
'
&

$
%

CIS 500

Software Foundations

Fall 2002

16 September

CIS 500, 16 September 1

'
&

$
%

Administrivia
� Recitations begin (in fact, have already begun!) this week.

� Section E (Tue 3:00 – 4:30) will meet in the IRCS “back conference

room,” room 413 in the 3401 Walnut building (above Starbucks).

Check the course web page for detailed directions.

� If you are not sure which recitation you are in, email bracy@gradient.

CIS 500, 16 September 2

'
&

$
%

Plan for this week

We’ve seen enough of OCaml for now. (If time permits, we’ll come back

later to some more advanced programming idioms later in the course.)

Time to get started with the book.

General plan:

� discuss material in class [This week: induction, basic operational

semantics]

� read in book [Chapters 3 and 4]

� homework assignment [covering chapters 3 and 4; handed out Thu,

due next Thu]

� discuss in recitation

� finish off homework assignment

CIS 500, 16 September 3

'
&

$
%

Reading Assignment

ASAP: Read Preface and Chapter 1 and skim Chapter 2 of TAPL on your

own.

By Thursday or Friday: Read Chapters 3 and 4.

CIS 500, 16 September 4

'
&

$
%

Review

CIS 500, 16 September 5

'
&

$
%

Induction

Principle of ordinary induction on natural numbers

Suppose that P is a predicate on the natural numbers. Then:

If P(0)

and, for all i, P(i) implies P(i+ 1),

then P(n) holds for all n.

CIS 500, 16 September 6

'
&

$
%

Example

Theorem: 20 + 21 + ::: + 2n = 2n+1 - 1, for every n.

Proof:

� Let P(i) be “20 + 21 + ::: + 2i = 2i+1 - 1.”

� Show P(0):

2
0

= 1 = 2
1

- 1

� Show that P(i) implies P(i+ 1):

20 + 21 + :::+ 2i+1 = (20 + 21 + :::+ 2i) + 2i+1

= (2i+1 - 1) + 2i+1 IH

= 2 � (2i+1) - 1

= 2i+2 - 1

� The result (P(n) for all n) follows by the principle of induction.

CIS 500, 16 September 7

'
&

$
%

Shorthand form

Theorem: 20 + 21 + ::: + 2n = 2n+1 - 1, for every n.

Proof: By induction on n.

� Base case (n = 0):

2
0

= 1 = 2
1

- 1

� Inductive case (n = i+ 1):

20 + 21 + :::+ 2i+1 = (20 + 21 + :::+ 2i) + 2i+1

= (2i+1 - 1) + 2i+1 IH
= 2 � (2i+1) - 1

= 2i+2 - 1

CIS 500, 16 September 8

'
&

$
%

Complete Induction

Principle of complete induction on natural numbers

Suppose that P is a predicate on the natural numbers. Then:
If, for each natural number n,

given P(i) for all i < n

we can show P(n),

then P(n) holds for all n.

CIS 500, 16 September 9

'
&

$
%

Ordinary and complete induction are interderivable — assuming one, we

can prove the other.

Thus, the choice of which to use for a particular proof is purely a

question of style.

We’ll see some other (equivalent) styles as we go along.

CIS 500, 16 September 10

'
&

$
%

Syntax

CIS 500, 16 September 11

'
&

$
%

Simple Arithmetic Expressions

Here is a BNF grammar for a very simple language of arithmetic

expressions:

t ::= terms:

true constant true

false constant false

if t then t else t conditional

0 constant zero

succ t successor

pred t predecessor

iszero t zero test

Terminology:

� t here is a metavariable

CIS 500, 16 September 12

'
&

$
%

Abstract vs. concrete syntax

Q1: Does this grammar define a set of character strings, a set of token

lists, or a set of abstract syntax trees?

CIS 500, 16 September 13

'
&

$
%

Abstract vs. concrete syntax

Q1: Does this grammar define a set of character strings, a set of token

lists, or a set of abstract syntax trees?

A: In a sense, all three. But we are primarily interested, here, in abstract

syntax trees.

For this reason, grammars like the one on the previous slide are

sometimes called abstract grammars. An abstract grammar defines a set

of abstract syntax trees and suggests a mapping from character strings

to trees.

We then write terms as character strings rather than trees simply for

convenience. If there is any potential confusion about what tree is

intended, we use parens to disambiguate.

CIS 500, 16 September 13-a

'
&

$
%

Q: So, are

succ 0

succ (0)

(((succ (((((0))))))))

“the same term”?

What about

succ 0

pred (succ (succ 0))

?

CIS 500, 16 September 14

'
&

$
%

A more explicit form of the definition

The set of terms is the smallest set T such that

1. ftrue; false; 0g � T ;

2. if t1 2 T , then fsucc t1; pred t1; iszero t1g � T ;

3. if t1 2 T , t2 2 T , and t3 2 T , then if t1 then t2 else t3 2 T .

CIS 500, 16 September 15

'
&

$
%

Inference rules

An alternate notation for the same definition:

true 2 T false 2 T 0 2 T

t1 2 T

succ t1 2 T

t1 2 T

pred t1 2 T

t1 2 T

iszero t1 2 T

t1 2 T t2 2 T t3 2 T

if t1 then t2 else t3 2 T

Note that “the smallest set closed under...” is implied (but often not stated

explicitly).

Terminology:

� axiom vs. rule

� concrete rule vs. rule scheme

CIS 500, 16 September 16

'
&

$
%

Terms, concretely

For each natural number i, define a set Si as follows:
S0 = ;

Si+1 = ftrue; false; 0g

[fsucc t1; pred t1; iszero t1 j t1 2 Sig

[fif t1 then t2 else t3 j t1; t2; t3 2 Sig

Now let
S =

[
i

Si

CIS 500, 16 September 17

'
&

$
%

Equivalence of the definitions

We have seen two basic presentations of terms:

1. inductively (T) as the smallest set closed under certain rules

� explicit inductive definition

� BNF shorthand

� inference rule shorthand

2. concretely (S) as the limit of a series of sets (of larger and larger

terms)

Are these presentations equivalent? I.e., do we have T = S?

CIS 500, 16 September 18

'
&

$
%

Inductive Function Definitions

The set of constants appearing in a term t, written Consts(t), is defined

as follows:

Consts(true) = ftrueg

Consts(false) = ffalseg

Consts(0) = f0g

Consts(succ t1) = Consts(t1)

Consts(pred t1) = Consts(t1)

Consts(iszero t1) = Consts(t1)

Consts(if t1 then t2 else t3) = Consts(t1) [Consts(t2) [Consts(t3)

Simple, right?

CIS 500, 16 September 19

'
&

$
%

First question: In what sense is this a “definition”?

(Normally, a “definition” just assigns a convenient name to a

previously-known thing. But here, the “thing” on the right-hand side

involves the very name that we are “defining”!)

CIS 500, 16 September 20

'
&

$
%

Second question: Suppose we had written this instead...

The set of constants appearing in a term t, written BadConsts(t), is

defined as follows:

BadConsts(true) = ftrueg

BadConsts(false) = ffalseg

BadConsts(0) = f0g

BadConsts(0) = fg

BadConsts(succ t1) = BadConsts(t1)

BadConsts(pred t1) = BadConsts(t1)

BadConsts(iszero t1) = BadConsts(iszero (iszero t1))

CIS 500, 16 September 21

'
&

$
%

What is the essential difference between these two definitions? How do

we tell the difference between well-formed inductive definitions and

ill-formed ones?

What, exactly, does a well-formed inductive definition mean?

CIS 500, 16 September 22

'
&

$
%

First, recall that a function is just a two-place relation with certain

properties:
� It is total: every element of its domain occurs at least once in its

“graph”

� It is deterministic: every element of its domain occurs at mostd once

in its graph.

CIS 500, 16 September 23

'
&

$
%

We have seen how to define relations inductively. E.g....

Let Consts be the smallest two-place relation closed under the following

rules:

(true; ftrueg) 2 Consts

(false; ffalseg) 2 Consts

(0; f0g) 2 Consts

(t1; C) 2 Consts
(succ t1; C) 2 Consts

(t1; C) 2 Consts

(pred t1; C) 2 Consts

(t1; C) 2 Consts

(iszero t1; C) 2 Consts

(t1; C1) 2 Consts (t2; C2) 2 Consts (t3; C3) 2 Consts

(if t1 then t2 else t3; (Consts(t1) [Consts(t2) [Consts(t3))) 2 Consts

CIS 500, 16 September 24

'
&

$
%

This definition certainly defines a relation (i.e., the smallest one with a

certain property). How can we tell that this relation is a function?

CIS 500, 16 September 25

'
&

$
%

This definition certainly defines a relation (i.e., the smallest one with a

certain property). How can we tell that this relation is a function?

Prove it!

CIS 500, 16 September 25-a

'
&

$
%

Theorem: The relation Consts defined by the inference rules a couple of

slides ago is total and deterministic.

Proof: (Exercise.)

CIS 500, 16 September 26

'
&

$
%

How about the bad definition?

(true; ftrueg) 2 BadConsts

(false; ffalseg) 2 BadConsts

(0; f0g) 2 BadConsts

(0; fg) 2 BadConsts

(t1; C) 2 BadConsts
(succ t1; C) 2 BadConsts

(t1; C) 2 BadConsts

(pred t1; C) 2 BadConsts

(iszero (iszero t1); C) 2 BadConsts

(iszero t1; C) 2 BadConsts

CIS 500, 16 September 27

'
&

$
%

Now, this set of rules does define a perfectly good relation — it’s just that

this relation does not happen to be a function!

Just for fun, let’s calculate some cases of this relation...

� For what values of C do we have (false; C) 2 Consts?

� For what values of C do we have (succ 0; C) 2 Consts?

� For what values of C do we have

(if false then 0 else 0; C) 2 Consts?

� For what values of C do we have (iszero 0; C) 2 Consts?

CIS 500, 16 September 28

'
&

$
%

Operational Semantics

CIS 500, 16 September 29

'
&

$
%

[Informal definition and examples; intuition of abstract
machines]

CIS 500, 16 September 30

'
&

$
%

[values]

CIS 500, 16 September 31

'
&

$
%

[concrete definitions for booleans]

CIS 500, 16 September 32

'
&

$
%

[Proof trees

Inference rules as an inductive definition of valid proof
trees (vs. as a definition of a relation)]

CIS 500, 16 September 33

'
&

$
%

[Normal forms.

Theorem: normal forms = values.]

CIS 500, 16 September 34

'
&

$
%

[Multi-step evaluation.]

CIS 500, 16 September 35

