game
environments are quite large and contain many instances of
common objects like trees, rocks, enemies, etc. We propose
a completely dynamic system that updates the number of
instances to draw and their level of detail based on occlu-
sion and frustum culling tests that are performed in a com-
pute shader. Most engines perform these tests on a per-ob-
ject basis on the CPU, with constant round trips to the
GPU to get results from occlusion queries. Our GPU-only
technique uses some of the newest features of OpenGL in-
cluding compute shaders, atomic counters, and draw indir-
ect buffers.

Forward plus rendering [HIR12] has the performance be-
nefits of deferred shading without the high memory cost. In
addition, forward plus rendering easily supports multis-
ampling and transparency where deferred rendering does
not. The steps for doing forward plus rendering are as fol-
lows: first do a Z-prepass of the scene. Next, use a compute
shader to perform light culling and create light linked lists
for each pixel or tile of the screen. Finally, render the scene
again and compute the color of each pixel based on the
lights in that tile and the material properties of the object.

3.2 Target Platforms

Languages: C++ and OpenGL 4.3
Operating Systems: Windows and Linux. No OSX be-

cause it is unlikely that they will have OpenGL 4.3 drivers
by the time we do this project

Hardware: AMD and Nvidia OpenGL 4.3 compliant
graphics cards

Code Libraries:

• SFML (Simple and Fast Multimedia Library) for
handling viewport, audio, networking, and user
input

• Bullet Physics for physics

• TinyXML for XML parsing

• GLM - linear algebra math library

• GLI - texture loading utilities
Software:

• Blender for 3D model creation, rigging, and an-
imation

• Gimp for texture editing

3.3 Evaluation Criteria

We will compare the visual quality of our results against
those of popular game engines. We will also be bench-
marking our engine, timing different areas of code and fix-
ing bottlenecks. Our goal is to stay above 60 fps for com-
plex scenes.

4. RESEARCH TIMELINE

In order to complete most of the features in section 1.2,
we will implement smaller features on a weekly basis and
larger features on a monthly basis.

Project Milestone Report (Alpha Version)

• Complete all background reading

• Complete forward plus rendering and object in-
stancing pipeline (essentially the core graphics
engine)

Project Final Deliverables

• Implement as many features as possible from the
list in section 1.2. In order to do this we will first
complete the core rendering engine. With the re-
maining time we will implement some of the less
critical features like UI, networking, and level
editor.

• Tech demos showing off the various features sep-
arately and together.

• Open source repository.

Project Future Tasks

• Continue to add more features. A game engine is
never complete because there is always new re-
search on the horizon.

(remove line)

You will fill in the following sections as you make pro-
gress on your project, particularly for the alpha review and
the final deliverable. In these sections, list pseudo-code,
charts, images, examples, etc. to show what you’ve done
over the course of the semester.

5. Method

6. RESULTS

7. CONCLUSIONS and FUTURE WORK

APPENDIX
A. Optional Appendix
Some text here. Some text here. Some text here.

© SIG Center for Computer Graphics 2010.

CIS 497 Senior Capstone Design Project
Project Proposal Specification
Instructors: Norman I. Badler and Aline Normoyle

(remove line)

References

[HIR12] Takahiro Hirada, Jay McKee, Jason C.
Yang: Technology Behind AMD's Leo
Demo (GDC 2012).

[MOL08] Tomas Akenine-Moller, Eric Haines, Naty
Hoffman: Real-Time Rendering. AK
Peters, 2008.

[LEN11] Eric Lengyel: Mathematics for 3D Game
Programming and Computer Graphics.
Course Technology PTR, 2011.

[DIM07] Rouslan Dimitrov: Cascaded Shadow
Maps. NVIDIA Corporation, 2007.

[EIS11] Elmar Eisemann, Michael Schwartz, Ulf
Assarsson, Michael Wimmer: Real-Time
Shadows. CRC Press, 2011.

[RAK11] Daniel Rakos: Hierarchical-Z Map Based
Occlusion Culling,
http://rastergrid.com/blog/2010/10/hier-
archical-z-map-based-occlusion-culling/

CIS 496/EAS499 Senior Design Project

Figure 2: For publications with color tables and figures that span two columns like your gant chart or results will.

	Abstract
	1. INTRODUCTION
	1.1 Design Goals
	1.2 Projects Proposed Features and Functionality

	2. RELATED WORK
	3. PROJECT PROPOSAL
	3.1 Anticipated Approach
	3.2 Target Platforms
	3.3 Evaluation Criteria

	4. RESEARCH TIMELINE
	5. Method
	6. RESULTS
	7. CONCLUSIONS and FUTURE WORK
	References

