CIS 497 Senior Capstone Design Project

Project Proposal

Instructors: Norman I. Badler and Aline Normoyle

Optimization Based Architecture Generation

Stewart Hills

Advisor: Norman I. Badler and Aline Normoyle
University of Pennsylvania
Abstract

The recent popularity of procedural city generation in industry has created a need for more specific tools. While tools exist to create buildings in single architectural styles or along physically realistic lines, a gap exists between real urban variation and existing tools. Additionally tuning these tools to a visual style can be challenging. The purpose of this project is to introduce stylistic variation to Procedural Architectural Modeling through a grammatical system in order to generate realistically varied architecture. This tool will generate the layout or arrangement of elements separate from the actual geometry, simplifying the process of adjusting the visual style.
Project Blog: http://shillsarchitecture.blogspot.com/
1. INTRODUCTION
Whether generating the environment of an open world game or a wide shot in a movie, hand-crafting every building takes far too long. Most cities have been built with a variety of styles, across multiple time periods, in wealth and in poverty. Even the function of buildings change, for example, when old, industrial buildings are converted into loft apartments. Moreover, each building’s geometry must be generated so as to be both believable and internally consistent. Consider Philadelphia: the Rittenhouse square neighborhood alone hosts a collection of modern towers, converted hotels, row houses which vary from Victorian to art-deco, with the occasional colonial or mission style home thrown in. To the south, the row houses get shorter and less well maintained and decorative. To the west, former industrial warehouses line the river and to the north, international style skyscrapers cluster around City Hall.
Without serious stylization, a city cannot be populated from a single template-- cities have variety, which, when lacking, is glaringly obvious to the observer. At the same time, streets, districts, and neighborhoods are often dominated by a single aesthetic. To create realistic, visible transitions from one urban district to the next requires stylistic transitions. Each building must be at home in at least two styles, with aesthetic discretization to create visually comfortable transitions.
This paper proposes a system to describe building styles and the constraints of a particular site for a formal grammar implementation. The program will create a non-deterministic finte state machine who’s path can be interpreted geometrically. Even after generation of the layout of architectural elements, it should be possible to edit decorative subtleties with minimal re-computing. For example, switching which moulding profile to use for a cornice from the program’s random selection, to one of the user’s choice. Style alignment may also be editable separate from the facade layout, if the architectural elements being used have sufficiently similar proportions.

This project makes the following contributions:
· Creates an extensible system for generating procedural facades and roofs.

· Allows easier definition of additional styles

· Allows user blending of styles
1.1 Design Goals

Under some circumstances, artists and/or production companies (movies or games) lack the modeling manpower to create fully detailed assets as background content for cities, especially in wide or aerial shots. This tool will allow users to generate buildings with controllable amounts of variation or stylistic blending, to create detailed, realistic and/or stylized cityscapes. The output will be in a standard, widely accepted format (OBJ).
1.2 Projects Proposed Features and Functionality

· Grammar based arrangement of elements with constraint input for the individual building facades and roof lines
· Varriation between architectural styles in both layout and visual styling
· Randomization of unconstrained values to create variety
2. RELATED WORK
In order to begin building generation, a user must consider the architectural style they will be working in, which defines the proportions and shapes (e.g. classical); the visual style they will create, which determines the tone of the building (e.g. ornate or simplistic); and the realities of a building (e.g. overal dimensions, full building vs facade). Procedural Architectural Modeling has gotten scholarly and industry attention recently, yet the industry still seems to lack artist-friendly, versatile tools that allow the user to usefully consider all three elements. Thus far, work on Procedural Architectural Modeling has broken down along the following lines.

I.
Versatile, but difficult to style
Tools like CityEngine exist for the technical users, but conforming buildings to a particular visual style remains difficult, even once a user is able to capture an architectural style. Further, CityEngine is based in formal grammars, which makes editing the styles difficult for users unfamiliar with them. To compensate, CityEngine is a very flexible system, capable of creating almost any architectural form, if the user puts enough effort into learning the rules and fine-tuning the visual style. This software has set the bar for versatility and interactivity very high. Therefore, this project will add stylistic blending as a new feature, rather than improve the existing features significantly.
II.
Inflexible, but stylistic

On the other side of the coin, tools exist to generate very specific kinds of architecture easily and effectively. For example, consider the description of Frank Lloyd Wright’s prairie houses as a formal grammar, but as one that needs no further adjusting [KE81]. This simple tool will quickly and easily generate a very specific style of building, having effectively traded versatility for ease. Compared to these, the proposed tool should be far more flexible, though not as physically grounded or as finely tuned to a single style. Similarly, work on recreating existing buildings from photographs has been able to generate architecturally realistic, stylized buildings, but it is perhaps the least flexible of the systems being discussed [MZW*07]. This approach gets realism for free by using actual physical structures as its basis, but in doing so, it can only recreate what already exists, not create anything new. Theoretically, one might feed the system images from different buildings as if they were from just one, but it is unlikely that the results would be useful or predictable.
II.
Realistic, but inflexible
Physical stability modeling, approaches Procedural Architectural Modeling along realistic lines. With a blend of grammatical rules and optimization approaches, the tool first creates structurally sound masonry buildings that follow grammar for the placement of elements, and then optimizes forces from the physical model to adjust the size and proportions of those elements [WOD09]. This approach produces wonderful results, but is clearly unhelpful for the timber frame or concrete slab construction common to more recent construction. Realistic optimization has also been turned to floor-plan creation, which uses graph representations of room connectivity and rough constraints on size [MSK10]. The results produce wholly reasonable suburban homes in a variety of styles, but again lacks the flexibility of producing a wide range of architectural or visual styles. While there is some maneuverability within the scope of the program, there is little room for design or imagination.
Thus far, the ideas laid out by Wonka and Kelly [KW11] in their paper “Interactive architectural modeling with procedural extrusions” represent the closest scholars have come to realizing the ideal of both versatility and stylistic control and is some of most advanced work to date on procedural architecture. Their discussion of stretching elements and creating complicated roof lines is highly instructional, and easily adapts to architectural and visual styles, although their extrusion-based approach has not, thus far, been used for refined detail or for stylistic blending.
3. PROJECT PROPOSAL
The tool proposed will expand on existing work with the addition of stylistic blending, in order to generate greater architectural variation while maintaining visual detail.
3.1 Anticipated Approach

By using an external optimization system, the first feature of the proposed tool will be the description of architectural styles and accompanying geometry as constraints. I will describe rules for symmetry, repetition, spacing, nonuniform scaling, roof pitch, and other spatial constraints for use in the generation phase. Spacial and proportion rules for different styles will vary numerically, allowing for interpolation to obtain intermediate values. I can then further blur the distinction between styles by creating geometry to match a few discrete steps of the transition. As mentioned, variation within the same set of constraints can be achieved by randomizing unconstrained values. Further variance can be achieved by modeling and randomly selecting variants of individual elements within a single style or transitional step. Future users should be able to create an element set and apply existing rules to create buildings with similar proportions, or to adjust rules using old elements to create new buildings in old styles. The work flow should function as follows: 1) choose and/or modify a set of constraints, either in a text file or possibly with a simple UI; 2) select a set of elements from a library to be used in visualization; 3) run the optimization through AMPL for a desired number of iterations; and 4) take the result from AMPL, position and adjust the selected elements accordingly, and display the geometry in a GL window. If the user is satisfied, the result can be saved to an OBJ file. If the user is not satisfied, they can revise the original result by swapping elements for variants or entire sets, or simply by altering the constraints and running AMPL again for an iterative process. Swapping entire elements sets would likely cause the layout to be less optimal than originally generated, but the result could still be acceptable, depending on the user’s design goals.
3.2 Target Platforms
This project will make use c++ and/or Python to interface with AMPL and Snopt or another optimization system then write the result to file.
3.3 Evaluation Criteria

The completed tool should allow the user to freely create buildings that fit spatial constraints in a pure or interpolated style. The geometry and appearance of the buildings should be pleasing and hold up to other works in terms of plausibility (where intended) and architectural consistency (where intended). Stylistic blending should provide new ways to adjust the appearance of generated architecture.
4. RESEARCH TIMELINE
Project Milestone Report (Alpha Version)
· Completed all background reading
· AMPLE scripts generates simple test building
· Test geometry tagged and functional for viewing
· Final geometry outputs directly to file

· Tentative input UI
Project Final Deliverables
· Input mechanism fully functional
· Two fully realized styles in constraints and geometry
· Functional blending
· Optimized façade layout generation

· Post optimization and iterative editing

· Demo buildings and interpolation sequences

· Documentation

Project Future Tasks
· Batch generation for multiple buildings at once
· Use of footprint polygons or splines for freestanding buildings

· City generation with two dimensional interpolation of styles across area

· Better support for free standing buildings

· Support for abstract architecture (e.g. Ghery)

5. Method

First, geometry is modeled by the user as a series of discrete elements. These are then described in a library file with a few extra parameters of the form:
Element:

file TestRoof.obj

name TestRoof

type roof

prefered_aspect 1

anchorX 0 1

anchorY 0 1

end
With corresponding geometry like so:
[image: image10.png]Reading
Understand AMPL

basic script generation
test constraints

test geometry

style 1 constraints

style 1 geometry
robust script generation
blending framework
style 2 constraints

style 2 geometry
constraint blending
geometry blending
visualization

editing

polish

This specifies the OBJ file to load, the name to use in the configuration file, a type enumerator for later logic, an optional geometrical aspect ratio that overrides the one calculated from the file, and a set of 2D anchor points for non-uniform scaling. The type is used to prevent doors and roofs from appearing in places they do not belong and to allow the user to specify a generic type (eg: window) so that the program will randomly pic from all the elements of that type. The anchor points should be set within the XY bounding box of the input mesh. When they are set and the element needs to be scaled all points outside the anchors are translated to match the new dimension and all points inside get an appropriate interpolation for uniform scale. The result is that with anchors inside the frame of a window the frame will retain its original thickness independent of scale as pictured.
[image: image2.png]

With architectural styles broken town to theses discrete elements the next task is to arrange them meaningfully. As a proof of concept and testing ground for transformations the first arrangement method implemented was direct specification. The user can list elements in order grouped by floor with optional variables for dimensions, aspect ratios and other such controls. These are organized as follows:
Floor 0:

element wall width 1 name testwall

element door name testDoor width 3

element wall width 1 name testwall

element window name 3_ground_window

element window name 3_ground_window

element wall width 1 name testwall

end

The global variables for generation are output file name, height, width, seed, spacing and footprint. These are specified in the “Globals” section. The height parameter sets a target or limit for generation depending on method and width is overridden for grammars by the footprint polygon. Spacing inserts a strip of blank walls of the width specified between generated features when greater than zero. The foot print is a list of 2D points (in the XZ plane) that assumes both clockwise order and that the last point has an edge to the first point.
At this point AMPL and SNOPT did not prove to be a good match. My thinking about architecture did not lend its self to expression as liner equations and thus made conversion of stylistic rules to AMPL unfeasible. Formal grammars proved to be a better fit for creating the 2D arrays of elements that make up façades. With the previous mechanics in place the remaining challenge for grammars was the state machine used to generate strings and its boundary conditions. The goal for the state machines is to begin at a fixed starting state that feeds a directed series of cycles such that each node has at least one outgoing transition. That way unique patterns can be set up coming out of the start state and no state is a dead end that would result in a hole or blank patch in the building. In code, the grammar is treated as strings of symbols each of which has either a set of children it can transition into (non-terminal) or a geometrical element (terminal).
The strings are evolved iteratively by replacing each non-terminal with one of its children until the combined dimension of the terminals is greater than the allotted space. Enough terminals are removed to fit under the guideline and the extra space is padded out with blank wall strips. Some extra symbols are reserved to ensure proper function. All state machines have to begins at some start state, ‘s’ fills that role here. Ground floors generally follow a very different pattern than upper floors (ie: including doors or store fronts) so the ‘g’ symbol denotes a ground floor that has its own grammar rules. Buildings are generally organized in either rows or columns of patterns so ‘h’ and ‘v’ are reserved to denote horizontal or vertical layouts. Roofs are denoted by ‘r’ and the only reserved terminal is ‘f’ for the simple element used to fill in gaps.

As an example consider this arrangement:

grammar:

s ghr

g dbu

u wbu

h absbl

h ababl

l absbl

l abbsbbl

r ty

y ty

end

mapping:

d 3_ground_door

w 3_ground_window

b TestWall

a 3_middle_window

s 3_middle_bay

t 3_roof_blank

f TestWall

end

Starting from ‘s’ we get a ground floor, a horizontal layout and then a roof. The ground symbol has one child ‘dbu’ and ‘u’ had one child ‘wbu’ meaning these will produce a unique start and then a repeating pattern with exactly one door per side. The terminal symbols are then defined in the mapping section using the names of elements from the library file. The ‘h’ and ‘l’ symbols have multiple children so they will introduce non-determinism. With input like this the seed can be changed to create variation between buildings even if the footprint and heights are identical.
After grammatical generation a number of problems may still exist. If elements vary in height different sides of a building can get closer or farther from the height limit resulting in an uneven roofline. At this point optimization becomes useful again in the form of simulated annealing. Instead of solving a series of equations simulated annealing generates a new state based on the old and compares the cost as determined by a collection of arbitrary metrics (possibly non-functional or complexly related). In metallurgy, annealing is the process of slowly cooling metal to increase crystal size and reduce impurities. Simulated annealing uses a “temperature” that decreases with every iteration to guide the magnitude of allowable changes. While the model is hot it can make drastic changes and as it cools it will make fine adjustments. Simulated annealing can also be configured to occasionally choose a non-optimal step (a new state with a higher cost then the old state) based on temperature. This configuration can help escape local minima.
[image: image3.png]

To use simulated annealing to solve the problem of varying rooflines some measure of cost is necessary. I have chosen normalized per-element distortion from original aspect ratios as the cost. On creation each instance of an element stores its resting aspect ratio. Deformation occurs to accomplish goals in the grammatical construction phase; for example, when matching every element in a floor to the same height so that the next floor has a level base to start from. Further deformation becomes necessary if the adjacent wall is higher or lower. The next state is generated by choosing one wall at random and uniformly scaling the others up or down to match it. In this case the options can be checked individually to determine the best outcome. Relaxing the rules for generating the new state by allowing some floors of a given wall to remain their original height creates a much larger set of possible states for simulated annealing to explore. Following the logic of existing buildings, a penalty for adjacent floors misaligning gives simulated annealing a set of moving targets to try and hit as best it can.
The combined meshes of element arrangements at the end of each phase are written to OBJ files for use in 3D applications.
6. RESULTS

The qualities of output building models depend greatly on input elements. The most obvious is complexity, with simple elements as input the output must also be simple.

[image: image4.png]

As compared to:

[image: image5.png]

However, the grammatical input and simulated annealing have considerable effect as well. With problems in annealing structural problems arise that interfere with the believability of the buildings. These intersections and gaps in the rooflines are a good example.

[image: image6.png]

As for variation and believability, minor edits to the input parameters and grammar can produce a suitable variety. By adjusting height, seed, footprint dimensions, and non-terminal grammar states a collection of buildings can be generated from a small set of elements. Here there are only 7 elements that are not specific to the ground floor or roof. With these few adjustments a wide variety of results can be produced.
[image: image7.png]

[image: image8.png]

Even with a set consisting of only 4 elements, two of which are a blank wall and roof segment a reasonable (albeit simple) building can be generated.

[image: image9.png]

All of these achieve just as much realism as is possible with manual arrangement of the same elements. The variability of this project is currently most limited by the modeling of new element sets, but the results from existing sets are architecturally convincing and nicely variable.
7. CONCLUSIONS and FUTURE WORK

This project is successful in its objective of procedurally generating varied and plausible buildings from a small set of user input elements. Optimization has been successfully integrated to help solve some issues inherent in the grammatical approach. The visual quality of the output is good and the detail of the original elements is preserved. Varying degrees of stylization are possible purely through the modeling of the elements. Hence, blending styles is possible with a combination of modeled transitional elements or sets and weighting in the grammar. If a grammatical symbol has multiple identical children that use one tile set and a single child that uses another then the first set will dominate the building. By adjusting the frequency of various sets in the grammar a blend can be produced.
Some bugs persist in the grammatical generation when elements have radically differing heights. These will occasionally cause one wall of a building to generate too many or too few floors. Correcting for this manually is not terribly difficult as elements remain disconnected in the output mesh. The system that matches contours and roofs at the corners has some issues with sign that still need to be resolved. Until that resolution, error accrues as angles deviate from positive 90 degrees.
With this tool a user can extend the usefulness of a set of elements further and faster than through manual arrangement. Using a sufficient number of elements across several style sets it should be possible to generate sufficiently varied buildings to populate a city. Therefore a logical next step would be the addition of tools for managing multiple buildings at once. This would be an excellent place to introduce automated stylistic blending. Consider each style as a node in a graph with edges representing similarity. Transitional element sets could then be assigned to the edges. Now blending can be accomplished by picking two adjacent nodes and weighting the grammar along their shared edge. If the user desires to blend non-adjacent styles across multiple buildings, it could be accomplished by plotting a shortest path through the graph of styles. It should then be possible to distribute styles spatially across a city map divided into lots and let the style of each lot be determined by the nearest style nodes. Including levels of decay or disrepair as styles could also create spatially distributed wealth or poverty in a city to create neighborhoods. Height, lot size, and other parameters could also be mapped really capture the feeling of a city.
A combination of bug fixes, increased features and usability on the per-building scale and the introduction and development of city scale tools will be my course of continuing work.

References

	[COR86]
	Le Corbusier. 1986. Towards a New Architecture. Trans. Frederick Etchells. 3rd Edition. Dover Publications, Inc, New York, NY.

	[HJ66]
	Hitchcock, Henry-Russell and Philip Johnson. 1966. The International Style. W.W. Norton & Company, New York, NY.

	[KE81]
	Koning, H., and Eizenberg, J. 1981. The language of the prairie: Frank Lloyd Wright’s prairie houses. Environment and Planning B. 8, 3, p. 295-323, 29 pages. http://dcom.arch.gatech.edu/ellen/secured/flw-sg.pdf

	[KW11]
	Kelly, T. and Wonka, P. 2011. Interactive architectural modeling with procedural extrusionz. ACM Trans. Graph. 30, 2, Article 14 (April 2011), 15 pages. DOI = 10.1145/1944846.1944854 http://doi.acm.org/10.1145/1944846.1944854

	 [LWW08]
	Lipp, M., Wonka, P., Wimmer, M. 2008. Interactive Visual Editing of Grammars for Procedural Architecture.
ACM Trans. Graph. 27, 3, Article 102 (August 2008), 10 pages. DOI = 10.1145/1360612.1360701 http://doi.acm.org/10.45/1360612.1360701

	[MCP02]
	Michalek, J. Choudhary, R., Papalambros, P. 2001. Architectural Layout Design Optimization. Engineering Optimization. 34, 5, p. 461-484, 24 pages. http://gdi.ce.cmu.edu/docs/architectural-layout.pdf

	[MSK10]
	Merrell, P., Schkufza, E. and Koltun, V. 2010. Computer-generated residential building layouts. ACM Trans. Graph. 29, 6, Article 181 (December 2010), 12 pages. DOI=10.1145/1882261.1866203 http://doi.acm.org/10.1145/1882261.1866203

	[MZW*07]
	Pascal Müller, P., Zeng, G., Wonka, P., and Van Gool, L. 2007. Image-based procedural modeling of facades. ACM Trans. Graph. 26, 3, Article 85 (July 2007). DOI=10.1145/1276377.1276484 http://doi.acm.org/10.1145/1276377.1276484

	[SUM63]
	Summerson, John. The Classical Language of Architecture. Cambridge: The MIT Press; 1963.

	[WOD09]
	Whiting, E., Ochsendorf, J., and Durand, F. 2009. Procedural modeling of structurally-sound masonry buildings. ACM Trans. Graph. 28, 5, Article 112 (December 2009), 9 pages. DOI=10.1145/1618452.1618458 http://doi.acm.org/10.1145/1618452.1618458

	[VIT60]
	Vitruvius. 1960. The Ten Books on Architecture. Trans. Morris Hicky Morgan. Dover Publications, Inc, New York, NY.

[image: image1.png]

© SIG Center for Computer Graphics 2010.
CIS 496/EAS499 Senior Design Project

