CIS 500: Software Foundations Final Exam December 16, 2021

Name (printed): __

Username (PennKey login id): ________________________________

Choose a random 4-digit number: _____________________________

My signature below certifies that I have complied with the University of Pennsylvania’s Code of Academic Integrity in completing this examination.

Signature: __ Date: ________________

Directions:

• This exam contains both standard and advanced-track questions. Questions with no annotation are for both tracks. Questions for just one of the tracks are marked “Standard Track Only” or “Advanced Track Only.”

 Do not waste time or confuse the graders by answering questions intended for the other track.

To make sure, please find the questions for the other track as soon as you begin the exam and cross them out!

• Before beginning the exam, please write your random 4-digit number (not your name or PennKey!) at the top of each even-numbered page, so that we can find things if a staple fails.

Mark the box of the track you are following.

 □ Standard □ Advanced
1. [Standard Track Only] Miscellaneous (16 points)

1.1 The type True in Coq is inhabited by the single value true.
 □ True □ False

1.2 The type bool -> False in Coq is uninhabited.
 □ True □ False

1.3 The term (fun P => P \(\lor \) ~P) False in Coq has type Prop.
 □ True □ False

1.4 Authors of custom Ltac scripts for Coq need to be careful that their scripts do not diverge,
 as this would create an inconsistency in Coq's logic.
 □ True □ False

1.5 If two Imp commands \(c_1 \) and \(c_2 \) are equivalent (that is, \(st =[c_1]=⇒ st' \) iff \(st =[c_2]=⇒ st' \)
 for all \(st \) and \(st' \)), then they also validate the same Hoare triples (that is, \(\{P\}c_1\{Q\} \)
 iff \(\{P\}c_2\{Q\} \), for all \(P \) and \(Q \)).
 □ True □ False

1.6 Conversely, if two Imp commands validate the same Hoare triples, then they are equivalent.
 □ True □ False

1.7 For every \(b : bexp \) and \(c_1, c_2 : com \), either the command if \(b \) then \(c_1 \) else \(c_2 \) is equiv-
 alent to \(c_1 \) or it is equivalent to \(c_2 \).
 □ True □ False

1.8 The big-step evaluation of programs in STLC + Fix can naturally be expressed in Coq as
 either an Inductive relation or a Fixpoint.
 □ True □ False
Inductive relations (12 points)

Two lists are “equivalent modulo stuttering” if compressing sequences of repeated elements into a single element (e.g., compressing \([1;1;2;3;3;3]\) into \([1;2;3]\)) makes them identical.

For example:

- `equiv_mod_stuttering [1;2;2;2] [1;1;1;2;2]`.
- `equiv_mod_stuttering ([] : list nat) ([] : list nat)`.
- `~ (equiv_mod_stuttering [1] [2])`.
- `~ (equiv_mod_stuttering [1] [1;2])`.

(The `list nat` annotations in the second example are there to help type inference.) *Update: Another good example we noticed during the exam:*

And we should have included an example underscoring the fact that ordering is still important.

Complete the inductive definition of `equiv_modulo_stuttering`:

```
Inductive equiv_mod_stuttering {X : Type} : list X -> list X -> Prop :=
```
3 Program equivalence in Imp (14 points)

Recall that two Imp commands c_1 and c_2 are said to be equivalent when $st = [c_1] => st'$ iff $st = [c_2] => st'$, for all st and st'.

Choose True or False for the following claims (and give counterexamples as appropriates).

3.1 If c always diverges (that is, there are no st and st' such that $st = [c] => st'$), then c is equivalent to $c;c$.

- □ True
- □ False

If you chose False, give a counterexample (a command c that always diverges but such that c is not equivalent to $c;c$):

3.2 Conversely, if c is equivalent to $c;c$, then c always diverges.

- □ True
- □ False

If you chose False, give a counterexample:

3.3 If then c is constant (i.e., it always leaves the state unchanged), then c is equivalent to $c;c$.

- □ True
- □ False

If you chose False, give a counterexample (a command c that is constant but such that c is not equivalent to $c;c$):

3.4 Conversely, if c is equivalent to $c;c$, then c is constant.

- □ True
- □ False

If you chose False, give a counterexample:

3.5 If there is some state st' in the range of c such that c fails to terminate when started in state st' (that is, $st = [c] => st'$ for some starting state st but there is no st'' such that $st' = [c] => st''$), then c is not equivalent to $c;c$.

- □ True
- □ False

If you chose False, give a counterexample:
State the conditions under which c is equivalent to $c;c$. That is, give necessary and sufficient conditions on c that guarantee c is equivalent to $c;c$.
Stlc with iteration (14 points)

The Simply Typed Lambda-Calculus with fixpoints allows general recursion—that is, terms involving \texttt{fix} may diverge. If we want to avoid divergent terms while still expressing many computations involving numbers, we can introduce a bounded \texttt{iter} combinator.

\texttt{Iter} takes a function \(f : T \rightarrow T \), a number \(n : \text{Nat} \) that controls how many times the function is executed, and an initial value for an “accumulator” \(a : T \). Every step of the loop, it decrements \(n \) and calls \(f \) to update the accumulator, stopping after \(n \) becomes 0.

\begin{verbatim}
Inductive tm : Type :=
| tm_abs (x: string) (p: ty) (body: tm)
| tm_app (e1: tm) (e2: tm)
| tm_succ (e: tm)
| tm_const (n: nat)
| tm_var (x: string)
(* NEW *)
| tm_iter (f: tm) (n: tm) (a: tm).
\end{verbatim}

Here is an example of using \texttt{iter} to define addition of two natural numbers.

\begin{verbatim}
Definition add_f(a b: tm) :=
 \{ iter (\acc: Nat, succ acc) a b \}.

Hint Unfold add_f: core.
Example add_ex1: add_f \{ 3 \} \{ 5 \} \--* \{ 8 \}.
\end{verbatim}

5.1 First, let’s practice using \texttt{iter}. Define an \texttt{apply_n} function that takes as argument a function \(f : \text{Nat} \rightarrow \text{Nat} \) and a starting value \(n : \text{Nat} \) and composes \(f \) with itself \(n \) times. For example, \texttt{apply_n f 4 1} should yield \(f (f (f (f 1))) \), while \texttt{apply_n f 0 1} should yield 1.

\begin{verbatim}
Definition apply_n (f : tm) (n : tm) :=
(N.b.: This part was a bit confusing, technically (it’s defining an STLC function as if it were a Coq function). We decided during the exam to just skip it.)
\end{verbatim}
Now that you’ve got the hang of it, let’s extend the call-by-value operational semantics of STLC with appropriate rules for \texttt{iter}. Note that the evaluation order of the arguments to \texttt{iter} are from left to right, i.e: \texttt{f} evaluates first, then \texttt{n} and finally \texttt{a}.

\begin{verbatim}
Inductive step : tm -> tm -> Prop :=
| ST_AppAbs : forall x T2 t1 v2,
 value v2 ->
 \<{(\x:T2, t1) v2}> --> \<{ [x:=v2]t1 }>
| ST_App1 : forall t1 t1' t2,
 t1 --> t1' ->
 \<{t1 t2}> --> \<{t1' t2}>
| ST_App2 : forall v1 t2 t2',
 value v1 ->
 t2 --> t2' ->
 \<{v1 t2}> --> \<{v1 t2'}>
| ST_Succ1: forall e e',
 e --> e' ->
 \<{ succ e }> --> \<{ succ e' }>
| ST_Succ2: forall (n: nat),
 \<{ succ n }> --> \<{ S n }>
(* FILL IN HERE *)
\end{verbatim}
Finally, give a typing rule for \texttt{iter}. Both examples above (\texttt{add_f} and \texttt{apply_n}) should be well-typed.

\begin{verbatim}
Inductive has_type : context -> tm -> ty -> Prop :=
 | T_Var : forall Gamma x T1,
 Gamma x = Some T1 ->
 Gamma |- x \in T1
 | T_Abs : forall Gamma x T1 T2 t1,
 x |- T2 ; Gamma |- t1 \in T1 ->
 Gamma |- \x:T2, t1 \in (T2 -> T1)
 | T_App : forall T1 T2 Gamma t1 t2,
 Gamma |- t1 \in (T2 -> T1) ->
 Gamma |- t2 \in T2 ->
 Gamma |- t1 t2 \in T1
 | T_Succ: forall Gamma n,
 Gamma |- succ n \in Nat
 | T_Const: forall Gamma (n: nat),
 Gamma |- n \in Nat

(* FILL IN HERE *)
\end{verbatim}
6. Hoare logic (12 points)

In this problem we’ll consider several Hoare triples, $\{P\}c\{Q\}$. For each one, you are asked to choose either “Valid” or else the best description of its “degree of invalidity” from among the following:

- “Inv at least once”: Invalid at least once—i.e., there exists a state satisfying P such that, when started from this state, the command c will terminate in a state not satisfying Q. In this case, provide a pair of states, one that satisfies the triple and one that does not.

- “Inv when terminating”: Always invalid mod termination—i.e., when started from any state satisfying P, the command c will either diverge or terminate in a state not satisfying Q. Provide a pair of states, one that diverges and one for which Q is not satisfied.

- “Inv always”: Always invalid—i.e., when started from any state satisfying P, the command c will definitely terminate in a state not satisfying Q.

“Best description” means the strongest description that applies—i.e., “Inv always” is better than “Inv when terminating,” which is stronger than “Inv at least once”.

6.1 $\{\text{True}\}$

<table>
<thead>
<tr>
<th>if $X = 1$ then</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y := 0$</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>$Y := 1$</td>
</tr>
<tr>
<td>${X = Y}$</td>
</tr>
</tbody>
</table>

☐ Valid ☐ Inv at least once ☐ Inv when terminating ☐ Inv always

If necessary provide a pair of states to justify your answer:

6.2 $\{X=0\}$

<table>
<thead>
<tr>
<th>while $X=0$ do</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y := Y+1$</td>
</tr>
<tr>
<td>${\text{False}}$</td>
</tr>
</tbody>
</table>

☐ Valid ☐ Inv at least once ☐ Inv when terminating ☐ Inv always

If necessary provide a pair of states to justify your answer:
6.3 \{\text{True}\}
while X > 0 do Y := Y + 1; X := X - 1;
\{\text{X = Y}\}
\begin{itemize}
\item \text{Valid}
\item \text{Inv at least once}
\item \text{Inv when terminating}
\item \text{Inv always}
\end{itemize}
If necessary provide a pair of states to justify your answer:

6.4 \{\text{True}\}
while X > 10 do X := X + 1;
\{\text{False}\}
\begin{itemize}
\item \text{Valid}
\item \text{Inv at least once}
\item \text{Inv when terminating}
\item \text{Inv always}
\end{itemize}
If necessary provide a pair of states to justify your answer:
[Standard Track Only] Loop invariants (8 points)

For each pair of Hoare triple and proposed loop invariant Inv, your job is to decide whether Inv can be used to prove a Hoare triple of this form:

\[
\{\{ P \}\} \text{ while } b \text{ do } c \text{ end } \{\{ Q \}\}
\]

Specifically, you should decide whether Inv satisfies each of the three specific constraints from the Hoare rule for while:

1. Implied by precondition: \(P \implies Inv \)
2. Preserved by loop body (when loop guard true): \(\{\{ Inv \land \neg b \}\} c \{\{ Inv \}\} \)
3. Implies postcondition (when loop guard false): \((Inv \land \sim b) \implies Q \)

We call them “Implied by Pre,” “Preserved,” and “Implies Post” below, for brevity.

7.1

\[
\{\{ X=m \land Y=n \}\}
\text{ while } Y<>0 \text{ do }
\begin{align*}
 X &:= X + 1; \\
 Y &:= Y - 1
\end{align*}
\text{ end }
\{\{ X = m+n \}\}
\]

<table>
<thead>
<tr>
<th>Proposed Inv</th>
<th>Implied by Pre</th>
<th>Preserved</th>
<th>Implies Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X > 0)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>(X = m+n)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>(X = m+n-Y)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

7.2

\[
\{\{ X = Y \}\}
\text{ while true do }
\begin{align*}
 X &:= X * Y
\end{align*}
\text{ end }
\{\{ X = Y * 37 \}\}
\]

<table>
<thead>
<tr>
<th>Proposed Inv</th>
<th>Implied by Pre</th>
<th>Preserved</th>
<th>Implies Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X <> 0)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>(\text{exists } (m : \text{nat}), \ X = Y + m)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>(\text{True})</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
Big-step vs. Small-step (6 points)

Briefly explain the difference between big-step and small-step styles of operational semantics. What are the advantages of each style?
Observational equivalence of STLC terms (16 points)

Consider the simply typed lambda-calculus (page 1 in the handout) with booleans.

Suppose \(t \) is a closed term. We say that a list of closed terms \([a_1; \ldots; a_n]\) saturates \(t \) if \(\vdash t \; a_1 \; a_2 \; \ldots \; a_n \in \text{Bool} \). (Update: Note that, although saturating argument lists look like Coq lists, their elements do NOT need to all have the same STLC type.)

Suppose \(s \) and \(t \) are terms of the same type. We say that \(s \) and \(t \) are observationally equivalent if, for every list of terms \([a_1; \ldots; a_n]\) that saturates both \(s \) and \(t \), we have \(s \; a_1 \; \ldots \; a_n \rightarrow^* \text{true} \) iff \(t \; a_1 \; \ldots \; a_n \rightarrow^* \text{true} \).

For example, \(\lambda x:\text{Bool}. \; x \) is observationally equivalent to \(\lambda x:\text{Bool}. \; (\lambda y:\text{Bool}. \; y) \; x \), because they yield the same result when applied to either of the two possible saturating argument lists, \([\text{true}]\) and \([\text{false}]\).

For each of the following pairs of terms, check “Equivalent” if they are observationally equivalent and “Inequivalent” if not. In the latter case, give a saturating list of arguments on which they yield different boolean results.

9.1 \(\lambda x:\text{Bool}, \; \text{true} \) and \(\lambda x:\text{Bool}, \; \text{false} \)

□ Equivalent □ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different results:

9.2 \(\lambda x:\text{Bool}, \; x \) and \(\lambda x:\text{Bool}, \; \text{true} \)

□ Equivalent □ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different results:

9.3 \(\lambda x:\text{Bool}, \; \lambda y:\text{Bool}, \; x \) and \(\lambda x:\text{Bool}, \; \lambda y:\text{Bool}, \; y \)

□ Equivalent □ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different results:
9.4 \(\lambda x. \text{Bool} \rightarrow \text{Bool}, \ x \ \text{and} \ \lambda x. \text{Bool} \rightarrow \text{Bool}, \ y. \text{Bool}, \ x \ y \)
- □ Equivalent □ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different results:

9.5 \(\lambda x. \text{Bool} \rightarrow \text{Bool}, \ \lambda y. \text{Bool}, \ x \ y \ \text{and} \ \lambda x. \text{Bool} \rightarrow \text{Bool}, \ \lambda y. \text{Bool}, \ x \ \text{true} \)
- □ Equivalent □ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different results:

9.6 \(\lambda x. \text{Bool} \rightarrow \text{Bool}, \ \lambda y. \text{Bool}, \ x \ y \ \text{and} \ \lambda x. \text{Bool} \rightarrow \text{Bool}, \ \lambda y. \text{Bool}, \ x \ (x \ y) \)
- □ Equivalent □ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different results:

9.7 \(\text{true} \ \text{and} \ \text{false} \)
- □ Equivalent □ Inequivalent

If “Inequivalent,” provide a saturating list of arguments on which the terms give different results:
The definition of the STLC extended with binary sum types, booleans, and Unit can be found on page 3 of the accompanying reference sheet.

Fill in the missing cases below of the proof that reduction preserves types (that is, the cases for T_Inl and T_Case). Use full, grammatical sentences, and make sure to state any induction hypotheses explicitly.

You may refer to the usual substitution lemma without proof. (It is repeated on page 2 of the handout, for reference.)

Theorem (Preservation): If |- t \in T and t --> t', then |- t' \in T.

Proof: By induction on a derivation of |- t \in T.

• We can immediately rule out T_Var, T_Abs, T_TRue, T_False, and T_Unit as final rules in the derivation, since in each of these cases t cannot take a step.
• The cases for T_App, T_If, and T_Inr are omitted.
• If the final rule in the derivation of |- t \in T is T_Inl, then... (the rest is for you to fill in)

Space is provided for T_Case on the next page.
• If the final rule in the derivation of \(|- t \in T \) is \(T_{\text{Case}} \), then...
11 **Subtyping** (14 points)

The setting for this problem is the simply typed lambda-calculus with booleans, products, and subtyping (see page 9 in the handout).

11.1 Suppose \(t = (\lambda x : \text{Bool}, (x,x)) \)

Check all the types \(T \) such that \(\vdash t \in T \) (or “Not typeable”). *Update:* (You should select “Some other type(s),” even though you have already selected some options above it, if the term has more types than what are listed.)

- \(\Box \) \text{Bool} -> (\text{Top} \ast \text{Top})
- \(\Box \) \text{Bool} -> (\text{Bool} \ast \text{Bool})
- \(\Box \) \text{Top} -> (\text{Bool} \ast \text{Bool}) \quad \text{(Corrected from an earlier answer key)}
- \(\Box \) \text{Top} -> \text{Top}
- \(\Box \) \text{Top}
- \(\Box \) Some other type(s)
- \(\Box \) Not typeable

11.2 Which is the *minimal* type \(T \) such that \(\vdash t \in T \) (or check “Not typeable”): *Update:* The "minimal type" of a term is the smallest (in the sense of the subtype relation) type possessed by that term.

- \(\Box \) \text{Bool} -> (\text{Top} \ast \text{Top})
- \(\Box \) \text{Bool} -> (\text{Bool} \ast \text{Bool})
- \(\Box \) \text{Top} -> (\text{Bool} \ast \text{Bool})
- \(\Box \) \text{Top} -> \text{Top}
- \(\Box \) \text{Top}
- \(\Box \) Some other type(s)
- \(\Box \) Not typeable
11.3 Suppose \(t = (\lambda x: \text{Bool}, \lambda y: \text{Top} \rightarrow \text{Bool}, y \ x) \ \text{true} \)

Check all the types \(T \) such that \(\vdash t \in T \) (or “Not typeable”):

- \((\text{Top} \rightarrow \text{Bool}) \rightarrow \text{Top} \)
- \((\text{Bool} \rightarrow \text{Bool}) \rightarrow \text{Bool} \) (Corrected from an earlier answer key)
- \((\text{Top} \rightarrow \text{Top}) \rightarrow \text{Top} \)
- Some other type(s)
- Not typeable

11.4 Which is the minimal type \(T \) such that \(\vdash t \in T \) (or check “Not typeable”):

- \((\text{Top} \rightarrow \text{Bool}) \rightarrow \text{Top} \)
- \((\text{Bool} \rightarrow \text{Bool}) \rightarrow \text{Bool} \)
- \((\text{Top} \rightarrow \text{Top}) \rightarrow \text{Top} \)
- Some other type(s)
- Not typeable
11.5 Are there any types T and U such that $\forall T. \exists (\forall x : T. x \ x) \in U$?

□ Yes □ No

If so, give one.

$T =$

$U =$

11.6 Does the subtype relation contain an infinite, strictly descending chain — that is, is there an infinite sequence of types T_1, T_2, T_3, \ldots such that, for each i, we have $T_{i+1} <: T_i$ but not $T_i <: T_{i+1}$?

□ Yes □ No

If you chose “Yes,” then show to construct such a chain by giving its first four elements.

$T_1 =$

$T_2 =$

$T_3 =$

$T_4 =$
The simply typed lambda-calculus with references is summarized on page 5 of the accompanying handout.

Recall (from References.v) that the preservation theorem for this calculus is stated like this:

\[
\text{Theorem preservation_theorem} := \forall ST \; T \; t \; st \; st', \\
\quad \text{empty} \; ; \; ST \; \vdash \; t \; \in \; T \rightarrow \\
\quad \text{store_well.Typed} \; ST \; st \rightarrow \\
\quad t / st \rightarrow t' / st' \rightarrow \\
\quad \exists ST' , \\
\quad \text{extends} \; ST' \; ST \; /\ \\
\quad \text{empty} \; ; \; ST' \; \vdash \; t' \; \in \; T \; /\ \\
\quad \text{store_well.Typed} \; ST' \; st'. \\
\]

where:

- \(st \) and \(st' \) are \textit{stores} (maps from locations to values);
- \(ST \) and \(ST' \) are \textit{store typings} (maps from store locations to types);
- \(\text{empty} \; ; \; ST \; \vdash \; t \; \in \; T \) means that the closed term \(t \) has type \(T \) under the store typing \(ST \);
- \(t / st \rightarrow t' / st' \) means that, starting with the store \(st \), the term \(t \) steps to \(t' \) and changes the store to \(st' \);
- \(\text{store_well.Typed} \; ST \; st \) means that the contents of each location in the store \(st \) has the type associated with this location in \(ST \); and
- \(\text{extends} \; ST' \; ST \) means that the domain of \(ST \) is a subset of that of \(ST' \) and that they agree on the types of common locations.

Briefly explain why the existential quantifier is needed in the statement of the preservation theorem. I.e., what would go wrong if we stated the theorem like this?

\[
\text{Theorem preservation_wrong2} := \forall ST \; T \; t \; st \; st', \\
\quad \text{empty} \; ; \; ST \; \vdash \; t \; \in \; T \rightarrow \\
\quad t / st \rightarrow t' / st' \rightarrow \\
\quad \text{store_well.Typed} \; ST \; st \rightarrow \\
\quad \text{empty} \; ; \; ST \; \vdash \; t' \; \in \; T. \\
\]

(Use the next page for your answer.)
(Use this page for your answer.)
Syntax:

\[T ::= T \rightarrow T \quad \text{arrow type} \]
\[\text{Bool} \quad \text{boolean type} \]
\[\text{Unit} \quad \text{unit type} \]

\[t ::= x \quad \text{variable} \]
\[| \ \lambda x:T, t \quad \text{abstraction} \]
\[| t \ t \quad \text{application} \]
\[| \text{true} \quad \text{true} \]
\[| \text{false} \quad \text{false} \]
\[| \text{if } t \text{ then } t \text{ else } t \quad \text{conditional} \]
\[| \text{unit} \quad \text{unit value} \]

Values:

\[v ::= \lambda x:T, t \]
\[| \text{true} \]
\[| \text{false} \]
\[| \text{unit} \]

Substitution:

\[[x:=s]x = s \]
\[[x:=s]y = y \quad \text{if } x \neq y \]
\[[x:=s](\lambda x:T, t) = \lambda x:T, [x:=s]t \quad \text{if } x \neq y \]
\[[x:=s](\lambda y:T, t) = \lambda y:T, [x:=s]t \]
\[[x:=s](t1 \ t2) = ([x:=s]t1) ([x:=s]t2) \]
\[[x:=s]\text{true} = \text{true} \]
\[[x:=s]\text{false} = \text{false} \]
\[[x:=s]\text{if } t1 \text{ then } t2 \text{ else } t3 = \text{if } [x:=s]t1 \text{ then } [x:=s]t2 \text{ else } [x:=s]t3 \]
\[[x:=s]\text{unit} = \text{unit} \]

Small-step operational semantics:

\[\begin{align*}
\text{value } v2 \\
\hline
(\lambda x:T, t) v2 & \rightarrow [x:=v2]t1 \\
\text{t1} & \rightarrow t1' \\
\text{t1} \ b \quad \text{t2} & \rightarrow t1' \ b \quad \text{t2} \end{align*} \]
value v1
 t2 --> t2'
 ------------------ (ST_App2)
 v1 t2 --> v1 t2'

 --------------------------------------- (ST_If)
 (if t1 then t2 else t3) --> (if t1' then t2 else t3)

Typing:

\[\Gamma \vdash x = T1 \]
\[\------------------ (T_Var) \]
\[\Gamma \vdash x : T2 \]
\[x \mapsto T2 ; \Gamma \vdash t1 : T1 \]
\[\----------------------------- (T_Abs) \]
\[\Gamma \vdash \lambda x : T2 . t1 : T2 \rightarrow T1 \]
\[\Gamma \vdash t1 : T2 \rightarrow T1 \]
\[\Gamma \vdash t2 : T2 \]
\[\---------------------- (T_App) \]
\[\Gamma \vdash t1 t2 : T1 \]
\[\Gamma \vdash true : \text{Bool} \]
\[\--------------------- (T_True) \]
\[\Gamma \vdash false : \text{Bool} \]
\[\--------------------- (T_False) \]
\[\Gamma \vdash t1 : \text{Bool} \]
\[\Gamma \vdash t2 : T1 \]
\[\Gamma \vdash t3 : T1 \]
\[\Gamma \vdash if t1 then t2 else t3 : T1 \]
\[\--------------------- (T_Unit) \]
\[\Gamma \vdash \text{unit} : \text{Unit} \]

Lemma substitution_preserves_typing : \(\forall \Gamma x U t v T, \)
\[x \mapsto U ; \Gamma \vdash t : T \rightarrow \]
\[\vdash v : U \rightarrow \]
\[\Gamma \vdash [x:=v]t : T. \]
Sum Types

(Based on the STLC with booleans and Unit.)

Syntax:

\[T ::= \ldots \]
| \(T + T \) \quad \text{sum type}

\[t ::= \ldots \]
| \(\text{inl} \ T \ v \) \quad \text{tagged value} (\text{left})
| \(\text{inr} \ T \ v \) \quad \text{tagged value} (\text{right})
| \text{case} \ t \ \text{of} \\
| \quad \text{inl} \ x \ \Rightarrow \ t \\
| \quad \text{inr} \ x \ \Rightarrow \ t

Values:

\[v ::= \ldots \]
| \(\text{inl} \ v \)
| \(\text{inr} \ v \)

Substitution:

\[\ldots \]
\[[x:=s](\text{inl} \ T \ t) = \text{inl} \ T ([x:=s]t) \]
\[[x:=s](\text{inr} \ T \ t) = \text{inr} \ T ([x:=s]t) \]
\[[x:=s](\text{case} \ t \ \text{of} \ \text{inl} \ y \ \Rightarrow \ t2 \ | \ \text{inr} \ y \ \Rightarrow \ t3) = \text{case} \ [x:=s]t \ \text{of} \\
| \quad \text{inl} \ x \ \Rightarrow \ (\text{if} \ x=y \ \text{then} \ t2 \ \text{else} \ [x:=s]t2) \\
| \quad \text{inr} \ x \ \Rightarrow \ (\text{if} \ x=y \ \text{then} \ t3 \ \text{else} \ [x:=s]t3) \]

Small-step operational semantics:

\[t1 \rightarrow t1' \]
\[\quad \text{------------------------ (ST_Inl)} \]
\[\text{inl} \ T2 \ t1 \rightarrow \text{inl} \ T2 \ t1' \]

\[t2 \rightarrow t2' \]
\[\quad \text{------------------------ (ST_Inr)} \]
\[\text{inr} \ T1 \ t2 \rightarrow \text{inr} \ T1 \ t2' \]

\[t0 \rightarrow t0' \]
\[\quad \text{------------------------ (ST_Case)} \]
\[\text{case} \ t0 \ \text{of} \ \text{inl} \ x1 \ \Rightarrow \ t1 \ | \ \text{inr} \ x2 \ \Rightarrow \ t2 \rightarrow \\
\quad \text{case} \ t0' \ \text{of} \ \text{inl} \ x1 \ \Rightarrow \ t1 \ | \ \text{inr} \ x2 \ \Rightarrow \ t2 \]

\[\quad \text{------------------------ (ST_CaseInl)} \]
\[\text{case} \ (\text{inl} \ T2 \ v1) \ \text{of} \ \text{inl} \ x1 \ \Rightarrow \ t1 \ | \ \text{inr} \ x2 \ \Rightarrow \ t2 \rightarrow \\
\quad \quad \quad \ [x1:=v1]t1 \]

\[\quad \text{------------------------ (ST_CaseInr)} \]
\[\text{case} \ (\text{inr} \ T1 \ v2) \ \text{of} \ \text{inl} \ x1 \ \Rightarrow \ t1 \ | \ \text{inr} \ x2 \ \Rightarrow \ t2 \rightarrow \\
\quad \quad \quad \ [x2:=v2]t2 \]
Typing:

\[\begin{align*}
\Gamma &\vdash t_1 : T_1 \\
\hline &\text{(T_Inl)}\\
\Gamma &\vdash \text{inl} T_2 \ t_1 : T_1 + T_2 \\
\Gamma &\vdash t_2 : T_2 \\
\hline &\text{(T_Inr)}\\
\Gamma &\vdash \text{inr} T_1 \ t_2 : T_1 + T_2 \\
\Gamma &\vdash t_0 : T_1 + T_2 \\
\begin{array}{l}
x_1 \mapsto T_1; \Gamma \vdash t_1 : T_3 \\
x_2 \mapsto T_2; \Gamma \vdash t_2 : T_3
\end{array}
\hline &\text{(T_Case)}\\
\Gamma &\vdash \text{case} \ t_0 \ of \ \text{inl} \ x_1 \Rightarrow t_1 \ | \ \text{inr} \ x_2 \Rightarrow t_2 : T_3
\end{align*}\]
References

(Based on the STLC with booleans and Unit.)

Syntax:

\[
\begin{align*}
T & ::= \ldots \\
 & \mid \text{Ref } T \quad \text{Ref type} \\
\end{align*}
\]

\[
\begin{align*}
t & ::= \ldots \\
 & \mid \text{ref } t \quad \text{allocation} \\
 & \mid \!t \quad \text{dereference} \\
 & \mid t := t \quad \text{assignment} \\
 & \mid l \quad \text{location} \\
\end{align*}
\]

\[
\begin{align*}
v & ::= \ldots \\
 & \mid l \quad \text{location} \\
\end{align*}
\]

Substitution:

\[
\begin{align*}
[x:=s]\text{(ref } t) & = \text{ref } ([x:=s]t) \\
[x:=s](!t) & = ! ([x:=s]t) \\
[x:=s](t1 := t2) & = ([x:=s]t1) := ([x:=s]t2) \\
[x:=s]l & = l \\
\end{align*}
\]

Small-step operational semantics:

\[
\begin{align*}
\text{value } v2 \\
\text{-- (ST_AppAbs)} \\
(\langle x:T2.t1 \rangle \text{ v2 } / \text{ st } \rightarrow [x:=v2]t1 / \text{ st} \\
\hline
\phantom{\text{value } v1} t1 / \text{ st } \rightarrow t1' / \text{ st'} \\
\text{-- (ST_App1)} \\
\phantom{\text{value } v1} t1 \text{ t2 } / \text{ st } \rightarrow t1' \text{ t2 } / \text{ st'} \\
\text{value } v1 \text{ t2 } / \text{ st } \rightarrow t2' / \text{ st'} \\
\text{-- (ST_App2)} \\
\phantom{\text{value } v1} t1 / \text{ st } \rightarrow t1' / \text{ st'} \\
\text{-- (ST_Deref)} \\
\phantom{\text{value } v1} !t1 / \text{ st } \rightarrow !t1' / \text{ st'} \\
\text{-- (ST_DerefLoc)} \\
\phantom{\text{value } v1} l < |\text{ st}| \\
\phantom{\text{value } v1} !(\text{ loc } l) / \text{ st } \rightarrow \text{ lookup } l \text{ st } / \text{ st} \\
\phantom{\text{value } v1} t1 / \text{ st } \rightarrow t1' / \text{ st'} \\
\text{-- (ST_Assign1)} \\
\phantom{\text{value } v1} t1 := t2 / \text{ st } \rightarrow t1' := t2 / \text{ st'} \\
\text{-- (ST_Assign2)} \\
\phantom{\text{value } v1} t2 / \text{ st } \rightarrow t2' / \text{ st'} \\
\phantom{\text{value } v1} v1 := t2 / \text{ st } \rightarrow v1 := t2' / \text{ st'} \\
\phantom{\text{value } v1} l < |\text{ st}| \\
\end{align*}
\]
loc l := v / st --> unit / \[l:=v\]st

\[t1 / st --> t1' / st'\]

ref t1 / st --> ref t1' / st'

ref v / st --> loc |st| / st,v

Typing:

\[l < |ST|\]

Gamma; ST |- loc l : Ref (lookup l ST)

Gamma; ST |- t1 : T1

Gamma; ST |- ref t1 : Ref T1

Gamma; ST |- t1 : Ref T1

Gamma; ST |- !t1 : T1

Gamma; ST |- t1 : Ref T2
Gamma; ST |- t2 : T2

Gamma; ST |- t1 := t2 : Unit
Products
(Based on the STLC with Booleans and Unit.)

Syntax:
\[
\begin{align*}
t & ::= \text{Terms} \quad | \quad \ldots \quad | \quad (t,t) \quad \text{pair} \\
& \quad | \quad t.fst \quad \text{first projection} \\
& \quad | \quad t.snd \quad \text{second projection} \\
v & ::= \text{Values} \quad | \quad \ldots \\
& \quad | \quad (v,v) \quad \text{pair value} \\
T & ::= \text{Types} \quad | \quad \ldots \\
& \quad | \quad T \ast T \quad \text{product type}
\end{align*}
\]

Small-step operational semantics:
\[
\begin{align*}
t1 & \rightarrow t1' \\
\hline
(t1,t2) & \rightarrow (t1',t2) & (\text{ST}_\text{Pair1}) \\
t2 & \rightarrow t2' \\
\hline
(v1,t2) & \rightarrow (v1,t2') & (\text{ST}_\text{Pair2}) \\
t1 & \rightarrow t1' \\
\hline
t1.fst & \rightarrow t1'.fst & (\text{ST}_\text{Fst1}) \\
(v1,v2).fst & \rightarrow v1 & (\text{ST}_\text{FstPair}) \\
t1 & \rightarrow t1' \\
\hline
t1.snd & \rightarrow t1'.snd & (\text{ST}_\text{Snd1}) \\
(v1,v2).snd & \rightarrow v2 & (\text{ST}_\text{SndPair})
\end{align*}
\]
Typing:

\[
\begin{align*}
\Gamma |- t_1 \in T_1 & \quad \Gamma |- t_2 \in T_2 \\
\hline
\hline
--- & \quad (T_{\text{Pair}}) \\
\Gamma |- (t_1,t_2) \in T_1 \ast T_2
\\
\Gamma |- t_0 \in T_1 \ast T_2 & \quad \hline
\hline
---------------------- & \quad (T_{\text{Fst}}) \\
\Gamma |- t_0.\text{fst} \in T_1
\\
\Gamma |- t_0 \in T_1 \ast T_2 & \quad \hline
\hline
---------------------- & \quad (T_{\text{Snd}}) \\
\Gamma |- t_0.\text{snd} \in T_2
\end{align*}
\]
Subtyping

(Based on the STLC with Booleans, Unit, and Products.)

Syntax:

\[
T ::= \text{Types} \\
| \ldots \\
| \text{Top} \quad \text{top type}
\]

Subtyping:

\[
S <: U \quad U <: T
\]
\[
S <: T \quad \quad \text{(S_Trans)}
\]

\[
T <: T \quad \quad \text{(S_Ref1)}
\]

\[
S <: \text{Top} \quad \quad \text{(S_Top)}
\]

\[
S1 <: T1 \quad S2 <: T2
\]
\[
S1 * S2 <: T1 * T2 \quad \quad \text{(S_Prod)}
\]

\[
T1 <: S1 \quad S2 <: T2
\]
\[
S1 -> S2 <: T1 -> T2 \quad \quad \text{(S_Arrow)}
\]

\[
S1 <: T1 \quad S2 <: T2
\]
\[
S1*S2 <: T1*T2 \quad \quad \text{(S_Prod)}
\]

Typing:

\[
\text{Gamma} |- t1 \in T1 \quad T1 <: T2
\]
\[
\text{Gamma} |- t1 \in T2 \quad \quad \text{(T_Sub)}
\]