Solutions
1. [Standard Track Only] Miscellaneous (16 points)

1.1 The type True in Coq is inhabited by the single value true.
 □ True ☒ False
 (True is inhabited by I; true has type bool.)

1.2 The type bool->False in Coq is uninhabited.
 ☒ True □ False

1.3 The term (fun P => P \or \neg P) False in Coq has type Prop.
 ☒ True □ False

1.4 Authors of custom Ltac scripts for Coq need to be careful that their scripts do not diverge, as this would create an inconsistency in Coq’s logic.
 □ True ☒ False
 (A diverging tactic script cannot cause Coq to believe that it has a proof of something false. Rather, the job of a tactic script is to build a proof object; if it diverges, we just don’t get any proof at all.)

1.5 If two Imp commands c1 and c2 are equivalent (that is, st = [c1] => st' iff st = [c2] => st' for all st and st'), then they also validate the same Hoare triples (that is, {{P}}c1{{Q}} iff {{P}}c2{{Q}}, for all P and Q).
 ☒ True □ False

1.6 Conversely, if two Imp commands validate the same Hoare triples, then they are equivalent.
 ☒ True □ False

1.7 For every b : bexp and c1, c2 : com, either the command if b then c1 else c2 is equivalent to c1 or it is equivalent to c2.
 □ True ☒ False
 (Counterexample: Let b be X <= Y, let c1 be Z := 0, and let c2 be Z := 1.)

1.8 The big-step evaluation of programs in STLC + Fix can naturally be expressed in Coq as either an Inductive relation or a Fixpoint.
 □ True ☒ False
 (Since PCF programs may not terminate, defining evaluation using Fixpoint is awkward.)
Inductive relations (12 points)

Two lists are “equivalent modulo stuttering” if compressing sequences of repeated elements into a single element (e.g., compressing [1;1;2;3;3;3] into [1;2;3]) makes them identical.

For example:

```plaintext
equiv_mod_stuttering [1;2;2;2] [1;1;1;2;2].
 equiv_mod_stuttering ([] : list nat) ([] : list nat).
 ~ (equiv_mod_stuttering [1] [2]).
 ~ (equiv_mod_stuttering [1] [1;2]).
```

(The `list nat` annotations in the second example are there to help type inference.) *Update: Another good example we noticed during the exam:*

And we should have included an example underscoring the fact that ordering is still important.

Complete the inductive definition of `equiv_modulo_stuttering`:

```plaintext
Inductive equiv_mod_stuttering {X : Type} : list X -> list X -> Prop :=

Answer:

| Done : equiv_mod_stuttering [] [] |
| SameHead : forall x l1 l2, 
  equiv_mod_stuttering l1 l2 -> 
  equiv_mod_stuttering (x::l1) (x::l2) |
| StutterLeft : forall x l1 l2, 
  equiv_mod_stuttering (x::l1) l2 -> 
  equiv_mod_stuttering (x::x::l1) l2 |
| StutterRight : forall x l1 l2, 
  equiv_mod_stuttering l1 (x::l2) -> 
  equiv_mod_stuttering l1 (x::x::l2). |
```
Program equivalence in Imp (14 points)

Recall that two Imp commands c_1 and c_2 are said to be *equivalent* when $\text{st} = [c_1] \rightarrow \text{st}'$ iff $\text{st} = [c_2] \rightarrow \text{st}'$, for all st and st'.

Choose True or False for the following claims (and give counterexamples as appropriate).

3.1 If c always diverges (that is, there are no st and st' such that $\text{st} = [c] \rightarrow \text{st}'$), then c is equivalent to $c;c$.
 - ☒ True
 - ☐ False

If you chose False, give a counterexample (a command c that always diverges but such that c is not equivalent to $c;c$):

3.2 Conversely, if c is equivalent to $c;c$, then c always diverges.
 - ☐ True
 - ☒ False

If you chose False, give a counterexample:

$c = \text{skip}$

3.3 If then c is constant (i.e., it always leaves the state unchanged), then c is equivalent to $c;c$.
 - ☒ True
 - ☐ False

If you chose False, give a counterexample (a command c that is constant but such that c is not equivalent to $c;c$):

3.4 Conversely, if c is equivalent to $c;c$, then c is constant.
 - ☐ True
 - ☒ False

If you chose False, give a counterexample:

$c = \text{if } X = 0 \text{ then } X := 1 \text{ else } \text{skip} \text{ fi}$

3.5 If there is some state st' in the *range* of c such that c fails to terminate when started in state st' (that is, $\text{st} = [c] \rightarrow \text{st}'$ for some starting state st but there is no st'' such that $\text{st}'' = [c] \rightarrow \text{st}'$), then c is *not* equivalent to $c;c$.
 - ☒ True
 - ☐ False

If you chose False, give a counterexample:
State the conditions under which c is equivalent to $c; c$. That is, give necessary and sufficient conditions on c that guarantee c is equivalent to $c; c$.

Answer: Command c is equivalent to $c; c$ iff c is constant on every state in its range — that is, if $s = [c] \Rightarrow s' \implies s' = [c] \Rightarrow s'$ for all s and s'.

Proof (not requested by the question and not required for full credit, but FYI):

- Suppose $s = [c] \Rightarrow s' \implies s' = [c] \Rightarrow s'$ for all s and s'. Then c and $c; c$ terminate on the same set of starting states, and they yield the same final state whenever they terminate—that is, they are equivalent.

- Conversely, suppose $s = [c] \Rightarrow s'$ does not imply $s' = [c] \Rightarrow s'$—that is, there are some s and s' such that $s = [c] \Rightarrow s'$ but not $s' = [c] \Rightarrow s'$ (either c diverges when started on s' or it terminates with some other state s''). Then clearly c and $c; c$ are not equivalent: the former terminates in s' but the latter does not.
The Simply Typed Lambda-Calculus with fixpoints allows general recursion—that is, terms involving \texttt{fix} may diverge. If we want to avoid divergent terms while still expressing many computations involving numbers, we can introduce a bounded \texttt{iter} combinator.

\texttt{Iter} takes a function \(f : T \rightarrow T \), a number \(n : \text{Nat} \) that controls how many times the function is executed, and an initial value for an “accumulator” \(a : T \). Every step of the loop, it decrements \(n \) and calls \(f \) to update the accumulator, stopping after \(n \) becomes 0.

Here is an example of using \texttt{iter} to define addition of two natural numbers.

\begin{verbatim}
Definition add_f(a b: tm) :=
 <! iter (\acc: Nat, succ acc) a b >.

Hint Unfold add_f: core.
Example add_ex1: add_f <{ 3 }> <{ 5 }> -->* <{ 8 }>.\end{verbatim}

5.1 First, let’s practice using \texttt{iter}. Define an \texttt{apply_n} function that takes as argument a function \(f : \text{Nat} \rightarrow \text{Nat} \) and a starting value \(n : \text{Nat} \) and composes \(f \) with itself \(n \) times. For example, \texttt{apply_n f 4 1} should yield \(f (f (f (f 1))) \), while \texttt{apply_n f 0 1} should yield 1.

\begin{verbatim}
Definition apply_n (f n : tm) :=
 <! iter (\acc: Nat, \a: Nat, f (acc a)) n (\a: Nat, a) >.

Example apply_n_ex1: tm_app (apply_n <{ \i: Nat, succ i }> <{ 2 }>) <{ 0 }> -->* <{ 2 }>.\end{verbatim}

\textit{(N.b.: This part was a bit confusing, technically (it’s defining an STLC function as if it were a Coq function). We decided during the exam to just skip it.)}
Now that you’ve got the hang of it, let’s extend the call-by-value operational semantics of STLC with appropriate rules for `iter`. Note that the evaluation order of the arguments to `iter` are from left to right, i.e: `f` evaluates first, then `n` and finally `a`.

```latex
\textbf{Inductive} \text{ step} : \text{tm} \rightarrow \text{tm} \rightarrow \text{Prop} := \\
| \text{ST_AppAbs} : \forall x : T2 \, t1 \, v2, \\
& \quad \text{value} \ v2 \rightarrow \\
& \quad \langle \langle x : T2, t1 \rangle \ v2 \rangle \rightarrow \langle \ [x := v2] t1 \ \rangle \\
| \text{ST_App1} : \forall t1 \, t1' \ t2, \\
& \quad t1 \rightarrow t1' \rightarrow \\
& \quad \langle \{ t1 \ t2 \} \rangle \rightarrow \langle \{ t1' \ t2 \} \rangle \\
| \text{ST_App2} : \forall v1 \ t2 \ t2', \\
& \quad \text{value} \ v1 \rightarrow \\
& \quad t2 \rightarrow t2' \rightarrow \\
& \quad \langle \{ v1 \ t2 \} \rangle \rightarrow \langle \{ v1 \ t2' \} \rangle \\
| \text{ST_Succ1} : \forall e \ e', \\
& \quad e \rightarrow e' \rightarrow \\
& \quad \langle \{ \text{succ} \ e \} \rangle \rightarrow \langle \{ \text{succ} \ e' \} \rangle \\
| \text{ST_Succ2} : \forall n : \text{nat}, \\
& \quad \langle \{ \text{succ} \ n \} \rangle \rightarrow \langle \{ \text{S} \ n \} \rangle \\
(* \text{FILL IN HERE} *) \\
| \text{ST_IterStep} : \forall f \ a (n : \text{nat}), \\
& \quad \text{value} \ f \rightarrow \\
& \quad \text{value} \ a \rightarrow \\
& \quad \langle \{ \text{iter} \ f \ \{ \text{S} \ n \} \ a \} \rangle \rightarrow \langle \{ \text{f} (\text{iter} \ f \ n \ a) \} \rangle \\
| \text{ST_IterEnd} : \forall f \ a, \\
& \quad \text{value} \ f \rightarrow \\
& \quad \text{value} \ a \rightarrow \\
& \quad \langle \{ \text{iter} \ f \ 0 \ a \} \rangle \rightarrow \langle \{ \ a \} \rangle \\
| \text{ST_Iter1} : \forall f \ f' \ n \ a, \\
& \quad f \rightarrow f' \rightarrow \\
& \quad \langle \{ \text{iter} \ f \ n \ a \} \rangle \rightarrow \langle \{ \text{iter} \ f' \ n \ a \} \rangle \\
| \text{ST_Iter2} : \forall f \ n \ n' \ a, \\
& \quad \text{value} \ f \rightarrow \\
& \quad n \rightarrow n' \rightarrow \\
& \quad \langle \{ \text{iter} \ f \ n \ a \} \rangle \rightarrow \langle \{ \text{iter} \ f \ n' \ a \} \rangle \\
| \text{ST_Iter3} : \forall f \ n \ a \ a', \\
& \quad \text{value} \ f \rightarrow \\
& \quad \text{value} \ n \rightarrow \\
& \quad a \rightarrow a' \rightarrow \\
& \quad \langle \{ \text{iter} \ f \ n \ a \} \rangle \rightarrow \langle \{ \text{iter} \ f \ n \ a' \} \rangle 
```
Finally, give a typing rule for \texttt{iter}. Both examples above (\texttt{add_f} and \texttt{apply_n}) should be well-typed.

\texttt{Inductive has_type : context \to tm \to ty \to Prop :=}
\begin{itemize}
 \item | T_Var : forall Gamma x T1, \\
 \hspace{1cm} Gamma x = Some T1 -> \\
 \hspace{1cm} Gamma |- x \in T1
 \item | T_Abs : forall Gamma x T1 T2 t1, \\
 \hspace{1cm} x |- T2 ; Gamma |- t1 \in T1 -> \\
 \hspace{1cm} Gamma |- \forall x:T2, t1 \in (T2 \rightarrow T1)
 \item | T_App : forall T1 T2 Gamma t1 t2, \\
 \hspace{1cm} Gamma |- t1 \in (T2 \rightarrow T1) -> \\
 \hspace{1cm} Gamma |- t2 \in T2 -> \\
 \hspace{1cm} Gamma |- t1 t2 \in T1
 \item | T_Succ: forall Gamma n, \\
 \hspace{1cm} Gamma |- succ n \in Nat
 \item | T_Const: forall Gamma (n: nat), \\
 \hspace{1cm} Gamma |- n \in Nat
 \item (* FILL IN HERE *)
 \item | T_Iter: forall T Gamma f n a, \\
 \hspace{1cm} Gamma |- f \in (T \rightarrow T) -> \\
 \hspace{1cm} Gamma |- n \in Nat -> \\
 \hspace{1cm} Gamma |- a \in T -> \\
 \hspace{1cm} Gamma |- iter f n a \in T
\end{itemize}
Hoare logic (12 points)

In this problem we’ll consider several Hoare triples, $\{P\}c\{Q\}$. For each one, you are asked to choose either “Valid” or else the best description of its “degree of invalidity” from among the following:

- “Inv at least once”: Invalid at least once—i.e., there exists a state satisfying P such that, when started from this state, the command c will terminate in a state not satisfying Q. **In this case, provide a pair of states, one that satisfies the triple and one that does not.**

- “Inv when terminating”: Always invalid mod termination—i.e., when started from any state satisfying P, the command c will either diverge or terminate in a state not satisfying Q. **Provide a pair of states, one that diverges and one for which Q is not satisfied.**

- “Inv always”: Always invalid—i.e., when started from any state satisfying P, the command c will **definitely terminate** in a state not satisfying Q.

“Best description” means the strongest description that applies—i.e., “Inv always” is better than “Inv when terminating,” which is stronger than “Inv at least once”.

6.1 $\{\text{True}\}$

```plaintext
if X = 1 then
  Y := 0
else
  Y := 1
\{ X = Y \}
```

□ Valid □ Inv at least once □ Inv when terminating ☒ Inv always

If necessary provide a pair of states to justify your answer:

6.2 $\{\text{X=0}\}$

```plaintext
while X=0 do Y := Y+1
\{ False \}
```

☒ Valid □ Inv at least once □ Inv when terminating □ Inv always

If necessary provide a pair of states to justify your answer:

6.3 $\{\text{True}\}$

```plaintext
while X > 0 do Y := Y+1; X := X-1;
\{ X = Y \}
```

□ Valid ☒ Inv at least once □ Inv when terminating □ Inv always

If necessary provide a pair of states to justify your answer:

- $X = 1$ and $Y = 0$ (postcondition not satisfied)
- $X = 42$ (diverges)
6.4

\{
{\text{ True }}
\}

\textbf{while } X > 10 \textbf{ do } X := X + 1;

\{
{\text{ False }}
\}

\quad \square \ \text{Valid} \quad \square \ \text{Inv at least once} \quad \square \ \text{Inv when terminating} \quad \square \ \text{Inv always}

If necessary provide a pair of states to justify your answer:

$X = 1$ (postcondition not satisfied)

$X = 42$ (diverges)
Loop invariants (8 points)

For each pair of Hoare triple and proposed loop invariant Inv, your job is to decide whether Inv can be used to prove a Hoare triple of this form:

\[
\{ P \} \text{ while } b \text{ do } c \text{ end } \{ Q \}
\]

Specifically, you should decide whether Inv satisfies each of the three specific constraints from the Hoare rule for while:

1. Implied by precondition: \(P \implies Inv \)
2. Preserved by loop body (when loop guard true): \(\{ Inv /\ b \} c \{ Inv \} \)
3. Implies postcondition (when loop guard false): \((Inv /\ \sim b) \implies Q \)

We call them “Implied by Pre,” “Preserved,” and “Implies Post” below, for brevity.

7.1

\[
\{ X=m /\ Y=n \}
\text{ while } Y<>0 \text{ do}
\begin{align*}
X &:= X + 1; \\
Y &:= Y - 1
\end{align*}
\text{ end}
\{ X = m+n \}
\]

<table>
<thead>
<tr>
<th>Proposed Inv</th>
<th>Implied by Pre</th>
<th>Preserved</th>
<th>Implies Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X > 0)</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>(X = m+n)</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>(X = m+n-Y)</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

7.2

\[
\{ X = Y \}
\text{ while } true \text{ do}
\begin{align*}
X &:= X * Y
\end{align*}
\text{ end}
\{ X = Y * 37 \}
\]

<table>
<thead>
<tr>
<th>Proposed Inv</th>
<th>Implied by Pre</th>
<th>Preserved</th>
<th>Implies Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X <> 0)</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>(\exists (m : \text{ nat}), X = Y + m)</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>True</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>
8. **Big-step vs. Small-step** (6 points)

Briefly explain the difference between big-step and small-step styles of operational semantics. What are the advantages of each style?

Answer: The big-step style directly relates a term to the final result of its evaluation; the small-step style relates a term to a “slightly more reduced” term in which a single subphrase has taken a single step of computation. Big-step definitions tend to be shorter and easier to read; one major disadvantage is that they conflate terms that have no result because they diverge and terms that have no result because their evaluation encounters an undefined state. Small-step definitions are sometimes preferred because they are closer to implementations. Also, concurrent execution is much easier to describe in a small-step style.
Observational equivalence of STLC terms (16 points)

Consider the simply typed lambda-calculus (page 1 in the handout) with booleans.

Suppose \(t \) is a closed term. We say that a list of closed terms \([a_1; \ldots; a_n]\) saturates \(t \) if \(|- t a_1 a_2 \ldots a_n \in \text{Bool} \). (Update: Note that, although saturating argument lists look like Coq lists, their elements do NOT need to all have the same STLC type.)

Suppose \(s \) and \(t \) are terms of the same type. We say that \(s \) and \(t \) are observationally equivalent if, for every list of terms \([a_1; \ldots, a_n]\) that saturates both \(s \) and \(t \), we have \(s \ a_1 \ldots a_n \rightarrow^* \text{true} \) iff \(t \ a_1 \ldots a_n \rightarrow^* \text{true} \).

For example, \(\lambda x: \text{Bool}, \ x \) is observationally equivalent to \(\lambda x: \text{Bool}, (\lambda y: \text{Bool}, y) \ x \), because they yield the same result when applied to either of the two possible saturating argument lists, \([\text{true}]\) and \([\text{false}]\).

For each of the following pairs of terms, check “Equivalent” if they are observationally equivalent and “Inequivalent” if not. In the latter case, give a saturating list of arguments on which they yield different boolean results.

9.1 \(\lambda x: \text{Bool}, \text{true} \) and \(\lambda x: \text{Bool}, \text{false} \)

□ Equivalent ☒ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different results:

[true]

9.2 \(\lambda x: \text{Bool}, \ x \) and \(\lambda x: \text{Bool}, \text{true} \)

□ Equivalent ☒ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different results:

[false]

9.3 \(\lambda x: \text{Bool}, \ \lambda y: \text{Bool}, \ x \) and \(\lambda x: \text{Bool}, \ \lambda y: \text{Bool}, \ y \)

□ Equivalent ☒ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different results:

[false; true]
9.4 \[\forall: \text{Bool} \rightarrow \text{Bool}, \ x \ \text{and} \ \forall: \text{Bool} \rightarrow \text{Bool}, \ \forall: \text{Bool}, \ x \ y\]

○ Equivalent □ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different results:

9.5 \[\forall: \text{Bool} \rightarrow \text{Bool}, \ \forall: \text{Bool}, \ x \ y \ \text{and} \ \forall: \text{Bool} \rightarrow \text{Bool}, \ \forall: \text{Bool}, \ x \ \text{true}\]

□ Equivalent ○ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different results:

[[\{z: \text{Bool}, z\}; false]]

9.6 \[\forall: \text{Bool} \rightarrow \text{Bool}, \ \forall: \text{Bool}, \ x \ y \ \text{and} \ \forall: \text{Bool} \rightarrow \text{Bool}, \ \forall: \text{Bool}, \ x \ (x \ y)\]

□ Equivalent ○ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different results:

[[\{z: \text{Bool}, \text{if z then false else true}\}; false]]

9.7 \text{true} \ \text{and} \ \text{false}\n
□ Equivalent ○ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different results:

[]
[Advanced Track Only] Preservation for STLC with sums (informal proof) (16 points)

The definition of the STLC extended with binary sum types, booleans, and Unit can be found on page 3 of the accompanying reference sheet.

Fill in the missing cases below of the proof that reduction preserves types (that is, the cases for T_Inl and T_Case). Use full, grammatical sentences, and make sure to state any induction hypotheses explicitly.

You may refer to the usual substitution lemma without proof. (It is repeated on page 2 of the handout, for reference.)

Theorem (Preservation): If |- t \in T and t --> t', then |- t' \in T.

Proof: By induction on a derivation of |- t \in T.

- We can immediately rule out T_Var, T_Abs, T_TRue, T_False, and T_Unit as final rules in the derivation, since in each of these cases t cannot take a step.
- The cases for T_App, T_If, and T_Inr are omitted.
- If the final rule in the derivation of |- t \in T is T_Case, then

 \[t = \text{case } t0 \text{ of inl } x \Rightarrow t1 \mid \text{inr } x \Rightarrow t2, \]

 with |- t0 : T1 + T2 and x:T1 |- t1 : T and x:T2 |- t2 : T. The induction hypothesis states that, if t0 --> t0', then |- t0 : T1 + T2.

 Inspecting the step relation, we see that there are three rules that could have been used to step from t to t' — namely, ST_Case, ST_CaseInl, and ST_CaseInr.

 If the step rule was ST_Case, then t0 --> t0' and t' = case t0' of inl x => t1 | inr x => t2.

 By T_Case, we have |- t' \in T, as required.

 If the step rule was ST_CaseInl, then t0 = inl T2 v1 and t' = [x:=v1]t1. By the substitution lemma, |- t' \in T, as required.

 The argument for the ST_CaseInr step rule is similar.

- [Write answer for the Inr rule...]

14
Subtyping (14 points)

The setting for this problem is the simply typed lambda-calculus with booleans, products, and subtyping (see page 9 in the handout).

11.1 Suppose \(t = (\lambda x: \text{Bool}, (x,x)) \)

Check all the types \(T \) such that \(|- t \in T \) (or “Not typeable”). UPDATE: (You should select "Some other type(s)," even though you have already selected some options above it, if the term has more types than what are listed.)

- \(\text{Bool} \to (\text{Top} \times \text{Top}) \)
- \(\text{Bool} \to (\text{Bool} \times \text{Bool}) \)
- \(\text{Top} \to (\text{Bool} \times \text{Bool}) \)
- \(\text{Top} \to \text{Top} \)
- \(\text{Some other type(s)} \)
- \(\text{Not typeable} \)

11.2 Which is the minimal type \(T \) such that \(|- t \in T \) (or check “Not typeable”): UPDATE: The "minimal type" of a term is the smallest (in the sense of the subtype relation) type possessed by that term.

- \(\text{Bool} \to (\text{Top} \times \text{Top}) \)
- \(\text{Bool} \to (\text{Bool} \times \text{Bool}) \)
- \(\text{Top} \to (\text{Bool} \times \text{Bool}) \)
- \(\text{Top} \to \text{Top} \)
- \(\text{Top} \)
- \(\text{Some other type(s)} \)
- \(\text{Not typeable} \)
11.3 Suppose \(t = (\lambda x: \text{Bool}, \lambda y: \text{Top} \to \text{Bool}, y \ x) \) true

Check all the types \(T \) such that \(|- \ t \ \in \ T \) (or “Not typeable”):
- ✔ (\text{Top} \to \text{Bool}) \to \text{Top}
- ☐ (\text{Bool} \to \text{Bool}) \to \text{Bool} \hspace{1cm} (Corrected from an earlier answer key)
- ☐ (\text{Top} \to \text{Top}) \to \text{Top}
- ☑ Some other type(s)
- ☐ Not typeable

11.4 Which is the minimal type \(T \) such that \(|- \ t \ \in \ T \) (or check “Not typeable”):
- ☐ (\text{Top} \to \text{Bool}) \to \text{Top}
- ☐ (\text{Bool} \to \text{Bool}) \to \text{Bool}
- ☐ (\text{Top} \to \text{Top}) \to \text{Top}
- ☑ Some other type(s)
- ☐ Not typeable
11.5 Are there any types \(T \) and \(U \) such that \(x:T \vdash (\lambda x:T. \, x) \in U \)?

\[\begin{array}{ll}
\checkmark \, \text{Yes} & \square \, \text{No}
\end{array} \]

If so, give one.
\(T = \text{Top} \rightarrow \text{Top} \)
\(U = \text{Top} \)

11.6 Does the subtype relation contain an infinite, strictly descending chain — that is, is there an infinite sequence of types \(T_1, T_2, T_3, \ldots \) such that, for each \(i \), we have \(T_{i+1} <: T_i \) but not \(T_i <: T_{i+1} \)?

\[\begin{array}{ll}
\checkmark \, \text{Yes} & \square \, \text{No}
\end{array} \]

If you chose “Yes,” then show to construct such a chain by giving its first four elements.

\(T_1 = \text{Top} \)
\(T_2 = \text{Top} \rightarrow \text{Top} \)
\(T_3 = \text{Top} \rightarrow (\text{Top} \rightarrow \text{Top}) \)
\(T_4 = \text{Top} \rightarrow (\text{Top} \rightarrow (\text{Top} \rightarrow \text{Top})) \)
The simply typed lambda-calculus with references is summarized on page 5 of the accompanying handout.

Recall (from References.v) that the preservation theorem for this calculus is stated like this

\[\textbf{Theorem preservation_theorem} := \forall ST \ t \ t' \ T \ st \ st', \]
\[\\text{empty } ; ST \vdash t \in T \rightarrow \]
\[\text{store_well_typed ST st } \rightarrow \]
\[t / st \rightarrow t' / st' \rightarrow \]
\[\exists ST', \]
\[\text{extends ST' ST } \smallsetminus \]
\[\text{empty } ; ST' \vdash t' \in T \smallsetminus \]
\[\text{store_well_typed ST' st'}. \]

where:

- \(st \) and \(st' \) are \textit{stores} (maps from locations to values);
- \(ST \) and \(ST' \) are \textit{store typings} (maps from store locations to types);
- \(\text{empty } ; ST \vdash t \in T \) means that the closed term \(t \) has type \(T \) under the store typing \(ST \);
- \(t / st \rightarrow t' / st' \) means that, starting with the store \(st \), the term \(t \) steps to \(t' \) and changes the store to \(st' \);
- \(\text{store_well_typed ST st} \) means that the contents of each location in the store \(st \) has the type associated with this location in \(ST \); and
- \(\text{extends ST' ST} \) means that the domain of \(ST \) is a subset of that of \(ST' \) and that they agree on the types of common locations.

Briefly explain why the existential quantifier is needed in the statement of the preservation theorem. I.e., what would go wrong if we stated the theorem like this?

\[\textbf{Theorem preservation_wrong2} : \forall ST \ T \ t \ t' \ st \ st', \]
\[\text{empty } ; ST \vdash t \in T \rightarrow \]
\[t / st \rightarrow t' / st' \rightarrow \]
\[\text{store_well_typed ST st } \rightarrow \]
\[\text{empty } ; ST \vdash t' \in T. \]

Answer:

The \textit{ST_RefValue} rule yields a new location \(l \), which will appear in \(t' \) as the result of the \textit{new} operation that has just been executed. But the original store \(ST \) will not contain a type for \(l \) (it will be one element too short), and the claimed typing derivation in the conclusion of \textit{preservation_wrong2} will not exist (so the theorem will not be provable).

The existential quantifier in the good preservation theorem allows us to choose a one-element-larger store typing \(ST' \) in the case where \(t \) steps using \textit{ST_RefValue}, where the new binding in \(ST' \) gives the new location \(l \) the type of the initial value in the new cell in the store.
For Reference

Simply Typed Lambda Calculus with Booleans and Unit

Syntax:

T ::= T -> T \hspace{1cm} \text{arrow type}
 \quad \text{Bool} \hspace{1cm} \text{boolean type}
 \quad \text{Unit} \hspace{1cm} \text{unit type}

t ::= x \hspace{1cm} \text{variable}
 \quad \langle x:T, t \rangle \hspace{1cm} \text{abstraction}
 \quad t \ t \hspace{1cm} \text{application}
 \quad \text{true} \hspace{1cm} \text{true}
 \quad \text{false} \hspace{1cm} \text{false}
 \quad \text{if} \ t \ \text{then} \ t \ \text{else} \ t \hspace{1cm} \text{conditional}
 \quad \text{unit} \hspace{1cm} \text{unit value}

Values:

v ::= \langle x:T, t \rangle
 \quad \text{true}
 \quad \text{false}
 \quad \text{unit}

Substitution:

[x:=s]x = s
[x:=s]y = y \quad \text{if} \ x \neq y
[x:=s]\langle x:T, t \rangle = \langle x:T, t \rangle
[x:=s]\langle y:T, t \rangle = \langle y:T, [x:=s]t \rangle \quad \text{if} \ x \neq y
[x:=s](t1 \ t2) = ([x:=s]t1) ([x:=s]t2)
[x:=s]\text{true} = \text{true}
[x:=s]\text{false} = \text{false}
[x:=s]\text{if} \ t1 \ \text{then} \ t2 \ \text{else} \ t3 = \text{if} \ [x:=s]t1 \ \text{then} \ [x:=s]t2 \ \text{else} \ [x:=s]t3
[x:=s]\text{unit} = \text{unit}

Small-step operational semantics:

value v2
--------------------------- (ST_AppAbs)
(\langle x:T2, t1 \rangle) \ v2 \rightarrow [x:=v2]t1

\quad t1 \rightarrow t1'
---------------------- (ST_App1)
\quad t1 \ t2 \rightarrow t1' \ t2
value \(v_1 \)
\(t_2 \rightarrow t_2' \)
\[(ST_{App2}) \]
\(v_1 t_2 \rightarrow v_1 t_2' \)
\[(ST_{IfTrue}) \]
\((if \ true \ then \ t_1 \ else \ t_2) \rightarrow t_1 \)
\[(ST_{IfFalse}) \]
\((if \ false \ then \ t_1 \ else \ t_2) \rightarrow t_2 \)
\[(ST_{If}) \]
\(t_1 \rightarrow t_1' \)
\[(if \ t_1 \ then \ t_2 \ else \ t_3) \rightarrow (if \ t_1' \ then \ t_2 \ else \ t_3) \]

Typing:

\[Gamma \ x = T_1 \]
\[(T_{Var}) \]
\[Gamma \ |\ x \in T_1 \]
\[(T_{Var}) \]
\[x \rightarrow T_2 ; \ Gamma \ |\ t_1 \in T_1 \]
\[(T_{Abs}) \]
\[Gamma \ |\ \lambda x:T_2,t_1 \in T_2 \rightarrow T_1 \]
\[(T_{Abs}) \]
\[Gamma \ |\ t_1 \in T_2 \rightarrow T_1 \]
\[Gamma \ |\ t_2 \in T_2 \]
\[(T_{App}) \]
\[Gamma \ |\ t_1 t_2 \in T_1 \]
\[Gamma \ |\ true \in Bool \]
\[(T_{True}) \]
\[Gamma \ |\ false \in Bool \]
\[(T_{False}) \]
\[Gamma \ |\ t_1 \in Bool \]
\[Gamma \ |\ t_2 \in T_1 \]
\[Gamma \ |\ t_3 \in T_1 \]
\[(T_{If}) \]
\[Gamma \ |\ if \ t_1 \ then \ t_2 \ else \ t_3 \in T_1 \]
\[(T_{Unit}) \]

Lemma substitution_preserves_typing : forall Gamma x U t v T,
\[x \rightarrow U ; \ Gamma \ |\ t \in T \rightarrow \]
\[|- v \in U \rightarrow \]
\[Gamma \ |\ [x:=v]t \in T. \]
Sum Types

(Based on the STLC with booleans and Unit.)

Syntax:

\[T ::= \ldots \quad \text{sum type} \]
\[t ::= \ldots \quad \text{tagged value (left)} \]
\[\quad \text{tagged value (right)} \]
\[\quad \text{case} \quad \text{case} \]
\[\quad \text{inl} x \Rightarrow t \]
\[\quad \text{inr} x \Rightarrow t \]

Values:

\[v ::= \ldots \quad \text{inl} v \]
\[\text{inr} v \]

Substitution:

\[\ldots \]
\[[x:=s](\text{inl} T t) = \text{inl} T ([x:=s]t) \]
\[[x:=s](\text{inr} T t) = \text{inr} T ([x:=s]t) \]
\[[x:=s](\text{case} t1 \text{ of inl} y \Rightarrow t2 | \text{inr} y \Rightarrow t3) = \text{case} \ [x:=s]t1 \text{ of} \]
\[\quad \text{inl} x \Rightarrow (\text{if} \ x = y \ \text{then} \ t2 \ \text{else} \ [x:=s]t2) \]
\[\quad \text{inr} x \Rightarrow (\text{if} \ x = y \ \text{then} \ t3 \ \text{else} \ [x:=s]t3) \]

Small-step operational semantics:

\[t1 \rightarrow t1' \]
\[\quad \text{inl} T2 t1 \rightarrow \text{inl} T2 t1' \quad \text{(ST_Inl)} \]
\[t2 \rightarrow t2' \]
\[\quad \text{inr} T1 t2 \rightarrow \text{inr} T1 t2' \quad \text{(ST_Inr)} \]
\[t0 \rightarrow t0' \]
\[\quad \text{case} \ t0 \text{ of inl} x1 \Rightarrow t1 \ | \ \text{inr} x2 \Rightarrow t2 \rightarrow \]
\[\quad \text{case} \ t0' \text{ of inl} x1 \Rightarrow t1 \ | \ \text{inr} x2 \Rightarrow t2 \quad \text{(ST_Case)} \]
\[\quad \text{case} \ (\text{inl} T2 v1) \text{ of inl} x1 \Rightarrow t1 \ | \ \text{inr} x2 \Rightarrow t2 \rightarrow [x1:=v1]t1 \]
\[\quad \text{case} \ (\text{inr} T1 v2) \text{ of inl} x1 \Rightarrow t1 \ | \ \text{inr} x2 \Rightarrow t2 \rightarrow [x2:=v2]t2 \quad \text{(ST_CaseInl)} \]
\[\quad \text{case} \ (\text{inr} T1 v2) \text{ of inl} x1 \Rightarrow t1 \ | \ \text{inr} x2 \Rightarrow t2 \rightarrow [x2:=v2]t2 \quad \text{(ST_CaseInr)} \]
Typing:

\[\text{Gamma} \vdash t_1 \in T_1\]
\[----------------------------- (T_{Inl})\]
\[\text{Gamma} \vdash \text{inl} T_2 t_1 \in T_1 + T_2\]

\[\text{Gamma} \vdash t_2 \in T_2\]
\[----------------------------- (T_{Inr})\]
\[\text{Gamma} \vdash \text{inr} T_1 t_2 \in T_1 + T_2\]

\[\text{Gamma} \vdash t_0 \in T_1 + T_2\]
\[x_1 \rightarrow T_1; \text{Gamma} \vdash t_1 \in T_3\]
\[x_2 \rightarrow T_2; \text{Gamma} \vdash t_2 \in T_3\]
\[--- (T_{Case})\]
\[\text{Gamma} \vdash \text{case} t_0 \text{ of inl } x_1 \Rightarrow t_1 \mid \text{inr } x_2 \Rightarrow t_2 \in T_3\]
References

(Based on the STLC with booleans and Unit.)

Syntax:

\[T ::= \ldots \]
\[\mid \text{Ref } T \quad \text{Ref type} \]
\[t ::= \ldots \]
\[\mid \text{ref } t \quad \text{allocation} \]
\[\mid !t \quad \text{dereference} \]
\[\mid t := t \quad \text{assignment} \]
\[\mid l \quad \text{location} \]

\[v ::= \ldots \]
\[\mid l \quad \text{location} \]

Substitution:

\[[x:=s](\text{ref } t) = \text{ref } ([x:=s]t) \]
\[[x:=s](!t) = !([x:=s]t) \]
\[[x:=s](t1 := t2) = ([x:=s]t1) := ([x:=s]t2) \]
\[[x:=s]l = l \]

Small-step operational semantics:

value v2

\[\cdots \] (ST_AppAbs)
\[(\lambda T2.t1) \ v2 / st \rightarrow [x:=v2]t1 / st \]
\[\quad t1 / st \rightarrow t1' / st' \] (ST_App1)
\[\quad t1 \ t2 / st \rightarrow t1' \ t2 / st' \]
\[\cdots \] (ST_App2)
\[v1 \ t2 / st \rightarrow v1 \ t2' / st' \]
\[\quad t1 / st \rightarrow t1' / st' \] (ST_Deref)
\[\quad !t1 / st \rightarrow !t1' / st' \]
\[\quad l < |st| \] (ST_DerefLoc)
\[!(\text{loc } l) / st \rightarrow \text{lookup } l \ st / st \]
\[\quad t1 / st \rightarrow t1' / st' \] (ST_Assign1)
\[\quad t1 := t2 / st \rightarrow t1' := t2 / st' \]
\[\quad t2 / st \rightarrow t2' / st' \] (ST_Assign2)
\[\quad v1 := t2 / st \rightarrow v1 := t2' / st' \]
\[\quad l < |st| \]
loc l := v / st --> unit / [l:=v]st

t1 / st --> t1' / st'

ref t1 / st --> ref t1' / st'

ref v / st --> loc |st| / st,v

Typing:

l < |ST|

Gamma; ST |- loc l : Ref (lookup l ST)

Gamma; ST |- t1 : T1

Gamma; ST |- ref t1 : Ref T1

Gamma; ST |- t1 : Ref T1

Gamma; ST |- !t1 : T1

Gamma; ST |- t1 : Ref T2

Gamma; ST |- t2 : T2

Gamma; ST |- t1 := t2 : Unit
Products
(Based on the STLC with Booleans and Unit.)

Syntax:
\[
\begin{align*}
t & ::= \quad \text{Terms} \\
| \quad \ldots \quad \\
| \quad (t,t) \quad \text{pair} \\
| \quad t.fst \quad \text{first projection} \\
| \quad t.snd \quad \text{second projection} \\

v & ::= \quad \text{Values} \\
| \quad \ldots \quad \\
| \quad (v,v) \quad \text{pair value} \\

T & ::= \quad \text{Types} \\
| \quad \ldots \quad \\
| \quad T \times T \quad \text{product type} \\
\end{align*}
\]

Small-step operational semantics:
\[
\begin{align*}
t1 & \rightarrow t1' \\
\hline
(t1,t2) & \rightarrow (t1',t2) \quad \text{(ST_Pair1)} \\

\hline
t2 & \rightarrow t2' \\
(v1,t2) & \rightarrow (v1,t2') \quad \text{(ST_Pair2)} \\

\hline
t1 & \rightarrow t1' \\
\hline
t1.fst & \rightarrow t1'.fst \quad \text{(ST_Fst1)} \\

\hline
(v1,v2).fst & \rightarrow v1 \quad \text{(ST_FstPair)} \\

\hline
t1 & \rightarrow t1' \\
\hline
t1.snd & \rightarrow t1'.snd \quad \text{(ST_Snd1)} \\

\hline
(v1,v2).snd & \rightarrow v2 \quad \text{(ST_SndPair)}
\end{align*}
\]
Typing:

\[
\begin{align*}
\Gamma |- t_1 \in T_1 & \quad \Gamma |- t_2 \in T_2 \\
\hline
--- (T_Pair) \\
\Gamma |- (t_1, t_2) \in T_1 \times T_2 \\
\hline
\Gamma |- t_0 \in T_1 \times T_2 & \\
\hline
\end{align*}
\]

\[
\begin{align*}
\Gamma |- t_0 \in T_1 \times T_2 & \\
\hline
\Gamma |- t_0.\text{fst} \in T_1 & \\
\hline
\Gamma |- t_0.\text{snd} \in T_2 & \\
\end{align*}
\]
Subtyping

(Based on the STLC with Booleans, Unit, and Products.)

Syntax:

\[
T ::= \text{Types} \\
| \ldots \\
| \text{Top} \\
\]
top type

Subtyping:

\[
S <: U \quad U <: T \\
\hspace{1cm} \quad \text{(S_Trans)} \\
\hspace{1cm} \quad S <: T \\
\hspace{1cm} \quad \text{(S_Refl)} \\
\hspace{1cm} \quad T <: T \\
\hspace{1cm} \quad \text{(S_Top)} \\
\hspace{1cm} \quad S <: \text{Top}
\]

\[
S1 <: T1 \quad S2 <: T2 \\
\hspace{1cm} \quad \text{(S_Prod)} \\
\hspace{1cm} \quad S1 \ast S2 <: T1 \ast T2 \\
\hspace{1cm} \quad \text{(S_Arrow)} \\
\hspace{1cm} \quad S1 -> S2 <: T1 -> T2 \\
\hspace{1cm} \quad \text{(S_Prod)} \\
\hspace{1cm} \quad S1\ast S2 <: T1\ast T2
\]

Typing:

\[
\Gamma \vdash t1 \in T1 \quad T1 <: T2 \\
\hspace{1cm} \quad \text{(T_Sub)} \\
\hspace{1cm} \quad \Gamma \vdash t1 \in T2
\]