
'
&

$
%

CIS 500

Software Foundations

Fall 2002

9 September

CIS 500, 9 September 1

'
&

$
%

Course Overview

CIS 500, 9 September 2

'
&

$
%

What is “software foundations”?

Software foundations (a.k.a. “theory of programming languages”) is the

study of the meaning of programs.

A main goal is finding ways to describe program behaviors that are both

precise and abstract.

CIS 500, 9 September 3

'
&

$
%

Why study software foundations?
� To be able to prove specific facts about particular programs (i.e.,

program verification)

Important in some domains (safety-critical systems, hardware design,

inner loops of key algorithms, ...), but (inherently?) difficult and

expensive

� To develop intuitions for informal reasoning about programs

� To prove general facts about all the programs in a given

programming language (e.g., safety or isolation properties)

� To understand language features (and their interactions) deeply and

develop principles for better language design

PL is the ”materials science” of computer science...

CIS 500, 9 September 4

'
&

$
%

What you can expect to get out of the course
� A more sophisticated perspective on programs, programming

languages, and the activity of programming

� How to view programs and whole languages as formal,

mathematical objects

� How to make and prove rigorous claims about them

� Detailed study of a range of basic language features

� Deep intuitions about key language properties such as type safety

� Powerful tools for language design, description, and analysis

N.b.: most software designers are language designers!

CIS 500, 9 September 5

'
&

$
%

What this course is not
� An introduction to programming (if this is what you want, you should

be in CIT 591 instead)

� A course on functional programming (though we’ll be doing some

functional programming along the way)

� A course on compilers (you should already have basic concepts such

as lexical analysis, parsing, abstract syntax, and scope under your belt)

� A survey of many different programming languages and styles

(boring!)

CIS 500, 9 September 6

'
&

$
%

Approaches

“Program meaning” can be approached in many different ways.

� Denotational semantics and domain theory view programs as simple

mathematical objects, abstracting away their flow of control and

concentrating on their input-output behavior.

� Program logics such as Hoare logic and dependent type theories

focus on developing logical rules for reasoning about programs.

� Operational semantics describes program behaviors by means of

abstract machines. This approach is somewhat lower-level than the

others, but is extremely flexible.

� Process calculi focus on the communication and synchronization

behaviors of complex concurrent systems.

� Type systems describe approximations of program behaviors,

concentrating on the shapes of the values passed between different

parts of the program.

CIS 500, 9 September 7

'
&

$
%

Overview

In this course, we will concentrate on operational techniques and type

systems.

� Part O: Background

� A taste of OCaml

� Functional programming style

� Part I: Basics

� Operational semantics

� Inductive proof techniques

� The lambda-calculus

� Evaluator implementation

� Syntactic sugar; fully abstract translations

CIS 500, 9 September 8

'
&

$
%

� Part II: Type systems

� Simple types
� Type safety

� References

� Subtyping

� Part III: Object-oriented features (case study)

� A simple imperative object model

� An analysis of core Java

If time permits at the end, we’ll go on to discuss parametric

polymorphism and the linguistic foundations of module systems.

CIS 500, 9 September 9

'
&

$
%

Administrative Stuff

CIS 500, 9 September 10

'
&

$
%

Personnel

Instructor: Benjamin Pierce

368 Moore

bcpierce@cis.upenn.edu

Office hours: Tue/Thu 1:30–3:00

Teaching Assistants: Anne Bracy

Jim Alexander

Administrative Assistant: Christine Metz, 556 Moore

CIS 500, 9 September 11

'
&

$
%

Information

Textbook: Types and Programming Languages,

Benjamin C. Pierce, MIT Press, 2002

Webpage: http://www.seas.upenn.edu/�cis500

Newsgroup: upenn.cis.cis500

CIS 500, 9 September 12

'
&

$
%

Numbers and enrollment...
� The course is seriously over-subscribed this year

� If you are currently enrolled but are actually planning on dropping the

course, please send me an email today so that someone else can

have your place

� If you are not currently registered and still want to be, send me an

email today saying so

(Even if you have already send me or Mike Felker a message

requesting enrollment, please send another)

CIS 500, 9 September 13

'
&

$
%

Exams

1. First mid-term: Monday, October 14, in class.

2. Second mid-term: Monday, November 18, in class.

3. Final: Friday, December 20, 11–1

Additional administrative information will be posted as necessary during

the semester. Keep an eye on the course web page and (especially) the

newsgroup.

CIS 500, 9 September 14

'
&

$
%

Grading

Final course grades will be computed as follows:

� Homework: 20%

� 2 midterms: 20% each

� Final: 40%

CIS 500, 9 September 15

'
&

$
%

Collaboration
� Collaboration on homework is encouraged

� Studying with other people is the best way to internalize the material

� Form study groups!

(3 or 4 people is a nice size)

“You never really misunderstand something

until you try to teach it...”

— Anon.

CIS 500, 9 September 16

'
&

$
%

Homework
� Work outside class will involve both assigned readings (mostly from

TAPL) and regular homework assignments (approximately one per

week)

� Complete understanding of the homework assignments is extremely

important to your mastery of the course material (and, hence, your

performance on the exams)

� Solutions to each assignment will be distributed together with the

assignment (or can be found in the back of the textbook)

� The grading scale for homework assignments is binary

� Late (non-)policy: Homework will not be accepted after the

announced deadline

CIS 500, 9 September 17

'
&

$
%

Recitations
� The recitation sections will generally be structured as problem-solving

sessions

� Everyone in the class should attend one of the five recitations

� Signup sheets for recitations will be passed around the room shortly

� Please sign the sheet only if you are currently registered for the

course (or if you are CIS MSE or PHD student for whom the course

is required)

� Normal meetings of recitation sections will start next Monday

CIS 500, 9 September 18

'
&

$
%

Special Recitations Tuesday
� Tomorrow’s recitations will be held at the scheduled times (4:30–6

and 6–7:30, both in Towne 307)

� Mechanics of OCaml programming and recursive decomposition will

be covered

� Everyone is welcome (but not required) to attend these two sessions

� If you are not already experienced with functional programming, you

are strongly urged to get started on the homework assignment

tonight to get a sense of whether you need to show up

� Make sure you come having at least read through the Hickey notes

and tried running a couple of OCaml programs on Gradient or Eniac

CIS 500, 9 September 19

'
&

$
%

The WPE-I
� PhD students in CIS must pass a five-section Written Preliminary

Exam (WPE-I)

Software Foundations is one of the five areas

� The final for this course is also the software foundations WPE-I exam

� Near the end of the semester, you will be given an opportunity to

declare your intention to take the final exam for WPE credit

CIS 500, 9 September 20

'
&

$
%

The WPE-I (continued)
� You do not need to be enrolled in the course to take the exam for

WPE credit

� If you are enrolled in the course and also take the exam for WPE

credit, you will receive two grades: a letter grade for the course final

and a Pass/Fail for the WPE

� You may take the exam for WPE credit even if you are not currently

enrolled in the PhD program. However, it will then count as one of

your two allowed “tries” to pass the exam in this area.

CIS 500, 9 September 21

'
&

$
%

The WPE-I syllabus
� Reading knowledge of core OCaml

� Chapters 1-11 and 13-19 of TAPL

CIS 500, 9 September 22

'
&

$
%

A Whirlwind Tour of OCaml

CIS 500, 9 September 23

'
&

$
%

OCaml and this course

The material in this course is mostly conceptual and mathematical.

However, experimenting with small implementations is an excellent way to

deepen intuitions about many of the concepts we will encounter. For this

purpose, we will use the OCaml language.

OCaml is a large and powerful language. For our present purposes,

though, we can concentrate just on the “core” of the language, ignoring

most of its features. In particular, we will not need modules or objects.

CIS 500, 9 September 24

'
&

$
%

Functional Programming

OCaml is a functional programming language — i.e., a language in which

the functional programming style is the dominant idiom. Other well-known

functional languages include Lisp, Scheme, Haskell, and Standard ML.

The functional style can be described as a combination of...

� persistent data structures (which, once built, are never changed)

� recursion as a primary control structure

� heavy use of higher-order functions (functions that take functions as

arguments and/or return functions as results)

Imperative languages, by contrast,

� mutable data structures

� looping rather than recursion

� first-order rather than higher-order programming (though many

object-oriented “design patterns” involve higher-order idioms—e.g.,

Subscribe/Notify, Visitor, etc.)

CIS 500, 9 September 25

'
&

$
%

Start Demo...
� Running OCaml

� The “top level”

� Editing programs with emacs (not required, but recommended)

CIS 500, 9 September 26

'
&

$
%

Computing with Expressions

OCaml is an expression language. A program is an expression. The

“meaning” of the program is the value of the expression.

16 + 18;;

- : int = 34

2*8 + 3*6;;

- : int = 34

CIS 500, 9 September 27

'
&

$
%

The top level

OCaml provides both an interactive top level and a compiler that

produces standard executable binaries. We’ll get to the compiler in a

week or two; for now, the top level provides a convenient way of

experimenting with small programs.

The mode of interacting with the top level is typing in a series of

expressions; OCaml evaluates them as they are typed and displays the

results (and their types). In the interaction above, lines beginning with #

are inputs and lines beginning with - are the system’s responses. Note

that inputs are always terminated by a double semicolon.

CIS 500, 9 September 28

'
&

$
%

Giving things names

The let construct gives a name to the result of an expression so that it

can be used later.

let inchesPerMile = 12*3*1760;;

val inchesPerMile : int = 63360

let x = 1000000 / inchesPerMile;;

val x : int = 15

CIS 500, 9 September 29

'
&

$
%

Functions

let cube (x:int) = x*x*x;;

val cube : int -> int = <fun>

cube 9;;

- : int = 729

We call x the parameter of the function cube; the expression x*x*x is its

body.

The expression cube 9 is an application of cube to the argument 9.

The type printed by OCaml, int->int (pronounced “int arrow int”)

indicates that cube is a function that should be applied to a single, integer

argument and whose result is an integer.

Note that OCaml responds to a function declaration by printing just <fun>

as the function’s “value.”

CIS 500, 9 September 30

'
&

$
%

Here is a function with two parameters:

let sumsq (x:int) (y:int) = x*x + y*y;;

val sumsq : int -> int -> int = <fun>

sumsq 3 4;;

- : int = 25

The type printed for sumsq is int->int->int, indicating that it should be

applied to two integer arguments and yields an integer as its result.

Note that the syntax for invoking function declarations in OCaml is

slightly different from languages in the C/C++/Java family: we write

cube 3 and sumsq 3 4 rather than cube(3) and sumsq(3,4).

CIS 500, 9 September 31

'
&

$
%

The type boolean

There are only two values of type boolean: true and false.

Comparison operations return boolean values.

1 = 2;;

- : bool = false

4 >= 3;;

- : bool = true

not is a unary operation on booleans.

not (5 <= 10);;

- : bool = false

not (2 = 2);;

- : bool = false

CIS 500, 9 September 32

'
&

$
%

Conditional expressions

The result of the conditional expression if B then E1 else E2 is either

the result of E1 or that of E2, depending on whether the result of B is

true or false.
if 3 < 4 then 7 else 100;;

- : int = 7

if 3 < 4 then (3 + 3) else (10 * 10);;

- : int = 6

if false then (3 + 3) else (10 * 10);;

- : int = 100

if false then false else true;;

- : bool = true

CIS 500, 9 September 33

'
&

$
%

Defining things inductively

In mathematics, we often define things inductively by giving a “base case”

and an “inductive case”. For example, the sum of all integers from 0 to

n or the product of all integers from 1 to n:

sum(0) = 0

sum(n) = n+ sum(n- 1) if n � 1

fact(1) = 1

fact(n) = n � fact(n- 1) if n � 2

It is customary to extend the factorial to all non-negative integers by

adopting the convention fact(0) = 1.

CIS 500, 9 September 34

'
&

$
%

Recursive functions

We can translate inductive definitions directly into recursive functions.
let rec sum(n:int) = if n = 0 then 0 else n + sum(n-1);;

val sum : int -> int = <fun>

sum(6);;

- : int = 21

let rec fact(n:int) = if n = 0 then 1 else n * fact(n-1);;

val fact : int -> int = <fun>

fact(6);;

- : int = 720

The rec after the let tells OCaml this is a recursive function — one that

needs to refer to itself in its own body.

CIS 500, 9 September 35

'
&

$
%

Making Change

Another example of recursion on integer arguments. Suppose you are a

bank and therefore have an “infinite” supply of money, and you have to

give a customer a certain sum. How many ways are there of doing this?

If you only have pennies, there is only one way: pay the whole sum in

pennies.

(* No. of ways of paying a in pennies *)

let rec changeP (a:int) = 1;;

That wasn’t too hard!

CIS 500, 9 September 36

'
&

$
%

Making Change – continued

Now suppose the bank has both nickels and pennies. If a is less than 5

then we can only pay with pennies. If not, we can do one of two things:

� Pay in pennies; we already know how to do this.

� Pay with at least one nickel. The number of ways of doing this is the

number of ways of making change (with nickels and pennies) for a-5.

(* No. of ways of paying in pennies and nickels *)

let rec changePN (a:int) =

if a < 5 then changeP a

else changeP a + changePN (a-5);;

CIS 500, 9 September 37

'
&

$
%

Making Change – continued

Continuing the idea for dimes and quarters:

(* ... pennies, nickels, dimes *)

let rec changePND (a:int) =

if a < 10 then changePN a

else changePN a + changePND (a-10);;

(* ... pennies, nickels, dimes, quarters *)

let rec changePNDQ (a:int) =

if a < 25 then changePND a

else changePND a + changePNDQ (a-25);;

CIS 500, 9 September 38

'
&

$
%

Finally:

(* Pennies, nickels, dimes, quarters, dollars *)

let rec changePNDQS (a:int) =

if a < 100 then changePNDQ a

else changePNDQ a + changePNDQS (a-100);;

Some tests:

changePNDQS 5;;

- : int = 2

changePNDQS 9;;

- : int = 2

changePNDQS 10;;

- : int = 4

CIS 500, 9 September 39

'
&

$
%

changePNDQS 29;;

- : int = 13

changePNDQS 30;;

- : int = 18

changePNDQS 100;;

- : int = 243

changePNDQS 499;;

- : int = 33995

CIS 500, 9 September 40

'
&

$
%

Lists

One handy structure for storing a collection of data values is a list. Lists

are provided as a built-in type in OCaml and a number of other popular

languages (e.g., Lisp, Scheme, and Prolog—but not, unfortunately, Java).

We can build a list in OCaml by writing out its elements, enclosed in

square brackets and separated by semicolons.

[1; 3; 2; 5];;

- : int list = [1; 3; 2; 5]

The type that OCaml prints for this list is pronounced either “integer list”

or “list of integers”.

The empty list, written [], is sometimes called “nil.”

CIS 500, 9 September 41

'
&

$
%

The types of lists

We can build lists whose elements are drawn from any of the basic types

(int, bool, etc.).

["cat"; "dog"; "gnu"];;

- : string list = ["cat"; "dog"; "gnu"]

[true; true; false];;

- : bool list = [true; true; false]

We can also build lists of lists:

[[1; 2]; [2; 3; 4]; [5]];;

- : int list list = [[1; 2]; [2; 3; 4]; [5]]

In fact, for every type t, we can build lists of type t list.

CIS 500, 9 September 42

'
&

$
%

Lists are homogeneous

OCaml does not allow different types of elements to be mixed within the

same list:
[1; 2; "dog"];;

Characters 7-13:

This expression has type string list but is here used

with type int list

CIS 500, 9 September 43

'
&

$
%

Constructing Lists

OCaml provides a number of built-in operations that return lists. The

most basic one creates a new list by adding an element to the front of

an existing list. It is written :: and pronounced “cons” (because it

constructs lists).

1 :: [2; 3];;

- : int list = [1; 2; 3]

let add123 (l: int list) = 1 :: 2 :: 3 :: l;;

val add123 : int list -> int list = <fun>

add123 [5; 6; 7];;

- : int list = [1; 2; 3; 5; 6; 7]

add123 [];;

- : int list = [1; 2; 3]

CIS 500, 9 September 44

'
&

$
%

Some recursive functions that generate lists
let rec repeat (k:int) (n:int) = (* A list of n copies of k *)

if n = 0 then []

else k :: repeat k (n-1);;

repeat 7 12;;

- : int list = [7; 7; 7; 7; 7; 7; 7; 7; 7; 7; 7; 7]

let rec fromTo (m:int) (n:int) = (* The numbers from m to n *)

if n < m then []

else m :: fromTo (m+1) n;;

fromTo 9 18;;

- : int list = [9; 10; 11; 12; 13; 14; 15; 16; 17; 18]

CIS 500, 9 September 45

'
&

$
%

Constructing Lists

Any list can be built by “consing” its elements together:

-# 1 :: 2 :: 3 :: 2 :: 1 :: [] ;;;

- : int list = [1; 2; 3; 2; 1]

In fact,

[x1; x2; : : : ; xn]

is simply a shorthand for

x1 :: x2 :: : : : :: xn :: []

Note that, when we omit parentheses from an expression involving

several uses of ::, we associate to the right—i.e., 1::2::3::[] means the

same thing as 1::(2::(3::[])). By contrast, arithmetic operators like +

and - associate to the left: 1-2-3-4 means ((1-2)-3)-4.

CIS 500, 9 September 46

'
&

$
%

Taking Lists Apart

OCaml provides two basic operations for extracting the parts of a list.

� List.hd (pronounced “head”) returns the first element of a list.

List.hd [1; 2; 3];;

- : int = 1

� List.tl (pronounced “tail”) returns everything but the first element.
List.tl [1; 2; 3];;

- : int list = [2; 3]

CIS 500, 9 September 47

'
&

$
%

List.tl (List.tl [1; 2; 3]);;

- : int list = [3]

List.tl (List.tl (List.tl [1; 2; 3]));;

- : int list = []

List.hd (List.tl (List.tl [1; 2; 3]));;

- : int = 3

List.hd [[5; 4]; [3; 2]];;

- : int list = [5; 4]

List.hd (List.hd [[5; 4]; [3; 2]]);;

- : int = 5

List.tl (List.hd [[5; 4]; [3; 2]]);;

- : int list = [4]

CIS 500, 9 September 48

'
&

$
%

Modules – a brief digression

Like most programming languages, OCaml includes a mechanism for

grouping collections of definitions into modules.

For example, the built-in module List provides the List.hd and List.tl

functions (and many others). That is, the name List.hd really means

“the function hd from the module List.”

CIS 500, 9 September 49

'
&

$
%

Recursion on lists

Lots of useful functions on lists can be written using recursion. Here’s

one that sums the elements of a list of numbers:

let rec listSum (l:int list) =

if l = [] then 0

else List.hd l + listSum (List.tl l);;

listSum [5; 4; 3; 2; 1];;

- : int = 15

CIS 500, 9 September 50

'
&

$
%

Consing on the right

let rec snoc (l: int list) (x: int) =

if l = [] then x::[]

else List.hd l :: snoc(List.tl l) x;;

val snoc : int list -> int -> int list = <fun>

snoc [5; 4; 3; 2] 1;;

- : int list = [5; 4; 3; 2; 1]

CIS 500, 9 September 51

'
&

$
%

Reversing a list

We can use snoc to reverse a list:

let rec rev (l: int list) = (* Reverses l -- inefficiently *)

if l = [] then []

else snoc (rev (List.tl l)) (List.hd l);;

val rev : int list -> int list = <fun>

rev [1; 2; 3; 3; 4];;

- : int list = [4; 3; 3; 2; 1]

Why is this inefficient? How can we do better?

CIS 500, 9 September 52

'
&

$
%

A better rev

(* Adds the elements of l to res in reverse order *)

let rec revaux (l: int list) (res: int list) =

if l = [] then res

else revaux (List.tl l) (List.hd l :: res);;

val revaux : int list -> int list -> int list = <fun>

revaux [1; 2; 3] [4; 5; 6];;

- : int list = [3; 2; 1; 4; 5; 6]

let rev (l: int list) = revaux l [];;

val rev : int list -> int list = <fun>

CIS 500, 9 September 53

'
&

$
%

Tail recursion

The revaux function

let rec revaux (l: int list) (res: int list) =

if l = [] then res

else revaux (List.tl l) (List.hd l :: res);;

has an interesting property: the result of the recursive call to revaux is

also the result of the whole function. I.e., the recursive call is the last

thing on its “control path” through the body of the function. (And the

other possible control path does not involve a recursive call.)

Such functions are said to be tail recursive.

CIS 500, 9 September 54

'
&

$
%

It is usually fairly easy to rewrite a given function in a tail-recursive style.

For example, the usual factorial function is not tail recursive (because

one multiplication remains to be done after the recursive call returns):

let rec fact (n:int) =

if n = 0 then 1

else n * fact(n-1);;

We can transform it into a tail-recursive version by performing the

multiplication before the recursive call and passing along a separate

argument in which these multiplications “accumulate”:

let rec factaux (acc:int) (n:int) =

if n = 0 then acc

else factaux (acc*n) (n-1);;

let fact (n:int) = factaux 1 n;;
CIS 500, 9 September 55

