
'

&

$

%

CIS 500

Software Foundations

Fall 2002

23 September

CIS 500, 23 September 1

'

&

$

%

Administrivia

� Midterm 2 has been moved to Nov 13 (instead of Nov 18).

� The final will almost certainly remain on the announced date (Dec
20); the CIS 501 final may be moved

� Max Kanovich is out of town this week
� Participants in recitation section D (Monday 3:00–4:30, Towne 307)

should attend Section C (Monday 3:00–4:30, Moore 222) instead

� Participants in section G (Tuesday 6:00–7:30) may attend any

other section

� Max’s office hours are also cancelled; check the course web site

for office hours of other course personnel

CIS 500, 23 September 2

'

&

$

%

Operational Semantics

(review and a bit more)

CIS 500, 23 September 3

'

&

$

%

Booleans

Syntax of terms and values

t ::= terms:

true constant true

false constant false

if t then t else t conditional

v ::= values:

true true value

false false value

CIS 500, 23 September 4

'

&

$

%

Evaluation rules

The single-step evaluation relation t −→ t ′ is the smallest relation closed

under the following rules:

if true then t2 else t3 −→ t2 (E-IFTRUE)

if false then t2 else t3 −→ t3 (E-IFFALSE)

t1 −→ t ′
1

if t1 then t2 else t3 −→ if t ′
1 then t2 else t3

(E-IF)

CIS 500, 23 September 5

'

&

$

%

Derivations

We can record the “justification” for a particular pair of terms that are in

the evaluation relation in the form of a tree.

(on the board)

Terminology:

� These trees are called derivation trees (or just derivations)

� The final statement in a derivation is its conclusion

� We say that the derivation is a witness for its conclusion (or a proof
of its conclusion) — it records all the reasoning steps that justify the

conclusion.

CIS 500, 23 September 6

'

&

$

%

Observation

Lemma: Suppose we are given a derivation tree D witnessing the pair

(t, t ′) in the evaluation relation. Then either

1. the final rule used in D is E-IFTRUE and we have

t = if true then t2 else t3 and t ′ = t2 , for some t2 and t3 , or

2. the final rule used in D is E-IFFALSE and we have

t = if false then t2 else t3 and t ′ = t3 , for some t2 and t3 , or

3. the final rule used in D is E-IF and we have

t = if t1 then t2 else t3 and t ′ = if t ′
1 then t2 else t3 , for some

t1 , t
′
1 , t2 , and t3 ; moreover, the immediate subderivation of D

witnesses (t1, t ′
1) ∈−→.

CIS 500, 23 September 7

'

&

$

%

Induction on Derivations

Combining the previous ideas, we can write proofs about evaluation “by

induction on derivation trees.” E.g....

Theorem: If t −→ t ′ — i.e., if (t, t ′) ∈−→ — then size(t) > size(t ′).

Proof: By induction on a derivation of t −→ t ′ .

For each step of the induction, we assume the desired result for all

smaller derivations and proceed by a case analysis (using the previous

lemma) of the final evaluation rule used in constructing the derivation

tree.

CIS 500, 23 September 8

'

&

$

%

Aside

Q: Why are we bothering to prove all these completely obvious facts

about terms and evaluation?

CIS 500, 23 September 9

'

&

$

%

Aside

Q: Why are we bothering to prove all these completely obvious facts

about terms and evaluation?

A: Suppose you told one of these facts to someone and they replied, “I

don’t believe it!” How would you convince them, aside from just saying,

“Well, look at it again... isn’t it obvious?”

I.e., we’re trying to draw out why it is obvious.

CIS 500, 23 September 9-a

'

&

$

%

Aside

Q: Why are we bothering to prove all these completely obvious facts

about terms and evaluation?

A: Suppose you told one of these facts to someone and they replied, “I

don’t believe it!” How would you convince them, aside from just saying,

“Well, look at it again... isn’t it obvious?”

I.e., we’re trying to draw out why it is obvious.

A’: Facts almost this obvious have a habit of being false.

Doing the proofs is a methodology for debugging definitions.

CIS 500, 23 September 9-b

'

&

$

%

Numbers

New syntactic forms

t ::= ... terms:

0 constant zero

succ t successor

pred t predecessor

iszero t zero test

v ::= ... values:

nv numeric value

nv ::= numeric values:

0 zero value

succ nv successor value

CIS 500, 23 September 10

'

&

$

%

New evaluation rules t −→ t ′

t1 −→ t ′
1

succ t1 −→ succ t ′
1

(E-SUCC)

pred 0 −→ 0 (E-PREDZERO)

pred (succ nv1) −→ nv1 (E-PREDSUCC)

t1 −→ t ′
1

pred t1 −→ pred t ′
1

(E-PRED)

iszero 0 −→ true (E-ISZEROZERO)

iszero (succ nv1) −→ false (E-ISZEROSUCC)

t1 −→ t ′
1

iszero t1 −→ iszero t ′
1

(E-ISZERO)

CIS 500, 23 September 11

'

&

$

%

Aside

Q: Could we give the previous definition without bothering to introduce a

separate category of numeric values?

CIS 500, 23 September 12

'

&

$

%

Normal Forms

A normal form is a term t that does not evaluate to anything — i.e.,

such that there are no pairs of the form (t, t ′) in −→ for any t ′ .

N.b.: When t is a normal form, we also say that t is “in normal form.”

CIS 500, 23 September 13

'

&

$

%

Normal Forms

A normal form is a term t that does not evaluate to anything — i.e.,

such that there are no pairs of the form (t, t ′) in −→ for any t ′ .

Theorem: Every value v is a normal form.

Proof: ?

N.b.: When t is a normal form, we also say that t is “in normal form.”

CIS 500, 23 September 13-a

'

&

$

%

Is the converse true? I.e., is every normal form a value?

CIS 500, 23 September 14

'

&

$

%

Stuck terms

Is the converse true? I.e., is every normal form a value?

No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.

Stuck terms model run-time errors.

CIS 500, 23 September 14-a

'

&

$

%

Multi-step evaluation.

The multi-step evaluation relation, written −→∗
, is the reflexive, transitive

closure of one-step evaluation.

That is, it is the smallest relation such that

1. if t −→ t ′ then t −→∗
t ′ ,

2. t −→∗
t for all t, and

3. if t −→∗
t ′ and t ′ −→∗

t ′′ , then t −→∗
t ′′ .

CIS 500, 23 September 15

'

&

$

%

Termination of evaluation

Theorem: For every t there is some normal form t ′ such that t −→∗
t ′ .

Proof:

CIS 500, 23 September 16

'

&

$

%

Termination of evaluation

Theorem: For every t there is some normal form t ′ such that t −→∗
t ′ .

Proof:

� First, recall that single-step evaluation strictly reduces the size of the
term:

if t −→ t ′ , then size(t) > size(t ′)

� Now, assume (for a contradiction) that
t0, t1, t2, t3, t4, . . .

is an infinite-length sequence such that

t0,−→ t1,−→ t2,−→ t3,−→ t4 −→ · · ·,
� Then

size(t0), size(t1), size(t2), size(t3), size(t4), . . .

is an infinite, strictly decreasing sequence of natural numbers.

� But such a sequence cannot exist — contradiction!

CIS 500, 23 September 16-a

'

&

$

%

Termination Proofs

Most termination proofs have the same basic form:

Theorem: The relation R ⊆ X × X is terminating — i.e., there are

no infinite sequences x0 , x1 , x2 , etc. such that (xi, xi+1) ∈ R for

each i.

Proof:

1. Choose

� a well-founded set (W, <) — i.e., a set W with a partial order

< such that there are no infinite descending chains

w0 > w1 > w2 > . . . in W

� a function f from X to W

2. Show f(x) > f(y) for all (x, y) ∈ R

3. Conclude that there are no infinite sequences x0 , x1 , x2 , etc.

such that (xi, xi+1) ∈ R for each i), since, if there were, we

could construct an infinite descending chain in W.

CIS 500, 23 September 17

'

&

$

%

More examples (time permitting)

� Nondeterministic choice

� Simple parallel composition

� A one-element memory

CIS 500, 23 September 18

'

&

$

%

The Lambda Calculus

CIS 500, 23 September 19

'

&

$

%

The lambda-calculus

� If our previous language of arithmetic expressions was the simplest
nontrivial programming language, then the lambda-calculus is the

simplest interesting programming language

� Turing complete

� Higher-order

� Variable binding and lexical scope

� The e. coli of programming language research

� The foundation of many real-world programming language designs
(including ML, Haskell, Scheme, Lisp, ...)

CIS 500, 23 September 20

'

&

$

%

Intuitions

Suppose we want to describe a function that adds three to any number

we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x yields succ (succ (succ x)).”

CIS 500, 23 September 21

'

&

$

%

Intuitions

Suppose we want to describe a function that adds three to any number

we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x yields succ (succ (succ x)).”

Q: What is plus3 itself?

CIS 500, 23 September 21-a

'

&

$

%

Intuitions

Suppose we want to describe a function that adds three to any number

we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x yields succ (succ (succ x)).”

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields succ (succ (succ x)).

CIS 500, 23 September 21-b

'

&

$

%

Intuitions

Suppose we want to describe a function that adds three to any number

we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x yields succ (succ (succ x)).”

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields succ (succ (succ x)).

plus3 = λx. succ (succ (succ x))

This function exists independent of the name plus3.

CIS 500, 23 September 21-c

'

&

$

%

Intuitions

Suppose we want to describe a function that adds three to any number

we pass it. We might write

plus3 x = succ (succ (succ x))

That is, “plus3 x yields succ (succ (succ x)).”

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields succ (succ (succ x)).

plus3 = λx. succ (succ (succ x))

This function exists independent of the name plus3.

On this view, plus3 (succ 0) is just a convenient shorthand for “the

function that, given x, yields succ (succ (succ x)), applied to succ 0.”

plus3 (succ 0) = (λx. succ (succ (succ x))) (succ 0)

CIS 500, 23 September 21-d

'

&

$

%

What’s new?

We have introduced two new primitive syntactic forms:

� abstraction of a term t on some subterm x:

λx. t

“The function that, when applied to a value v, yields t with v in

place of x.”

� application of a function to an argument:
t1 t2

“the function t1 applied to the argument t2”

CIS 500, 23 September 22

'

&

$

%

What’s new?

We have introduced two new primitive syntactic forms:

� abstraction of a term t on some subterm x:

λx. t

“The function that, when applied to a value v, yields t with v in

place of x.”

� application of a function to an argument:
t1 t2

“the function t1 applied to the argument t2”

Note that abstractions are anonymous. For convenience in examples, we

will sometimes write things like

Let plus3 be λx. succ (succ (succ x)) and consider the term

plus3 (succ 0)

But the naming here is a metalanguage operation — the names are not

part of the object language under discussion.

CIS 500, 23 September 22-a

'

&

$

%

Abstractions over Functions

Consider the λ-abstraction

g = λf. f (f (succ 0))

Note that the parameter variable f is used in the function position in the

body of g. Terms like g are called higher-order functions.

If we apply g to an argument like plus3, the “substitution rule” yields a

nontrivial computation:

g plus3 = (λf. f (f (succ 0))) (λx. succ (succ (succ x)))

i.e. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) (succ 0))

i.e. (λx. succ (succ (succ x)))

(succ (succ (succ (succ 0))))

i.e. succ (succ (succ (succ (succ (succ (succ 0))))))

CIS 500, 23 September 23

'

&

$

%

Abstractions Returning Functions

Consider the following variant of g:

double = λf. λy. f (f y)

I.e., double is the function that, when applied to a function f, yields a

function that, when applied to an argument y, yields f (f y).

CIS 500, 23 September 24

'

&

$

%

Example

double plus3 0

= (λf. λy. f (f y))

(λx. succ (succ (succ x)))

0

i.e. (λy. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) y))

0

i.e. (λx. succ (succ (succ x)))

((λx. succ (succ (succ x))) 0)

i.e. (λx. succ (succ (succ x)))

(succ (succ (succ 0)))

i.e. succ (succ (succ (succ (succ (succ 0)))))

CIS 500, 23 September 25

'

&

$

%

The Pure Lambda-Calculus

As the preceding examples suggest, once we have λ-abstraction and

application, we can throw away all the other language primitives and still

have left a rich and powerful programming language.

In this language — the “pure lambda-calculus”— everything is a function.

� Variables always denote functions

� Functions always take other functions as parameters

� The result of a function is always a function

CIS 500, 23 September 26

'

&

$

%

Formalities

CIS 500, 23 September 27

'

&

$

%

Syntax

t ::= terms:

x variable

λx.t abstraction

t t application

Terminology:

� terms in the pure λ-calculus are often called λ-terms

� terms of the form λx. t are called λ-abstractions or just abstractions

CIS 500, 23 September 28

'

&

$

%

Scope

The λ-abstraction term λx.t binds the variable x.

The scope of this binding is the body t.

Occurrences of x inside t are said to be bound by the abstraction.

Occurrences of x that are not within the scope of an abstraction binding

x are said to be free.

λx. λy. x y z

CIS 500, 23 September 29

'

&

$

%

Scope

The λ-abstraction term λx.t binds the variable x.

The scope of this binding is the body t.

Occurrences of x inside t are said to be bound by the abstraction.

Occurrences of x that are not within the scope of an abstraction binding

x are said to be free.

λx. λy. x y z

λx. (λy. z y) y

CIS 500, 23 September 29-a

'

&

$

%

Values

v ::= values:

λx.t abstraction value

CIS 500, 23 September 30

'

&

$

%

Operational Semantics

Computation rule:

(λx.t12) v2 −→ [x 7→ v2]t12 (E-APPABS)

[x 7→ v2]t12 is “the term that results from substituting occurrences

of x in t12 with v12 .”

CIS 500, 23 September 31

'

&

$

%

Operational Semantics

Computation rule:

(λx.t12) v2 −→ [x 7→ v2]t12 (E-APPABS)

[x 7→ v2]t12 is “the term that results from substituting occurrences

of x in t12 with v12 .”

Congruence rules:

t1 −→ t ′
1

t1 t2 −→ t ′
1 t2

(E-APP1)

t2 −→ t ′
2

v1 t2 −→ v1 t ′
2

(E-APP2)

CIS 500, 23 September 31-a

