CIS 500
Software Foundations
Fall 2004
6 October
Midterm 1 is next Wednesday

- Today’s lecture will not be covered by the midterm.
- Next Monday, review class.
- Old exams and review questions on webpage.
- No recitation sections next week.
- New office hours next week, watch newsgroup for details.
Plans

Where we’ve been:

- Inductive definitions
 - abstract syntax
 - inference rules
- Proofs by structural induction
- Operational semantics
- The lambda-calculus
- Typing rules and type soundness

CIS 500, 6 October
Plans

Where we’ve been:
- Inductive definitions
 - abstract syntax
 - inference rules
- Proofs by structural induction
- Operational semantics
- The lambda-calculus
- Typing rules and type soundness

Where we’re going:
- “Simple types” for the lambda-calculus
- Formalizing more features of real-world languages (records, datatypes, references, exceptions, etc.)
- Subtyping
- Objects
The Simply Typed Lambda-Calculus
Lambda-calculus with booleans

\[t ::= \]
\[
 \text{terms} \\
 x \\
 \lambda x.t \\
 t \ t \\
 \text{true} \\
 \text{false} \\
 \text{if} \ t \ \text{then} \ t \ \text{else} \ t \\
\]

\[v ::= \]
\[
 \text{values} \\
 \lambda x.t \\
 \text{true} \\
 \text{false} \\
\]

\[\text{variable} \]
\[\text{abstraction} \]
\[\text{application} \]
\[\text{constant true} \]
\[\text{constant false} \]
\[\text{conditional} \]
\[\text{abstraction value} \]
\[\text{true value} \]
\[\text{false value} \]
“Simple Types”

\[
T ::= \quad \text{types}
\]

\[
\begin{align*}
\text{Bool} & \quad \text{type of booleans} \\
T \to T & \quad \text{types of functions}
\end{align*}
\]
Typing rules

true : Bool \hspace{1cm} (T-\text{TRUE})

false : Bool \hspace{1cm} (T-\text{FALSE})

\[
\frac{t_1 : \text{Bool} \quad t_2 : \text{T} \quad t_3 : \text{T}}{	ext{if } t_1 \text{ then } t_2 \text{ else } t_3 : \text{T}} \quad (T-\text{IF})
\]
Typing rules

true : Bool \hspace{1cm} (T-TRUE)

false : Bool \hspace{1cm} (T-FALSE)

\[
\begin{array}{c}
t_1 : \text{Bool} \\
t_2 : T \\
t_3 : T
\end{array}
\]

\[\frac{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T}{x : T} \hspace{1cm} (T-\text{IF})\]

\[\frac{t_1 : T_{11} \neq T_{12}}{t_2 : T_{12}} \hspace{1cm} (T-\text{APP})\]

\[\frac{t_1 \neq t_2}{t_1 : T_{11} \neq T_{12}} \hspace{1cm} (T-\text{ABS})\]
Typing rules

true : Bool \hspace{1cm} (T-TRUE)
false : Bool \hspace{1cm} (T-FALSE)

\[\frac{t_1 : \text{Bool} \quad t_2 : T \quad t_3 : T}{\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T} \hspace{1cm} (T-IF) \]

\[\frac{x : T \in \Gamma}{\Gamma \vdash x : T} \hspace{1cm} (T-VAR) \]
Typing rules

\(\Gamma \vdash \text{true} : \text{Bool} \) \hspace{1cm} (T-TRUE)

\(\Gamma \vdash \text{false} : \text{Bool} \) \hspace{1cm} (T-FALSE)

\[
\Gamma \vdash t_1 : \text{Bool} \quad \Gamma \vdash t_2 : T \quad \Gamma \vdash t_3 : T
\]

\(\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T \) \hspace{1cm} (T-IF)

\[
\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T
\]

\(x : T \in \Gamma \)

\[
\Gamma \vdash x : T
\]
Typing rules

\[
\begin{align*}
\Gamma & \vdash \text{true} : \text{Bool} & \quad \text{(T-True)} \\
\Gamma & \vdash \text{false} : \text{Bool} & \quad \text{(T-False)} \\
\Gamma & \vdash t_1 : \text{Bool} \quad \Gamma & \vdash t_2 : T \quad \Gamma & \vdash t_3 : T \\
& \quad \Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T & \quad \text{(T-If)} \\
x & : T \in \Gamma \\
& \quad \Gamma \vdash x : T & \quad \text{(T-Var)} \\
\Gamma, x : T_1 & \vdash t_2 : T_2 \\
& \quad \Gamma \vdash \lambda x : T_1. t_2 : T_1 \rightarrow T_2 & \quad \text{(T-Abs)}
\end{align*}
\]
Typing rules

\[\Gamma \vdash \text{true} : \text{Bool} \quad \text{(T-TRUE)} \]

\[\Gamma \vdash \text{false} : \text{Bool} \quad \text{(T-FALSE)} \]

\[\Gamma \vdash t_1 : \text{Bool} \quad \Gamma \vdash t_2 : T \quad \Gamma \vdash t_3 : T \]

\[\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T \quad \text{(T-IF)} \]

\[x : T \in \Gamma \]

\[\Gamma \vdash x : T \quad \text{(T-VAR)} \]

\[\Gamma, x : T_1 \vdash t_2 : T_2 \]

\[\Gamma \vdash \lambda x : T_1 . t_2 : T_1 \rightarrow T_2 \quad \text{(T-ABS)} \]

\[\Gamma \vdash t_1 : T_1 \rightarrow T_2 \quad \Gamma \vdash t_2 : T_1 \]

\[\Gamma \vdash t_1 t_2 : T_2 \quad \Gamma \vdash t_2 : T_1 \]

\[\Gamma \vdash t_1 t_2 : T_1 \quad \text{(T-APP)} \]
Typing Derivations

What derivations justify the following typing statements?

¬ \((\lambda x: \text{Bool}. x) \text{true} : \text{Bool} \)
¬ \(f: \text{Bool} \to \text{Bool} \vdash f (\text{if false then true else false}) : \text{Bool} \)
¬ \(f: \text{Bool} \to \text{Bool} \vdash (\lambda x: \text{Bool}. f (\text{if x then false else x})) : \text{Bool} \to \text{Bool} \)
Properties of $\lambda \rightarrow$

As before, the fundamental property of the type system we have just defined is soundness with respect to the operational semantics.
Properties of $\lambda\rightarrow$

As before, the fundamental property of the type system we have just defined is soundness with respect to the operational semantics.

1. **Progress**: A closed, well-typed term is not stuck

 If $\vdash t : T$, then either t is a value or else $t \rightarrow t'$ for some t'.

2. **Preservation**: Types are preserved by one-step evaluation

 If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.
Proving progress

Same steps as before...
Proving progress

Same steps as before...

♦ inversion lemma for typing relation
♦ canonical forms lemma
♦ progress theorem
Typing rules again (for reference)

\[
\Gamma \vdash \text{true} : \text{Bool} \quad (\text{T-TRUE})
\]

\[
\Gamma \vdash \text{false} : \text{Bool} \quad (\text{T-FALSE})
\]

\[
\frac{\Gamma \vdash t_1 : \text{Bool} \quad \Gamma \vdash t_2 : T \quad \Gamma \vdash t_3 : T}{\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T} \quad (\text{T-IF})
\]

\[
\frac{x : T \in \Gamma}{\Gamma \vdash x : T} \quad (\text{T-VAR})
\]

\[
\frac{\Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1. t_2 : T_1 \rightarrow T_2} \quad (\text{T-ABS})
\]

\[
\frac{\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash t_1 \ t_2 : T_{12}} \quad (\text{T-APP})
\]
Inversion

Lemma:

1. If $\Gamma \vdash \text{true} : R$, then $R = \text{Bool}$.
2. If $\Gamma \vdash \text{false} : R$, then $R = \text{Bool}$.
3. If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then $\Gamma \vdash t_1 : \text{Bool}$ and $\Gamma \vdash t_2, t_3 : R$.
Inversion

Lemma:

1. If $\Gamma \vdash \text{true} : R$, then $R = \text{Bool}$.

2. If $\Gamma \vdash \text{false} : R$, then $R = \text{Bool}$.

3. If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then $\Gamma \vdash t_1 : \text{Bool}$ and $\Gamma \vdash t_2, t_3 : R$.

4. If $\Gamma \vdash x : R$, then
Inversion

Lemma:

1. If $\Gamma \vdash \text{true} : R$, then $R = \text{Bool}$.
2. If $\Gamma \vdash \text{false} : R$, then $R = \text{Bool}$.
3. If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then $\Gamma \vdash t_1 : \text{Bool}$ and $\Gamma \vdash t_2, t_3 : R$.
4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
Inversion

Lemma:

1. If $\Gamma \vdash \text{true} : R$, then $R = \text{Bool}$.

2. If $\Gamma \vdash \text{false} : R$, then $R = \text{Bool}$.

3. If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then $\Gamma \vdash t_1 : \text{Bool}$ and $\Gamma \vdash t_2, t_3 : R$.

4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.

5. If $\Gamma \vdash \lambda x : T_1 . t_2 : R$, then

CIS 500, 6 October
Inversion

Lemma:

1. If $\Gamma \vdash \text{true} : R$, then $R = \text{Bool}$.

2. If $\Gamma \vdash \text{false} : R$, then $R = \text{Bool}$.

3. If $\Gamma \vdash \text{if} \, t_1 \, \text{then} \, t_2 \, \text{else} \, t_3 : R$, then $\Gamma \vdash t_1 : \text{Bool}$ and $\Gamma \vdash t_2, t_3 : R$.

4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.

5. If $\Gamma \vdash \lambda x : T_1 . t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, \, x : T_1 \vdash t_2 : R_2$.
Inversion

Lemma:

1. If $\Gamma \vdash \text{true} : R$, then $R = \text{Bool}$.

2. If $\Gamma \vdash \text{false} : R$, then $R = \text{Bool}$.

3. If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then $\Gamma \vdash t_1 : \text{Bool}$ and $\Gamma \vdash t_2, t_3 : R$.

4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.

5. If $\Gamma \vdash \lambda x : T_1 . t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.

6. If $\Gamma \vdash t_1 \ t_2 : R$, then
Inversion

Lemma:

1. If $\Gamma \vdash \text{true} : R$, then $R = \text{Bool}$.

2. If $\Gamma \vdash \text{false} : R$, then $R = \text{Bool}$.

3. If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then $\Gamma \vdash t_1 : \text{Bool}$ and $\Gamma \vdash t_2, t_3 : R$.

4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.

5. If $\Gamma \vdash \lambda x : T_1 . t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.

6. If $\Gamma \vdash t_1 \ t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow R$ and $\Gamma \vdash t_2 : T_{11}$.
Canonical Forms

Lemma:
Canonical Forms

Lemma:

1. If \(v \) is a value of type \texttt{Bool}, then
Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.
Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type $T_1 \rightarrow T_2$, then
Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type $T_1 \rightarrow T_2$, then v has the form $\lambda x : T_1 . t_2$.
Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.

Proof: By induction
Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.

Proof: By induction on typing derivations.
Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.
Progress

Theorem: Suppose \(t \) is a closed, well-typed term (that is, \(\vdash t : T \) for some \(T \)). Then either \(t \) is a value or else there is some \(t' \) with \(t \rightarrow t' \).

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because \(t \) is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where \(t = t_1 \ _t_2 \) with \(\vdash t_1 : T_{11} \rightarrow T_{12} \) and \(\vdash t_2 : T_{11} \).
Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $t = t_1 \ t_2$ with $\vdash t_1 : T_{11} \rightarrow T_{12}$ and $\vdash t_2 : T_{11}$. By the induction hypothesis, either t_1 is a value or else it can make a step of evaluation, and likewise t_2.
Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \rightarrow t'$.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because t is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $t = t_1 \ t_2$ with $\vdash t_1 : T_{11} \rightarrow T_{12}$ and $\vdash t_2 : T_{11}$. By the induction hypothesis, either t_1 is a value or else it can make a step of evaluation, and likewise t_2. If t_1 can take a step, then rule E-App1 applies to t. If t_1 is a value and t_2 can take a step, then rule E-App2 applies. Finally, if both t_1 and t_2 are values, then the canonical forms lemma tells us that t_1 has the form $\lambda x : T_{11}. t_{12}$, and so rule E-AppAbs applies to t.
Proving Preservation

Theorem: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction
Proving Preservation

Theorem: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction on typing derivations.

[Which case is the hard one?]
Proving Preservation

Theorem: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction on typing derivations.

[Which case is the hard one?]

Case T-App: Given $t = t_1 \ t_2$

$\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$

$\Gamma \vdash t_2 : T_{11}$

$T = T_{12}$

Show $\Gamma \vdash t' : T_{12}$
Proving Preservation

Theorem: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction on typing derivations.
[Which case is the hard one?]

Case T-App: Given $t = t_1 \ t_2$

$\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$
$\Gamma \vdash t_2 : T_{11}$

$T = T_{12}$

Show $\Gamma \vdash t' : T_{12}$

By the inversion lemma for evaluation, there are three subcases...
Proving Preservation

Theorem: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction on typing derivations.
[Which case is the hard one?]

Case T-App: Given $t = t_1 \ t_2$

- $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$
- $\Gamma \vdash t_2 : T_{11}$
- $T = T_{12}$

Show $\Gamma \vdash t' : T_{12}$

By the inversion lemma for evaluation, there are three subcases...

Subcase: $t_1 = \lambda x : T_{11} . \ t_{12}$

- t_2 a value v_2
- $t' = [x \mapsto v_2] t_{12}$
Theorem: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction on typing derivations.

[Which case is the hard one?]

Case T-App: Given $t = t_1 \ t_2$

$\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$
$\Gamma \vdash t_2 : T_{11}$
$T = T_{12}$

Show $\Gamma \vdash t' : T_{12}$

By the inversion lemma for evaluation, there are three subcases...

Subcase: $t_1 = \lambda x : T_{11}. \ t_{12}$

t_2 a value v_2

$t' = [x \mapsto v_2] t_{12}$

Uh oh.
The “Substitution Lemma”

Lemma: Types are preserved under substitution.

If $\Gamma, x:S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.
The “Substitution Lemma”

Lemma: Types are preserved under substitution.

If $\Gamma, x:S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.

Proof: ...
On to real programming languages...
The **Unit** type

\[t ::= ... \quad \text{terms} \]

\[\text{unit} \quad \text{constant unit} \]

\[v ::= ... \quad \text{values} \]

\[\text{unit} \quad \text{constant unit} \]

\[T ::= ... \quad \text{types} \]

\[\text{Unit} \quad \text{unit type} \]

New typing rules

\[\Gamma \vdash t : T \]

\[\Gamma \vdash \text{unit} : \text{Unit} \quad (T-\text{UNIT}) \]
Sequencing

\[t ::= \ldots \]
\[t_1; t_2 \]
Sequencing

t ::= ... terms

\[t_1; t_2 \]

\[
\frac{t_1 \rightarrow t_1'}{t_1; t_2 \rightarrow t_1'; t_2}
\] \hspace{1cm} (E-SEQ)

\[
\frac{\text{unit}; t_2 \rightarrow t_2}{\text{(E-SEQNEXT)}}
\]

\[
\frac{\Gamma \vdash t_1 : \text{Unit} \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash t_1; t_2 : T_2}
\] \hspace{1cm} (T-SEQ)
Derived forms

- Syntactic sugar
- Internal language vs. external (surface) language
Sequencing as a derived form

\[t_1 ; t_2 \overset{\text{def}}{=} (\lambda x: \text{Unit}. t_2) \; t_1 \]

where \(x \not\in FV(t_2) \)
Equivalence of the two definitions

[board]
Ascription

New syntactic forms
\[t ::= \ldots \quad \text{terms} \]
\[t \text{ as } T \quad \text{ascription} \]

New evaluation rules
\[v_1 \text{ as } T \rightarrow v_1 \quad (E\text{-ASCRIBE}) \]
\[t_1 \rightarrow t_1' \quad (E\text{-ASCRIBE1}) \]
\[t_1 \text{ as } T \rightarrow t_1' \text{ as } T \]

New typing rules
\[\Gamma \vdash t_1 : T \quad (T\text{-ASCRIBE}) \]
\[\Gamma \vdash t_1 \text{ as } T : T \]
Ascription as a derived form

\[t \text{ as } T \overset{\text{def}}{=} (\lambda x:T. \ x) \ t \]
Let-bindings

New syntactic forms
\[t ::= \ldots \]
\[\text{let } x = t \text{ in } t \]

terms

let binding

New evaluation rules
\[\text{let } x = v_1 \text{ in } t_2 \rightarrow [x \mapsto v_1]t_2 \]
\[t_1 \rightarrow t'_1 \]
\[\frac{}{\text{let } x = t_1 \text{ in } t_2 \rightarrow \text{let } x = t'_1 \text{ in } t_2} \]
\[(E-LetV) \]
\[(E-Let) \]

New typing rules
\[\frac{\Gamma \vdash t : T}{\Gamma \vdash \text{let } x = t \text{ in } t_2 : T} \]
\[(T-Let) \]
Pairs

\[t ::= \ldots \quad \text{terms} \]
\[\{t, t\} \quad \text{pair} \]
\[t.1 \quad \text{first projection} \]
\[t.2 \quad \text{second projection} \]

\[v ::= \ldots \quad \text{values} \]
\[\{v, v\} \quad \text{pair value} \]

\[T ::= \ldots \quad \text{types} \]
\[T_1 \times T_2 \quad \text{product type} \]
Evaluation rules for pairs

\[
\begin{align*}
\{v_1, v_2\}.1 & \rightarrow v_1 \\
\{v_1, v_2\}.2 & \rightarrow v_2 \\
\{t_1, t_2\} & \rightarrow \{t'_1, t_2\} \\
\{v_1, t_2\} & \rightarrow \{v_1, t'_2\}
\end{align*}
\]

\(\text{(E-PairBeta1)}\)

\(\text{(E-PairBeta2)}\)

\(\text{(E-Proj1)}\)

\(\text{(E-Proj2)}\)

\(\text{(E-Pair1)}\)

\(\text{(E-Pair2)}\)
Typing rules for pairs

\[\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash t_2 : T_2 \]
\[\Gamma \vdash \{t_1, t_2\} : T_1 \times T_2 \] \hspace{1cm} (T-PAIR)

\[\Gamma \vdash t_1 : T_{11} \times T_{12} \]
\[\Gamma \vdash t_{1.1} : T_{11} \] \hspace{1cm} (T-PROJ1)

\[\Gamma \vdash t_1 : T_{11} \times T_{12} \]
\[\Gamma \vdash t_{1.2} : T_{12} \] \hspace{1cm} (T-PROJ2)
Tuples

\[t ::= \ldots \]
\[\{ t_i \}_{i \in 1..n} \]
\[t.i \]

\[v ::= \ldots \]
\[\{ v_i \}_{i \in 1..n} \]

\[T ::= \ldots \]
\[\{ T_i \}_{i \in 1..n} \]

terms

tuple

projection

values
tuple value

types
tuple type
Evaluation rules for tuples

\[
\{v_i^{i \in 1..n}\}.j \rightarrow v_j \quad \text{(E-PROJ_TUPLE)}
\]

\[
\begin{align*}
t_1 & \rightarrow t'_1 \\
t_1.i & \rightarrow t'_1.i
\end{align*}
\quad \text{(E-PROJ)}
\]

\[
\begin{align*}
t_j & \rightarrow t'_j \\
\{v_i^{i \in 1..j-1}, t_j, t_k^{k \in j+1..n}\} & \rightarrow \{v_i^{i \in 1..j-1}, t'_j, t_k^{k \in j+1..n}\}
\end{align*}
\quad \text{(E-TUPLE)}
\]
Typing rules for tuples

\begin{align*}
\text{for each } i & \quad \Gamma \vdash t_i : T_i \\
\Gamma & \vdash \{t_i \; \mid i \in 1..n\} : \{T_i \; \mid i \in 1..n\} \\
\hline \\
\Gamma & \vdash t_1 : \{T_i \; \mid i \in 1..n\} \\
\Gamma & \vdash t_1.j : T_j
\end{align*}

(T-TUPLE) (T-PROJ)
Records

\[t ::= \ldots \]
\[\{ l_i = t_i \mid i \in \ldots \} \]
\[t.l \]

\[v ::= \ldots \]
\[\{ l_i = v_i \mid i \in \ldots \} \]

\[T ::= \ldots \]
\[\{ l_i : T_i \mid i \in \ldots \} \]

terms

record

projection

values

record value

types

type of records
Evaluation rules for records

\{l_i=v_i \quad i \in \{1,\ldots,n\}\}.l_j \rightarrow v_j \quad (E-\text{PROJRCD})

\[t_1 \rightarrow t_1' \]
\[t_1.l \rightarrow t_1'.l \quad (E-\text{PROJ})\]

\[t_j \rightarrow t_j' \]
\[\{l_i=v_i \quad i \in \{1,\ldots,j-1\}, l_j=t_j, l_k=t_k \quad k \in \{j+1,\ldots,n\}\} \]
\[\rightarrow \{l_i=v_i \quad i \in \{1,\ldots,j-1\}, l_j=t_j', l_k=t_k \quad k \in \{j+1,\ldots,n\}\} \quad (E-\text{RCD})\]
Typing rules for records

\[
\text{for each } i \quad \Gamma \vdash t_i : T_i
\]

\[
\Gamma \vdash \{l_i=t_i \quad i \in 1..n\} : \{l_i:T_i \quad i \in 1..n\}
\]

\[\Gamma \vdash t_1 : \{l_i:T_i \quad i \in 1..n\} \]

\[
\Gamma \vdash t_1.l_j : T_j
\]
Discussion
Intro vs. elim forms

An introduction form for a given type gives us a way of constructing elements of this type.

An elimination form for a type gives us a way of using elements of this type.

What typing rules are introduction forms? What are elimination forms?
The Curry-Howard Correspondence

In constructive logics, a proof of P must provide evidence for P.

- “law of the excluded middle” — $P \lor \neg P$ — not recognized.

A proof of $P \land Q$ is a pair of evidence for P and evidence for Q.

A proof of $P \supset Q$ is a procedure for transforming evidence for P into evidence for Q.
Propositions as Types

<table>
<thead>
<tr>
<th>Logic</th>
<th>Programming Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>propositions</td>
<td>types</td>
</tr>
<tr>
<td>proposition $P \supset Q$</td>
<td>type $P \rightarrow Q$</td>
</tr>
<tr>
<td>proposition $P \land Q$</td>
<td>type $P \times Q$</td>
</tr>
<tr>
<td>proof of proposition P</td>
<td>term t of type P</td>
</tr>
<tr>
<td>proposition P is provable</td>
<td>type P is inhabited (by some term)</td>
</tr>
</tbody>
</table>
Propositions as Types

<table>
<thead>
<tr>
<th>Logic</th>
<th>Programming Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>propositions</td>
<td>types</td>
</tr>
<tr>
<td>proposition $P \supset Q$</td>
<td>type $P \rightarrow Q$</td>
</tr>
<tr>
<td>proposition $P \land Q$</td>
<td>type $P \times Q$</td>
</tr>
<tr>
<td>proof of proposition P</td>
<td>term t of type P</td>
</tr>
<tr>
<td>proposition P is provable</td>
<td>type P is inhabited (by some term)</td>
</tr>
<tr>
<td></td>
<td>evaluation</td>
</tr>
</tbody>
</table>
Propositions as Types

<table>
<thead>
<tr>
<th>Logic</th>
<th>Programming Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>propositions</td>
<td>types</td>
</tr>
<tr>
<td>proposition $P \supset Q$</td>
<td>type $P \rightarrow Q$</td>
</tr>
<tr>
<td>proposition $P \land Q$</td>
<td>type $P \times Q$</td>
</tr>
<tr>
<td>proof of proposition P</td>
<td>term t of type P</td>
</tr>
<tr>
<td>proposition P is provable</td>
<td>type P is inhabited (by some term)</td>
</tr>
<tr>
<td>proof simplification</td>
<td>evaluation</td>
</tr>
<tr>
<td>(a.k.a. “cut elimination”)</td>
<td></td>
</tr>
</tbody>
</table>
Erasure

\[
\begin{align*}
erase(x) & = x \\
erase(\lambda x : T_1 . \ t_2) & = \lambda x . \ erase(t_2) \\
erase(t_1 \ t_2) & = erase(t_1) \ erase(t_2)
\end{align*}
\]
Typability

An untyped \(\lambda \)-term \(m \) is said to be typable if there is some term \(t \) in the simply typed lambda-calculus, some type \(T \), and some context \(\Gamma \) such that \(\text{erase}(t) = m \) and \(\Gamma \vdash t : T \).

Cf. type reconstruction in OCaml.