CIS 500: Software Foundations

Midterm I

October 8, 2020

Name (printed): __

Username (PennKey login id): ________________________________

My signature below certifies that I have complied with the University of Pennsylvania’s Code of Academic Integrity in completing this examination.

Signature: __ Date: ______________________

Directions:

• This exam contains both standard and advanced-track questions. Questions with no annotation are for both tracks. Other questions are marked “Standard Track Only” or “Advanced Track Only.”

 Do not waste time (or confuse the graders) by answering questions intended for the other track. To make sure, please look for the questions for the other track as soon as you begin the exam and cross them out!

• Before beginning the exam, please write your PennKey (login ID) at the top of each even-numbered page (so that we can find things if a staple fails!).

Mark the box of the track you are following.

☐ Standard

☐ Advanced
(a) The `injection` tactic takes any hypothesis of the form \(f \ x = f \ y \) and creates a hypothesis of the form \(x = y \) for any \(f \).

(b) Given propositions \(P \) and \(Q \), if \(P \rightarrow Q \) and \(Q \rightarrow P \) then \(P = Q \).

(c) Suppose our goal is \(2 + 2 = 5 \) and our context contains the hypothesis \(H : 2 \neq 2 \). Running `discriminate H.` would complete the proof.

(d) One way to prove a proposition \(P \rightarrow Q \) in Coq is to assume \(P \) and derive a contradiction.

(e) One way to prove a proposition \(P \) in Coq is to assume \(\neg P \) and derive a contradiction.

(f) Suppose we have a hypothesis \(H : 1 = 2 \). Running `injection H.` will give us the assumption \(0 = 1 \).

(g) Coq’s termination checker will reject every `Fixpoint` definition that does not terminate on every input.
(h) Coq’s termination checker will accept *every* `Fixpoint` definition that does terminate on all inputs.

(i) A function like `fun x => x+1` is simply a special kind of proposition in Coq.
2. [Standard Track Only] (13 points)

Write the type of each of the following Coq expressions (write “ill typed” if an expression does not have a type).

(a) fun n => match n with S m => true | 0 => false end
(b) if true then True else False
(c) if True then true else false
(d) nat -> bool
(e) True -> False
(f) fun (H : False) => 5
(g) False -> (forall n, n = S n)
(h) fun (X : Type) (f : X -> X -> X) (x : X) => f x x
(i) (fun (X : Type) (f : X -> X -> X) (x : X) => f x x) nat plus
(j) fun (n : nat) (b : bool) => n <> b
(k) fun (H : forall (x : nat), x = x) => H :: nil
(l) fun x => if false then x else [0]
(m) fun x => plus x
3 (14 points)

For each of the following types, either give a term of this type or write “uninhabited” if there are no terms of this type.

(a) $\forall (X \ Y : \text{Type}), (X -> Y) -> X -> Y$

(b) list False

(c) $\forall (X \ Y \ Z : \text{Type}), ((X * Y) -> Z) -> (X -> Y -> Z)$

(d) $(\text{fun} \ (X : \text{Type}) => \text{bool}) \text{ nat}$

(e) $\text{nat} -> (\forall (X : \text{Type}), (X -> X) -> X -> X)$

(f) $\text{False} -> \text{bool}$

(g) $\text{True} -> \text{Prop}$
An expression in Gallina is said to be canonical if it cannot be simplified. For example, these expressions are canonical

\[
\begin{align*}
0 \\
S\ 0 \\
S\ (S\ 0) \\
true \\
[\text{true}]
\end{align*}
\]

while these are not:

\[
\begin{align*}
0\ +\ 1 \\
negb\ true \\
[\text{true}]\ ++\ [] \\
(fun\ (x:\text{nat}) \Rightarrow true)\ 3
\end{align*}
\]

Thus, the type \texttt{bool} has exactly two canonical members, while \texttt{nat} has infinitely many.

The same definition works for expressions whose types involve \texttt{Prop}. For example, given the definition of \leq from the IndProp chapter,

\[
\begin{align*}
\text{Inductive}\ le:\ \text{nat} \rightarrow \text{nat} \rightarrow \text{Prop} := \\
| le_n (n:\text{nat}) : le\ n\ n \\
| le_S (n\ m:\text{nat}) (H:\ le\ n\ m) : le\ n\ (S\ m).
\end{align*}
\]

\text{Notation} \ "n \leq m" := (le\ n\ m).

the proposition $1 \leq 2$ has one canonical member, namely

$le_S\ 1\ 1\ (le_n\ 1)$

while the proposition $1 \leq 0$ is empty.

For each of the following (parameterized) propositions, list all the canonical members of all concrete instances of the proposition, together with their types — i.e., for every canonical expression e such that $e : P\ n$ for some number $|n|$. you should write "$e : P\ n$" — or else write "infinite" if there are infinitely many. If the proposition has no members, write “empty.”

For example, for the proposition

\[
\begin{align*}
\text{Inductive}\ P:\ \text{nat} \rightarrow \text{Prop} := \\
| A\ (n:\text{nat}) (H0 : n \leq 1) : P\ n.
\end{align*}
\]

you would write

$A\ 0\ (le_S\ 0\ 0\ (le_n\ 0)) : P\ 0$

$A\ 1\ (le_n\ 1) : P\ 1$

and for the proposition

\[
\begin{align*}
\text{Inductive}\ P:\ \text{nat} \rightarrow \text{Prop} := \\
| A\ (n:\text{nat}) (H0 : 5 \leq n) : P\ n.
\end{align*}
\]

you would write “infinite.”
(a) \textbf{Inductive} \ P \ : \ \text{nat} \to \text{Prop} := \\
| \ A : \ P \ 1 \\
| \ B \ (n : \text{nat}) \ (H : \ n \not= \ n) : \ P \ n.

(b) \textbf{Inductive} \ P \ : \ \text{nat} \to \text{Prop} := \\
| \ A : \ P \ 1 \\
| \ B : \ P \ 3 \\
| \ C \ (n : \text{nat}) \ (H0 : \ n = 2) \ (H1 : \ P \ n) : \ P \ (S \ n).

(c) \textbf{Inductive} \ P \ : \ \text{nat} \to \text{Prop} := \\
| \ A : \ P \ 1 \\
| \ B \ (n:\text{nat}) \ (H : \ P \ (S \ n)) : \ P \ (S \ n).

(d) \textbf{Inductive} \ P \ : \ \text{nat} \to \text{Prop} := \\
| \ A : \ P \ 1 \\
| \ B \ (n:\text{nat}) \ (H : \ P \ (S \ n)) : \ P \ n.

(e) \textbf{Inductive} \ P \ : \ \text{nat} \to \text{Prop} := \\
| \ B \ (n:\text{nat}) \ (H : \ P \ n) : \ P \ (S \ n).
Recall the polymorphic “fold” function over lists.

\[
\text{Fixpoint foldr \{X Y\} (f : X \to Y \to Y) (l : list X) (b : Y) : Y :=}
\]
\[
\begin{align*}
\text{match l with} \\
\text{\quad |} \text{[]} \Rightarrow b \\
\text{\quad |} h :: t \Rightarrow f h (\text{foldr} f t b) \\
\text{end.}
\end{align*}
\]

We’ve renamed this function “foldr” here because it folds “from the right” to the left. Another variant of the same idea is to “fold from the left”:

\[
\text{Fixpoint foldl \{X Y\} (f : Y \to X \to Y) (l : list X) (b : Y) : Y :=}
\]
\[
\begin{align*}
\text{match l with} \\
\text{\quad |} \text{[]} \Rightarrow b \\
\text{\quad |} h :: t \Rightarrow \text{foldl} f t (f b h) \\
\text{end.}
\end{align*}
\]

Both versions apply their function argument acc sequentially to all elements of a list, but they do so in different ways.

(a) Suppose we are given types \(X\) and \(Y\), a function \(f : X \to Y \to X\), and four values \(a : X\) and \(b\ c\ d : Y\). Simplify the following expression: \(\text{foldl} f [b;c;d] a\).

(b) Suppose we are given types \(X\) and \(Y\), a function \(f : X \to Y \to Y\), and four values \(a\ b\ c : X\) and \(d : Y\). Simplify the following expression: \(\text{foldr} f [a;b;c] d\).

(c) Using the above functions, define two functions that compute the sum of the elements of a list \(\text{nat}\).

\[
\text{Definition sumlistl (l : list \text{nat}) : \text{nat} :=}
\]
\[
\text{foldl (* fill in arguments here: *)}
\]
\[
\text{Definition sumlistr (l : list \text{nat}) : \text{nat} :=}
\]
\[
\text{foldr (* fill in arguments here: *)}
\]

(d) As the previous question suggests, there are some functions \(f\) on which \(\text{foldl}\) and \(\text{foldr}\) behave identically.

Give another example (besides \texttt{plus}) of such a function.

(e) On the other hand, this is not true for \textit{all} functions \(f\). Give an example of a type \(X\), a function \(f : X \to X \to X\), a value \(\text{init} : X\), and a list \(l : \text{list} X\) such that \(\text{foldl} f l \text{ init}\) and \(\text{foldr} f l \text{ init}\) yield different results.

\[
\bullet X =
\]
(f) State sufficient conditions on f such that given any $\text{init} : X$ and $l : \text{list } X$,
$\text{foldl } f \ l \ \text{init} = \text{foldr } f \ l \ \text{init}.$

Express your conditions as predicates of type $\forall X, (X \rightarrow X \rightarrow X) \rightarrow \text{Prop}.$
Propositions A and B are *logically equivalent* to each other when proposition A holds if and only if proposition B holds.

If we have a *list* of statements and we wish to show that they are all logically equivalent to each other, it is often easier to write a *cyclic proof*. Rather than considering all pairs of statements pairwise, we can prove a single circular chain (cycle) of implications that connects them all.

Define an inductive proposition that holds true for a list of implications form a cyclic chain of implications.

Complete the definition of the inductive proposition below.

```plaintext
Inductive cyclic_implication : list Prop -> Prop :=
  Impl_Cons : forall (P Q R : Prop) l, (P -> Q) -> (R -> P) ->
                 cyclic_implication (Q :: l ++ [R]) ->
                 cyclic_implication (P :: Q :: l ++ [R])
```

Here is one way of defining the “sortedness” property for lists of natural numbers:

\[\text{Fixpoint } \text{sorted1} (l : \text{list nat}) :=\]
\[\text{match } l \text{ with}\]
\[\text{| } \text{[] } \Rightarrow \text{True}\]
\[\text{| } x :: l' \Rightarrow \text{(forall } y, \text{ In } y l' \rightarrow x \leq y) \land \text{sorted1 } l'\]
\[\text{end.}\]

Rewrite this property as an Inductive definition, keeping the same informal intuition (“a list is \text{sorted1} if it is empty or if its head element is less than or equal to every element in the tail and the tail is \text{sorted1}”).

\[\text{Inductive } \text{sorted1} : \text{list nat } \rightarrow \text{ Prop} :=\]
Here is the definition of sortedness again:

\[
\text{Fixpoint sorted1} \ (l : \text{list nat}) := \\
\quad \text{match} \ l \ \text{with} \\
\quad \quad | \ [] \Rightarrow \text{True} \\
\quad \quad | \ x :: l' \Rightarrow (\forall y, \text{In} y l' \Rightarrow x \leq y) \land \text{sorted1} l'
\end{align*}
\]

And here is an alternate definition based on a slightly different intuition:

\[
\text{Inductive sorted2} : \text{list nat} \rightarrow \text{Prop} := \\
\quad \text{SEmpty} : \text{sorted2} [] \\
\quad \text{SSing} : \forall x, \text{sorted2} [x] \\
\quad \text{SCons} : \forall x1 x2 l', x1 \leq x2 \Rightarrow \text{sorted2} (x2::l') \Rightarrow \text{sorted2} (x1::x2::l').
\]

Write a careful informal proof of the following fact. If your proof uses induction, make sure to state the induction hypothesis explicitly and rigorously.

\[
\text{Theorem t12} : \forall l, \text{sorted1} l \Rightarrow \text{sorted2} l.
\]
Recall the definitions of the `reg_exp` datatype and the `exp_match` relation.

```ocaml
Inductive reg_exp (T : Type) : Type :=
| EmptySet
| EmptyStr
| Char (t : T)
| App (r1 r2 : reg_exp T)
| Union (r1 r2 : reg_exp T)
| Star (r : reg_exp T).

Reserved Notation "s =~ re" (at level 80).

Inductive exp_match {T} : list T -> reg_exp T -> Prop :=
| MEmpty : [] =~ EmptyStr
| MChar x : [x] =~ (Char x)
| MApp s1 re1 s2 re2
  (H1 : s1 =~ re1)
  (H2 : s2 =~ re2)
  : (s1 ++ s2) =~ (App re1 re2)
| MUnionL s1 re1 re2
  (H1 : s1 =~ re1)
  : s1 =~ (Union re1 re2)
| MUnionR re1 s2 re2
  (H2 : s2 =~ re2)
  : s2 =~ (Union re1 re2)
| MStar0 re : [] =~ (Star re)
| MStarApp s1 s2 re
  (H1 : s1 =~ re)
  (H2 : s2 =~ (Star re))
  : (s1 ++ s2) =~ (Star re)
where "s =~ re" := (exp_match s re).
```

Using `reg_exp_match`, we can derive a natural equivalence relation on regular expressions:

```ocaml
Definition equiv {T : Type} (a b : reg_exp T) :=
  forall s,
  s =~ a <-> s =~ b.
```

In this problem you may refer the following theorem (proved in the homework) without proof.

```ocaml
Theorem star_app : forall T (s1 s2 : list T) (e : reg_exp T),
  s1 =~ Star e ->
  s2 =~ Star e ->
  (s1 ++ s2) =~ Star e.
```

Also, for the sake of brevity you may use the notation `a*` to mean `Star a`.

Write a careful informal proof of the following proposition. When dealing with inductive cases, explicitly state what the inductive hypotheses are.

```ocaml
Theorem aistarstar : forall T (a : reg_exp T),
equiv (Star a) (Star (Star a)).
```