
'
&

$
%

CIS 500

Software Foundations

Fall 2002

18 September

CIS 500, 18 September 1

'
&

$
%

Administrivia
� Last week’s homework assignment is back in Christine’s office if you

want yours back. (But we didn’t make any interesting marks on

them.)

� We’re going to try an electronic submission procedure for this week’s

homework assignment. Details will be given in the assignment.

� Make sure to answer the “debriefing” question!

CIS 500, 18 September 2

'
&

$
%

Review (and a few more details)

CIS 500, 18 September 3

'
&

$
%

Simple Arithmetic Expressions

The set T of terms is defined by the following abstract grammar:

t ::= terms:

true constant true

false constant false

if t then t else t conditional

0 constant zero

succ t successor

pred t predecessor

iszero t zero test

CIS 500, 18 September 4

'
&

$
%

Inference Rule Notation

The set T is the smallest set closed under the following rules.

true 2 T false 2 T 0 2 T

t1 2 T

succ t1 2 T

t1 2 T

pred t1 2 T

t1 2 T

iszero t1 2 T

t1 2 T t2 2 T t3 2 T

if t1 then t2 else t3 2 T

Each of these rules can be thought of as a generating function that,

given some elements from T , generates some new element of T . Saying

that T is closed under these rules means that T cannot be made any

bigger using these generating functions — it already contains everything

“justified” by its members.

CIS 500, 18 September 5

'
&

$
%

Let’s write these generating functions explicitly.

F1(U) = ftrueg

F2(U) = ffalseg

F3(U) = f0g

F4(U) = fsucc t1 j t1 2 Ug

F5(U) = fpred t1 j t1 2 Ug

F6(U) = fiszero t1 j t1 2 Ug

F7(U) = fif t1 then t2 else t3 j t1; t2; t3 2 Ug

Each one takes a set of terms U as input and produces a set of “terms

justified by U” as output.

CIS 500, 18 September 6

'
&

$
%

If we now define
F(U) = F1(U) [F2(U) [F3(U) [F4(U) [F5(U) [F6(U) [F7(U)

then we can restate the previous definition of the set of terms T like

this...

Definition:

� A set U is said to be “closed under F” (or “F-closed”) if F(U) � U.

� The set of terms T is the smallest F-closed set.

CIS 500, 18 September 7

'
&

$
%

The concrete definition

Our other definition of the set of terms can also be stated using the

generating function F:

S0 = ;

Si+1 = F(Si)

S =

S
i
Si

CIS 500, 18 September 8

'
&

$
%

Compare this definition of S with the one we saw last time:

S0 = ;

Si+1 = ftrue; false; 0g

[fsucc t1; pred t1; iszero t1 j t1 2 Sig

[fif t1 then t2 else t3 j t1; t2; t3 2 Sig

S =

[
i

Si

The only difference is that we have “pulled out” F and given it a name.

CIS 500, 18 September 9

'
&

$
%

Note that our two definitions of terms characterize the same set T from

different directions:
� “from above,” as the intersection of all F-closed sets;

� “from below,” as the limit (union) of a series of sets that start from ;

and get “closer and closer to being F-closed.”

Proposition 3.2.6 in the book (which we also stated in the last lecture,

but did not prove) asserts that these two definitions actually define the

same set.

CIS 500, 18 September 10

'
&

$
%

An Inductive Function Definition

Consts(true) = ftrueg

Consts(false) = ffalseg

Consts(0) = f0g

Consts(succ t1) = Consts(t1)

Consts(pred t1) = Consts(t1)

Consts(iszero t1) = Consts(t1)

Consts(if t1 then t2 else t3) = Consts(t1) [Consts(t2) [Consts(t3)

CIS 500, 18 September 11

'
&

$
%

Another Inductive Definition

size(true) = 1

size(false) = 1

size(0) = 1

size(succ t1) = size(t1) + 1

size(pred t1) = size(t1) + 1

size(iszero t1) = size(t1) + 1

size(if t1 then t2 else t3) = size(t1) + size(t2) + size(t3) + 1

CIS 500, 18 September 12

'
&

$
%

Proofs by Induction on Terms

Definition: The depth of a term t is the smallest i such that t 2 Si.

From the definition of S, it is clear that, if a term t is in Si, then all of

its immediate subterms must be in Si-1, i.e., they must have strictly

smaller depths.

This observation justifies a very common pattern of proofs “by induction

on terms.”

CIS 500, 18 September 13

'
&

$
%

Theorem: The number of distinct constants in a term is at most the size

of the term. I.e., jConsts(t)j � size(t).

Proof:

CIS 500, 18 September 14

'
&

$
%

Theorem: The number of distinct constants in a term is at most the size

of the term. I.e., jConsts(t)j � size(t).

Proof: By induction on the depth of t.

CIS 500, 18 September 14-a

'
&

$
%

Theorem: The number of distinct constants in a term is at most the size

of the term. I.e., jConsts(t)j � size(t).

Proof: By induction on the depth of t.

Assuming the desired property for all terms of smaller depth than t (i.e.,

for all depths smaller than the depth of t), we must prove it for t itself.

CIS 500, 18 September 14-b

'
&

$
%

Theorem: The number of distinct constants in a term is at most the size

of the term. I.e., jConsts(t)j � size(t).

Proof: By induction on the depth of t.

Assuming the desired property for all terms of smaller depth than t (i.e.,

for all depths smaller than the depth of t), we must prove it for t itself.

There are three cases to consider:

Case: t is a constant

Immediate: jConsts(t)j = jftgj = 1 = size(t).

CIS 500, 18 September 14-c

'
&

$
%

Theorem: The number of distinct constants in a term is at most the size

of the term. I.e., jConsts(t)j � size(t).

Proof: By induction on the depth of t.

Assuming the desired property for all terms of smaller depth than t (i.e.,

for all depths smaller than the depth of t), we must prove it for t itself.

There are three cases to consider:

Case: t is a constant

Immediate: jConsts(t)j = jftgj = 1 = size(t).

Case: t = succ t1, pred t1, or iszero t1

By the induction hypothesis, jConsts(t1)j � size(t1). We now calculate as

follows: jConsts(t)j = jConsts(t1)j � size(t1) < size(t).

CIS 500, 18 September 14-d

'
&

$
%

Case: t = if t1 then t2 else t3

By the induction hypothesis [why does it apply??], jConsts(t1)j � size(t1),

jConsts(t2)j � size(t2), and jConsts(t3)j � size(t3). We now calculate as

follows:

jConsts(t)j = jConsts(t1) [Consts(t2) [Consts(t3)j

� jConsts(t1)j + jConsts(t2)j + jConsts(t3)j

� size(t1) + size(t2) + size(t3)

< size(t):

CIS 500, 18 September 15

'
&

$
%

Structural Induction

The general principal underlying this proof is:

If, for each term s,

given P(r) for all immediate subterms r of s

we can show P(s),

then P(t) holds for all t.

Proofs based on this induction principle generally begin “By induction on

the structure of t,” or just “By induction on t.”

CIS 500, 18 September 16

'
&

$
%

Operational Semantics

CIS 500, 18 September 17

'
&

$
%

Abstract Machines

An abstract machine consists of:

� a set of states

� a transition relation on states, written �!

A state records all the information in the machine at a given moment.

For example, an abstract-machine-style description of a conventional

microprocessor would include the program counter, the contents of the

registers, the contents of main memory, and the machine code program

being executed.

For the very simple languages we are considering at the moment,

however, the term being evaluated is the whole state of the abstract

machine.

Nb. Often, the transition relation is actually a partial function: i.e., from a

given state, there is at most one possible next state. But in general there

may be many.

CIS 500, 18 September 18

'
&

$
%

Operational semantics for Booleans

Syntax of terms and values

t ::= terms:
true constant true

false constant false

if t then t else t conditional

v ::= values:

true true value

false false value

CIS 500, 18 September 19

'
&

$
%

The evaluation relation t �! t 0 is the smallest relation closed under the

following rules:

if true then t2 else t3 �! t2 (E-IFTRUE)

if false then t2 else t3 �! t3 (E-IFFALSE)

t1 �! t 01

if t1 then t2 else t3 �! if t 01 then t2 else t3

(E-IF)

CIS 500, 18 September 20

'
&

$
%

Terminology

Computation rules:

if true then t2 else t3 �! t2 (E-IFTRUE)

if false then t2 else t3 �! t3 (E-IFFALSE)

Congruence rule:

t1 �! t 01

if t1 then t2 else t3 �! if t 01 then t2 else t3

(E-IF)

Computation rules perform “real” computation steps.

Congruence rules determine where computation rules can be applied

next.

CIS 500, 18 September 21

'
&

$
%

Digression

Suppose we wanted to change our evaluation strategy so that the then

and else branches of an if get evaluated (in that order) before the

guard. How would we need to change the rules?

CIS 500, 18 September 22

'
&

$
%

Digression

Suppose we wanted to change our evaluation strategy so that the then

and else branches of an if get evaluated (in that order) before the

guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else branches

leads to the same value, we want to immediately produce that value

(“short-circuiting” the evaluation of the guard). How would we need to

change the rules?

CIS 500, 18 September 22-a

'
&

$
%

Digression

Suppose we wanted to change our evaluation strategy so that the then

and else branches of an if get evaluated (in that order) before the

guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else branches

leads to the same value, we want to immediately produce that value

(“short-circuiting” the evaluation of the guard). How would we need to

change the rules?

Of the rules we just invented, which are computation rules and which are

congruence rules?

CIS 500, 18 September 22-b

'
&

$
%

Evaluation, more explicitly
�! is the smallest two-place relation closed under the following rules:

((if true then t2 else t3); t2) 2 �!

((if false then t2 else t3); t3) 2 �!

(t1; t
0

1) 2 �!

((if t1 then t2 else t3); (if t 01 then t2 else t3)) 2 �!

CIS 500, 18 September 23

'
&

$
%

Even more explicitly...

What is the generating function corresponding to these rules?

CIS 500, 18 September 24

'
&

$
%

Even more explicitly...

What is the generating function corresponding to these rules?

[on the board...]

CIS 500, 18 September 24-a

'
&

$
%

Even more explicitly...

What is the generating function corresponding to these rules?

[on the board...]

Now we can write out a concrete version of the definition of �!...

[on the board...]

CIS 500, 18 September 24-b

'
&

$
%

Observations

As we did for terms, we can define the depth of a pair (t; t 0) 2�! as

the smallest i such that (t; t 0) 2�!i.

Moreover, this formulation of the definition of evaluation immediately

implies the following:

Lemma: If (t; t 0) 2�!i, then either

1. t = if true then t2 else t3 and t 0 = t2, for some t2 and t3, or

2. t = if false then t2 else t3 and t 0 = t3, for some t2 and t3, or

3. t = if t1 then t2 else t3 and t 0 = if t 01 then t2 else t3, for some

t1, t
0

1, t2, and t3 such that (t1; t
0

1) is in �!j for some j < i.

Together, these observations imply...

CIS 500, 18 September 25

'
&

$
%

Induction on Evaluation

We can reason “by induction on evaluation” just as we did earlier on

terms. For example...

Theorem: If t �! t 0 — i.e., if (t; t 0) 2�! — then size(t) > size(t 0).

Proof: [...]

CIS 500, 18 September 26

'
&

$
%

Aside

Q: Why are we bothering to prove all these completely obvious facts

about terms and evaluation?

CIS 500, 18 September 27

'
&

$
%

Aside

Q: Why are we bothering to prove all these completely obvious facts

about terms and evaluation?

A: Suppose you told one of these facts to someone and they replied, “I

don’t believe it!” How would you convince them, aside from just saying,

“Well, look at it again... isn’t it obvious?”

I.e., we’re trying to draw out why it is obvious.

CIS 500, 18 September 27-a

'
&

$
%

Derivations

We can record the “justification” for a particular pair of terms that are in

the evaluation relation in the form of a tree.

[on the board]

Terminology:

� These trees are called derivation trees (or just derivations)

� The final statement in a derivation is its conclusion

� We say that the derivation is a witness for the conclusion (or a proof

of the conclusion) — it records all the reasoning steps that justify the

conclusion.

CIS 500, 18 September 28

'
&

$
%

Observation

Lemma: Suppose we are given a derivation tree D witnessing the

presence of the pair (t; t 0) in the evaluation relation. Then either

1. the final rule used in D is E-IFTRUE and we have

t = if true then t2 else t3 and t 0 = t2, for some t2 and t3, or

2. the final rule used in D is E-IFFALSE and we have

t = if false then t2 else t3 and t 0 = t3, for some t2 and t3, or

3. the final rule used in D is E-IF and we have

t = if t1 then t2 else t3 and t 0 = if t 01 then t2 else t3, for some

t1, t
0

1, t2, and t3; moreover, the immediate subderivation of D

witnesses (t1; t
0

1) 2�!.

CIS 500, 18 September 29

'
&

$
%

Induction on Derivations

Combining the previous ideas, we can write proofs about evaluation “By

induction on derivation trees.” E.g....

Theorem: If t �! t 0 — i.e., if (t; t 0) 2�! — then size(t) > size(t 0).

Proof: By induction on a derivation of t �! t 0.

For step of the induction, we assume the desired result for all smaller

derivations and proceed by a case analysis of the evaluation rule used at

the root of the derivation tree.

[...]

CIS 500, 18 September 30

'
&

$
%

Numbers

New syntactic forms

t ::= ... terms:
0 constant zero

succ t successor

pred t predecessor

iszero t zero test

v ::= ... values:

nv numeric value

nv ::= numeric values:

0 zero value

succ nv successor value

CIS 500, 18 September 31

'
&

$
%

New evaluation rules t �! t 0

t1 �! t 01

succ t1 �! succ t 01

(E-SUCC)

pred 0 �! 0 (E-PREDZERO)

pred (succ nv1) �! nv1 (E-PREDSUCC)

t1 �! t 01

pred t1 �! pred t 01

(E-PRED)
iszero 0 �! true (E-ISZEROZERO)

iszero (succ nv1) �! false (E-ISZEROSUCC)

t1 �! t 01

iszero t1 �! iszero t 01

(E-ISZERO)

CIS 500, 18 September 32

'
&

$
%

Aside

Q: Could we give the previous definition without bothering to introduce a

separate category of numeric values?

CIS 500, 18 September 33

'
&

$
%

Normal Forms

A normal form is a term t that does not evaluate to anything — i.e.,

such that there are no pairs of the form (t; t 0) in �! for any t 0.

CIS 500, 18 September 34

'
&

$
%

Normal Forms

A normal form is a term t that does not evaluate to anything — i.e.,

such that there are no pairs of the form (t; t 0) in �! for any t 0.

Theorem: Every value v is a normal form.

Proof: [...]

CIS 500, 18 September 34-a

'
&

$
%

Normal Forms

A normal form is a term t that does not evaluate to anything — i.e.,

such that there are no pairs of the form (t; t 0) in �! for any t 0.

Theorem: Every value v is a normal form.

Proof: [...]

N.b.: When t is a normal form, we also say that t is “in normal form.”

CIS 500, 18 September 34-b

'
&

$
%

Stuck terms

Is the converse true?

CIS 500, 18 September 35

'
&

$
%

Stuck terms

Is the converse true?

No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.

Stuck terms model run-time errors.

CIS 500, 18 September 35-a

'
&

$
%

Multi-step evaluation.

The multi-step evaluation relation, written �!
�

, is the reflexive, transitive

closure of one-step evaluation.

That is, it is the smallest relation such that

1. if t �! t 0 then t �!
�

t 0,

2. t �!
�

t for all t, and

3. if t �!
�

t 0 and t 0 �!
�

t 00, then t �!
�

t 00.

CIS 500, 18 September 36

'
&

$
%

Termination of evaluation

Theorem: For every t there is some t 0 such that t �!
�

t 0.

Proof:

CIS 500, 18 September 37

'
&

$
%

Termination of evaluation

Theorem: For every t there is some t 0 such that t �!
�

t 0.

Proof: By induction on the number of steps in the derivation of

t �!
�

t 0....

CIS 500, 18 September 37-a

'
&

$
%

More examples (time permitting)
� Nondeterministic choice (which properties are preserved when we

add it?)

� A one-element memory

� A looping construct

CIS 500, 18 September 38

