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Project PAALM: Phalangeal Angle Approximation through the Leap Motion
Controller
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Figure 1: Top Left to Right: The Leap Motion controller tracks to palm and fingers above it. Bottom Left to Right: Our PAALM system
estimates finger positions in real-time based on the Leap input. The bottom animation was created using a Maya plugin which communicates
directly with the device to create keyframes for a hand model.

Abstract1

Hands are fundamental in a variety of domains including charac-2

ter animation, sign language, robotics, and gestural user interfaces.3

However, the dexterity and flexibility of the hand make it difficult4

to accurately capture information about complex gestures. Current5

approaches are expensive, restrict movement of the hand, confine6

the user to a capture region, or require time-consuming manual7

cleanup. Thus, we investigate the use of a fast, approximate, and8

inexpensive method for obtaining the phalangeal joint angles of the9

hand using the Leap Motion Controller [Leap Motion 2013]. Our10

framework directly integrates the Leap Motion controller into Maya11

to create an intuitive user interface for animating hand motions.12

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional13

Graphics and Realism I.3.7 [Computer Graphics]: Three-14

Dimensional Graphics and Realism;15
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1 Introduction17

Hands are fundamental in a variety of domains including charac-18

ter animation, sign language, robotics, and gestural user interfaces.19

Hands are both the primary mechanism we use to interface with20

the physical world as well as an important component for com-21

munication. In computer graphics, the realistic animation of the22

human hand is a long-standing and difficult problem because our23

hands are very dexterous and versatile. Detailed and subtle fin-24

ger motions are important for lifelike characters but are difficult to25

capture. Much research has been devoted to efficiently capturing26

hand gestures, using imaged-based, glove-based, and marker-based27

techniques. However, most existing methods remain expensive, can28

restrict the motion of the hand, might confine the user to a space, or29

require time-consuming manual cleanup. For example, dexterous30

finger motions are very difficult to capture with optical and marker-31

based systems because markers frequently become occluded and32

the proximity of the fingers cause automatic labeling algorithms to33

frequently mislabel markers. Conversely, solutions involving wear-34

able measurement devices, such as cybergloves, are often bulky and35

restrict delicate movements.36

We use the data from the Leap controller to estimate the pha-37

langeal joint angles of the fingers and palm. Thus, we in-38

vestigate an effective method for approximating and recording39

hand motions that is portable, unrestrictive, real-time and cost-40

effective. Our approach utilizes a new and unexplored technol-41

ogy called the Leap Motion Controller that is roughly the size of42

a flash drive and tracks individual finger movements to 1/100th43

of a millimeter [Leap Motion 2013]. This device is designed44

to sit on a desk and plugged into a PC via USB. Internally, the45

device tracks finger motions in a one meter hemispherical area46

above the device using two light sensors and three infrared LEDs47

[(https://www.leapmotion.com/developers) ].48

Our framework implements an application programming interface49

(API) for obtaining and visualizing the phalangeal joint angle data50

using the Leap Motion Controller which is suitable for direct import51

(via a plug-in) into a rigged Maya hand model. Unlike a purely52

image-based system, the Leap Motion device provides users with53

direction vectors and lengths for each finger as well as an orienta-54

tion and position for the palm. We map the output from the Leap55

Motion controller to IK targets for each finger based on a simple56

calibration step.57

Our main contributions are as follows:58

• An portable, cost-effective, real-time, and freehand method of59

obtaining phalangeal joint angles using an unexplored tech-60

nology.61

• An application programming interface (API) for obtaining62

and visualizing the phalangeal joint angle data using the Leap63

Motion Controller which is suitable for direct import (via a64
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plug-in) into a rigged Maya hand model.65

2 Related Work66

Recording hands remains a difficult problem. Below we briefly out-67

line four major approaches.68

2.1 Marker-based Systems69

Marker-based motion capture systems are a popular means of ob-70

taining hand motion data. The standard approach requires attaching71

approximately 30 retro-reflective markers to the hand and tracking72

them over time [Vicon 2013]. The temporal data is then used to73

reconstruct a 3D representation of the hand and its motions. Re-74

cent advancements in hand motion capture have made it possible to75

achieve descriptive hand motion data with a reduction in the number76

of markers [Hovet et al. 2012]. Though even with such advance-77

ments, marker-based approaches still pose significant problems in78

hand motion detection. Gestures featuring self-occlusion (fingers79

overlapping one another) are difficult to detect using the system.80

Automatic marker tracking is not effective in maintaining the mark-81

ers over time. Thus, the process of tracking markers is then a te-82

dious one, requiring manual labeling that is both time-consuming83

and error prone [Zhao et al. 2012].84

2.2 Glove-based Systems85

Glove-based systems such as the CyberGlove [Cyberglove 2013]86

provide a useful method of obtaining hand gesture data that is free87

from issues that arise when fingers occlude each other. Such sys-88

tems have been used for the recognition of sign language [Vogler89

and Metaxas 2003]. The motions recorded using the system, how-90

ever, are often noisy and fail to capture delicate articulations with91

high precision [Zhao et al. 2012]. Likewise, the system restricts the92

natural motion of the hand, making capturing realistic gestures a93

more complex task. The advantage of using the Leap Motion Con-94

troller for our approach is that it permits the hand to move freely95

and naturally.96

2.3 Image-based Systems97

Computer vision has offered a promising alternative to data gloves98

and other worn mechanisms for detecting hand motions [Erol et al.99

2007]. Image-based systems have the advantage of being lower100

cost, portal, and not restrictive of hand movements.101

Image-based approaches must handle occlusions between fingers.102

[Martin de La Gorce 2011] tracked hand poses based on monoc-103

ular video using a model of temporal continuity to handle occlu-104

sions. Other image-based techniques rely on hand motion priors105

stored in a large database to aid capture [Wu et al. 2001; Zhou106

and Huang 2003; Wang and Popovic 2009; Romero et al. 2010].107

However, these approaches rely on having a large hand database to108

guide pose recognition and generation and thus have the drawbacks109

of requiring a large number of pre-collected poses and thus whose110

recognition is restricted to poses similar to those in the database. In111

an other approach, [Oikonomidis et al. 2011] enhanced the accu-112

racy of imaged-based techniques through the use of a RGB-depth113

camera. A recent device called Digits has been developed that uses114

a wrist-worn gloveless sensor to detect 3D hand gestures [Kim115

et al. 2012]. The sensor features two infrared illumination schemes116

that are used to produce a hand model through inverse kinematics.117

The wrist-worn device avoids the need for any embedded sensors in118

the environment and permits the hand to move freely as well as the119

user to move about without being confined to a capturing region.120

Figure 2: Leap Motion visualizer displaying finger vectors and a
palm normal for a hand.

(a) (b)

Figure 3: Top to Bottom: Leap Motion visualizer displaying the
palm radius for a partially closed hand and an open hand with
spread fingers.

Vision-based techniques have the drawbacks of being computation-121

ally expensive, noisy and vunerable to a lack of obvious features on122

the hand and occlusions.123

2.4 Hybrid Systems124

A recent innovation has been combining marker-based and image-125

based systems to provide higher fidelity hand motion data [Zhao126

et al. 2012]. These systems are capable of accurately detecting hand127

motions even in cases of selfocclusion. The markers are used as128

reference when rebuilding hand motion data using an RGB-depth129

camera such as the Microsoft Kinect. These systems are robust130

and do not significantly restrict hand movements as the markers are131

small. The potential shortcomings of this system is that it still re-132

quires an expensive, non-portable optical motion capture system to133

capture the markers and must run a computationally expensive opti-134

mization to solve for hand positions which saistify both the RGB-D135

image and the marker positions.136

3 LEAP137

The Leap Motion Controller offers a cost-effective, fast and precise138

means of capturing live hand motion data. This device is small139

(3x1x0.5 inches), designed to sit on a desk and plugged into a PC140

via USB. Thus, it is extremely portable and lightweight.141

The Leap Motion Controller is an infrared-based device, featuring142

three infrared LEDs and two light sensors. The device is capable143
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Figure 4: PAALM Overview. To isloate finger data, we sort de-
tected fingers by x-ccordinate and compute a ratio for estimating
the amount of bend in the finger. This data is sent to a Maya plugin
via a socket, occurring through Maya’s command port. We then
compute IK target positions by computing an offset for the finger
tip based on a direction vector offset from the first knuckle joint of
each finger. Finally, we set keyframes which may then be rendered
out or exported to a motion file format.

of tracking position changes as small as a 1/100th of a millimeter144

within a detection region of eight cubic feet. Its sensors capture spa-145

tial information at 290 frames per second and provide data about the146

tip position, tip velocity, length, direction, and width of pointable147

objects, such as a pen or a finger, in 3D space.148

With respect to fingers, the device can determine to which hand a149

set of fingers belong and provide details about a hand’s palm posi-150

tion and normal (Figure 2). Additionally, the hand data includes a151

palm sphere radius, or the radius of a spherical object that could be152

held within the palm of the hand. A small radius suggests a closed153

hand while a large radius suggests an open hand with fingers spread154

further apart (Figure 3). Occluded fingers are not detected by the155

device, so crossed or folded fingers will disappear from the output156

data until they are detected again.157

All of the data provided by the Leap Motion Controller is organized158

into individual frames which can be accessed and manipulated us-159

ing the device’s application programming interface.160

4 Approach161

In this section, we describe how we map the output from the Leap162

device to a joint hierachy in Maya. The device API provides un-163

ordered direction vectors whose lengths correspond to the length of164

each finger seen by the device. The device omits information for165

any fingers it fails to detect, such as fingers folded into the palm or166

crossed together. The size, position, and orientation of the palm is167

also provided by the Leap API.168

Thus, inferring hand positions from the Leap input requires map-169

ping these direction vectors to the finger and palm of our model.170

For this straighforward approach to work, we must first calibrate171

our system for the finger sizes of the capture subject, which can172

differ greatly between individuals. During this step, our capture173

subject need only hold their hand above the leap device in a rest174

pose with open palm and spread fingers, such that the device can175

detect the entire hand. We then record lengths of each finger over176

1000 frames (approximately 10 seconds) and use the average as177

the standard length `s for the finger. The standard length is then178

compared against the current length `c in all subsequently captured179

frames to compute a length ratio `c
`s

.180

In Maya, we define joint chains for each finger apriori (which we181

will designate as Maya-fingers) having joint limits and sensible de-182

gree of freedom constraints. The leap direction vectors d are then183

scaled based on the length of each Maya-finger `m and the leap184

finger ratio to compute an offset from first knuckle of each Maya185

finger.186

xik = `m
`c
`s

d

||d|| + xknuckle

where xik is the global position for placing our IK target and187

xknuckle is the global position of the knuckle. Each frames, we188

then update the finger positions based on IK. Each N frames, we189

additionally save out a keyframe, with N chosen to based on the190

desired framework of the animation. These keyframes can either be191

rendered out as is, or exported to a standard motion format, such as192

amc/asf, v/vsk, or bvh.193

Lastly, we must account for two complicating factors: one, the fin-194

ger data for a hand received from the Leap Motion Controller is not195

guaranteed to be ordered; and two, some number of fingers might196

not be detected at all. The first problem is solved with a heuristic197

where we sort the finger data by x-coordinates in 3D space (chosen198

because it matches the orientation of a detected hand in the device’s199

coordinate space). In our demos, we us ethe right hand although the200

system is suitable for either hand or can support two hands if they201

are not stacked on top of each other. The configuration need only202

be specified during calibration. The sorted fingers receive unique203

identifiers that are used to associate standard lengths (acquired dur-204

ing calibration) with lengths from subsequent frame updates. We205

deal with the second problem using heuristics to infer the missing206

finger, e.g. we assume that a finger will stay in the same position207

until it is detected again.208

Our implementation has two main components: a Python script for209

interfacing with the Leap Motion Controller and a Maya plug-in210

written in PyMel for animating hand motions. The integration be-211

tween the Leap controller and our Maya plug-in is socket-based,212

occurring through Maya’s command port.213

5 Conclusion214

This work describes a simple, straight forward mapping of the leap215

device for estimating hand poses. Our framework directly inte-216

grates the Leap Motion controller into Maya to create an intuitive217

user interface for animating hand motions, but could be used as well218

as for puppeteering other rigged models. Once animated, the poses219

are easily exported from maya into standard motion formats such220

as amc/asf, v/vsk, or bvh.221

The Leap Motion controller shows much promise for the collection222

of hand gestures, thanks to its small size, cost, and input capabilities223

which are tuned to the detection of hands.224

The downsides of our current implementation is that it does not deal225

with the small levels of noise which are sometimes generated by226

the device, nor do we yet handle enough postures robustly. Lastly,227

we do not evaluate sophisticated methods for dealing with missing228

finger data or handling a wide variety of poses. This is the natural229
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next step. However, even our simple approach produces compelling230

and intriguing results. Our hope is that this work encourages and231

aids others interested in trying this device.232
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